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Abstract

Breakthroughs in artificial intelligence (AI) hold enormous potential as it can automate complex 

tasks and go even beyond human performance. In their study, McKinney et al. showed the high 

potential of AI for breast cancer screening. However, the lack of methods’ details and algorithm 

code undermines its scientific value. Here, we identify obstacles hindering transparent and 

reproducible AI research as faced by McKinney et al., and provide solutions to these obstacles 

with implications for the broader field.

The work by McKinney et al.1 demonstrates the potential of AI in medical imaging, while 

highlighting the challenges of making such work reproducible. The authors assert that their 

system improves the speed and robustness of breast cancer screening, generalizes to 

populations beyond those used for training, and outperforms radiologists in specific settings. 

Upon successful prospective clinical validation and approval by regulatory bodies, this new 

system holds great potential for streamlining clinical workflows, reducing false positives, 

and improving patient outcomes. However, the absence of sufficiently documented methods 

and computer code underlying the study effectively undermines its scientific value. This 

shortcoming limits the evidence required for others to prospectively validate and clinically 

implement such technologies. By identifying obstacles hindering transparent and 

reproducible AI research as faced by McKinney et al., we provide potential solutions with 

implications for the broader field.
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Scientific progress depends upon the ability of independent researchers to (1) scrutinize the 

results of a research study, (2) reproduce the study’s main results using its materials, and (3) 

build upon them in future studies2. Publication of insufficiently documented research does 

not meet the core requirements underlying scientific discovery3,4. Merely textual 

descriptions of deep learning models can hide their high level of complexity. Nuances in the 

computer code may have dramatic effects on the training and evaluation of results5, 

potentially leading to unintended consequences6. Therefore, transparency in the form of the 

actual computer code used to train a model and arrive at its final set of parameters is 

essential for research reproducibility. The authors state “The code used for training the 
models has a large number of dependencies on internal tooling, infrastructure and hardware, 
and its release is therefore not feasible”. Computational reproducibility is indispensable for 

high-quality AI applications7,8; more complex methods demand greater transparency9. In the 

absence of code, reproducibility falls back on replicating methods from textual description. 

Although, the authors claim that “all experiments and implementation details are described 
in sufficient detail in the Supplementary Methods section to support replication with non-
proprietary libraries”, key details about their analysis are lacking. Even with extensive 

description, reproducing complex computational pipelines based purely on text is a 

subjective and challenging task10.

In addition to the reproducibility challenges inherent to purely textual descriptions of 

methods, the authors’ description of the model development as well as data processing and 

training pipelines lacks critical details. The definitions of multiple hyperparameters for the 

model’s architecture (composed of three networks referred to as the Breast, Lesion, and 

Case models) are missing (Table 1). In their original publication, the authors did not disclose 

the settings for the augmentation pipeline; the transformations used are stochastic and can 

significantly affect model performance11. Details of the training pipeline were also missing. 

Without this key information, independent reproduction of the training pipeline is not 

possible.

There exist numerous frameworks and platforms to make artificial intelligence research 

more transparent and reproducible (Table 2). For the sharing of code, these include 

Bitbucket, GitHub, and GitLab among others. The multiple software dependencies of large-

scale machine learning applications require appropriate control of the software environment, 

which can be achieved through package managers including Conda, as well as container and 

virtualization systems, including Code Ocean, Gigantum, Colaboratory, and Docker. If 

virtualization of the McKinney et al. internal tooling proved to be difficult, they could have 

released the computer code and documentation. The authors could have also created small 

artificial examples or used small public datasets12 to show how new data must be processed 

to train the model and generate predictions. Sharing the fitted model (architecture along with 

learned parameters) should be simple aside from privacy concerns that the model may reveal 

sensitive information about the set of patients used to train it. Nevertheless, techniques for 

achieving differential privacy exist to alleviate such concerns. Many platforms allow sharing 

of deep learning models, including TensorFlow Hub, ModelHub.ai, ModelDepot, and Model 

Zoo with support for multiple frameworks such as PyTorch and Caffe, as well as the 

TensorFlow library used by the authors. In addition to improving accessibility and 
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transparency, such resources can significantly accelerate model development, validation, and 

transition into production and clinical implementation.

Another crucial aspect of ensuring reproducibility lies in access to the data the models were 

derived from. In their study, McKinney et al. used two large datasets under license, properly 

disclosing this limitation in their publication. Sharing of patient health information is highly 

regulated due to privacy concerns. Despite these challenges, sharing of raw data has become 

more common in biomedical literature, increasing from under 1% in the early 2000s to 20% 

today13. However, if the data cannot be shared, the model predictions and data labels 

themselves should be released, allowing further statistical analyses. Above all, concerns 

about data privacy should not be used as a smokescreen to distract from the requirement to 

release code.

Although sharing of code and data is widely seen as a crucial part of scientific research, the 

adoption varies across fields. In fields such as genomics, complex computational pipelines 

and sensitive datasets have been shared for decades14. Guidelines related to genomic data 

are clear, detailed, and most importantly, enforced. It is generally accepted that all code and 

data are released alongside a publication. In other fields of medicine and science as a whole, 

this is much less common, and data and code are rarely made available. For scientific efforts 

where a clinical application is envisioned and human lives would be at stake, we argue that 

the bar of transparency should be set even higher. If a dataset cannot be shared with the 

entire scientific community, because of licensing or other insurmountable issues, at a 

minimum a mechanism should be set so that some highly-trained, independent investigators 

can access the data and verify the analyses.

The lack of access to code and data in prominent scientific publications may lead to 

unwarranted and even potentially harmful clinical trials 15. These unfortunate lessons have 

not been lost on journal editors and their readers. Journals have an obligation to hold authors 

to the standards of reproducibility that benefit not only other researchers, but also the 

authors themselves. Making one’s methods reproducible may surface biases or shortcomings 

to authors before publication6. Preventing external validation of a model will likely reduce 

its impact, as it also prevents other researchers from using and building upon it in future 

studies. The failure of McKinney et al. to share key materials and information transforms 

their work from a scientific publication open to verification and adoption by the scientific 

community into a promotion of a closed technology.

We have high hopes for the utility of AI methods in medicine. Ensuring that these methods 

meet their potential, however, requires that these studies be scientifically reproducible. The 

recent advances in computational virtualization and AI frameworks are greatly facilitating 

the implementations of complex deep neural networks in a more structured, transparent, and 

reproducible way. Adoption of these technologies will increase the impact of published deep 

learning algorithms and accelerate the translation of these methods into clinical settings.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1:

Essential hyperparameters for reproducing the study for each of the three models (Lesion, Breast, and Case), 

including those missing from the description in Mckinney et al.

Lesion Breast Case

Learning rate Missing 0.0001 Missing

Learning rate schedule Missing Stated Missing

Optimizer Stochastic gradient descent with momentum Adam Missing

Momentum Missing Not applicable Not applicable

Batch size 4 Unclear 2

Epochs Missing 120,000 Missing
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Table 2:

Frameworks and platforms to share code, software dependencies and deep learning models to make artificial 

intelligence research more transparent and reproducible.

Resource  URL

Code

BitBucket  https://bitbucket.org

GitHub  https://github.com

GitLab  https://about.gitlab.com

Software dependencies

Conda  https://conda.io

Code Ocean  https://codeocean.com

Gigantum  https://gigantum.com

Colaboratory  https://colab.research.google.com

Deep learning models

TensorFlow Hub  https://www.tensorflow.org/hub

ModelHub  http://modelhub.ai

ModelDepot  https://modeldepot.io

Model Zoo  https://modelzoo.co

Deep learning frameworks

TensorFlow  https://www.tensorflow.org/

Caffe  https://caffe.berkeleyvision.org/

PyTorch  https://pytorch.org/
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