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Abstract

One of the greatest obstacles in the adoption of deep neural networks for new medical applications
is that training these models typically require a large amount of manually labeled training samples.
In this body of work, we investigate the semi-supervised scenario where one has access to large
amounts of unlabeled data and only a few labeled samples. We study the performance of
MixMatch and FixMatch—two popular semi-supervised learning methods—on a histology dataset.
More specifically, we study these models’ impact under a highly noisy and imbalanced setting.
The findings here motivate the development of semi-supervised methods to ameliorate problems
commonly encountered in medical data applications.

vince.pulido@jhuapl.edu.
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[. Introduction

Convolutional Neural Networks (CNN) have been the dominant framework in many
computer vision tasks. The computing resources needed to train large scale CNN have
become increasingly cheaper and more democratized as the barrier to train custom deep
neural networks is lowered. Today, some of the larger costs have now come from activities
relating to the annotation of datasets for training and evaluating these models. These costs
are exacerbated in the field of medicine where experts’ time is costly. This presents a high
obstacle to apply fully-supervised machine learning techniques that requiring well-curated
and fully annotated datasets.

In order to circumvent a fully-supervised model, researchers turn to techniques like semi-
supervised learning (SSL) to minimize the annotation requirements to build comparable
models. These learning techniques adapt to an environment where one has a small amount of
labeled data and a larger proportion of unlabeled data. Recently, there has been a surge in
state-of-the-art performance in semi-supervised learning using MixMatch [1] and FixMatch
[2]. Both techniques rely on pseudo-labeling (guessing unknown labels for training) and data
augmentation to tackle semi-supervision; however, they diverge on the manner in which they
perform these procedures.

Although these methods are empirically successful in general computer vision SSL tasks,
they have not been examined under conditions common in the field of histology where we
find high class imbalances, and noisy samples. In this study, we explore the performance of
FixMatch and MixMatch on a semi-supervised histological setting. The contribution of this
work is two fold: Firstly, we apply modern SSL methods on the task of detecting disease
patterns by training a multi-class model using only a few labeled images while leveraging
the use of a larger amount of unlabeled images. For our use case, we will be applying SSL
methods on a histology dataset especially curated for the purpose of detecting esophogeal
cancer’s precursors: dysplasia, Barrett’s, and squamous tissue. Lastly, we will study the
effects of imbalanced datasets on the two SSL methods.

A. Common characteristics of histology datasets

This section details some of the characteristics typical of biopsy imaging relative to generic
computer vision datasets (e.g. ImageNet [3] and MS-COCO [4]).

1) Gigapixel size images: Digitized biopsy slides are high resolution images that are
much larger than standard images. These high resolution sizes are prohibitive for the
application of neural networks as 1) resizing these images would destroy microscopic
patterns important to the diagnosis, and 2), if resizing was not performed, off-the-shelf
GPUs do not carry enough memory to store the parameters of a large model required by a
gigapixel-sized input.
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To ameliorate this problem, the common practice is to perform “patching” operations by
subdividing the slide images into smaller patches—cropped in a sliding window manner—and
use them as input data to the CNN. These patches should be small enough to fit into GPU
memory and have enough visual details to carry patterns present in diseases. This method
has perform well on disease detection on biopsy slides [5]-[10].

2) Open-set noise: Open-set noise are areas in the biopsy containing tissue structures
that are not relevant to the context of the problem. These areas could be caused by sensor
noise, imperfections in the staining process, tissue outside the context of the task, etc. They
are called open-set noise because these portions of the biopsy are outside the set of classes in
question, yet they are still presented as training data to the model. For our use case, Figure 1
show some examples of open-set noise as compared to clean samples. In the case where a
high number of open-set patches is present in the training data, CNNs will inadvertently
overfit to these images [11] and may learn the wrong patterns; thus, degrading the
generalizability of the model.

3) Imbalanced datasets: More often than not, real-world datasets have classes that are
underrepresented in the sample size relative to others. This is especially true with medical
datasets where some diseases are rare and collecting more data is difficult. When trained on
highly imbalanced datasets, a classifier has a tendency to pick up the patterns of the most
popular classes and ignore the least popular ones—having a negative impact on its
performance.

[I. Related Works

This section first introduces the pertinent SSL literature within the general and medical
setting. While our work primarily inspects the performance of FixMatch and MixMatch, it is
related to other fields of research, including semi-supervised learning, open-set noise
robustness, and class imbalance.

A. Semi-supervised Learning

Several works have explored the use of SSL on histology images. Lu et al. [12] used a two-
stage approach using self-supervised contrastive learning and a multi-instance attention
module to the task of binary classification of breast cancer histology images. However, their
approach was evaluated on a well-curated dataset [13]. Peikari et al. [14] used a “cluster-
then-label” approach finding high density areas of unlabeled clusters then using these
clusters to train an SVM to learn a decision boundary through low density areas. This
approach used a bag-of-words descriptor to represent each patch.

MixMatch [1] and FixMatch [2] are two deep learning methods that use ideas of consistency
regularization. Consistency regularization is a constraint that forces models to produce
“consistent” predictions despite applying various transformation. More specifically, in the
semi-supervised setting, an unlabeled example must adhere to a single class no matter how a
sample is augmented. Techniques using consistency constraints either focus on enforcing
multiple identical models with varying weights to adhere to a single one-hot label [15], [16]
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or focus on learning a model robust against adversarial transformations [17]. Key differences
between MixMatch and FixMatch methods will be detailed in Sections I11-A and 111-B.

B. Open-set Noise

Open-set noise recognition is a rich research area in the field of machine learning [18]. Our
work closely relates to Wang et al. [19] which learns a model despite the presence of
significant open-set noise by first detecting noisy samples iteratively and using a contrastive
loss to learn a metric that pushes noisy samples away from clean samples in a metric space.
However, Wang et al. only learns from a fully-supervised setting.

Although, STL-10 [20]-one of the benchmark datasets used to evaluate SSL techniques—
contains some amount of open-set samples, the dataset’s open-set samples still have features
similar to the classes in question. More specifically, the dataset’s samples belongs to one of
10 animal (e.g. dog, cat, etc.) or vehicle (e.g. car, truck, etc.) classes. However, their open-set
samples only contain similar looking animals (e.g. bears, rabbits, etc.) and vehicles (e.g.
trains, buses, etc.), thus having features similar to the closed-set classes. We argue that this
difference between the open-set and the classes in question do not differ enough compared
to histology datasets.

C. Class Imbalance

Researchers have used different approaches to tackle class imbalances like class-sensitive
losses [21]-[24] and transfer learning approaches [25], [26]. FixMatch and MixMatch,
through their respective augmentation schemes, more closely relates to re-sampling methods
by generating synthetic data. These SSL methods’ augmentation schemes were not intended
to be an approach to tackle class imbalances; however, they have the effect of generating
more synthetic data. For example, one of MixMatch’s augmentation scheme MixUp [27]
closely matches techniques like Synthetic Minority Oversampling Technique (SMOTE) and
its variants [28]-[31] which aims to generates minority samples by selecting two examples
that are close in the feature space, and synthetically sampling a linearly interpolated data
point between the two examples. To the best of our knowledge, there has not been a study
that addresses class imbalances in the SSL setting.

1. Methods

For this section, we will provide a brief description of MixMatch and FixMatch. Primarily,
we will address the differences between their pseudo-labeling, data augmentation, and
unlabeled sample loss function. We will then provide a description of the collection and
processing of the esophageal dataset for our experimental analysis.

A. MixMatch

Although simple to implement, MixMatch has achieved noteworthy results on benchmark
computer vision datasets. For pseudo-labeling, MixMatch infers labels by averaging the
probabilities of various transformations applied to an unlabeled sample (e.g. simple
horizontal and vertical rotations). This average probability score is then accentuated using a
“sharpening” procedure where it increase the score of the higher class probabilities and
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dampen the scores of the lower class probabilities. The intuition is that if the model, on
average, finds that a patch is of a certain class despite multiple transformations then the best
guess label of this patch is the class with the highest probability. Thus, sharpening this score
increases the confidence that a patch belongs to a certain class, and it is used as the label for
training.

For data augmentation, MixMatch applies an procedure called MixUp [27] on pairs of
labeled or unlabeled samples to generate more synthetic data by performing a pixel-level
interpolation between images and a pairwise interpolation between class probability
distributions. This synthetic data, along with their interpolated pseudo-labels, are used for
training the CNN.

Finally, for unlabeled loss, MixMatch uses the mean squared error (MSE) as the loss for the
unlabeled samples. Compared to cross-entropy loss, MSE is less punitive to prediction
errors.

B. FixMatch

C. Data

For data augmentation, FixMatch performs a strong and weak transformation on the
unlabeled data point [32], [33]. If the model infers a weakly augmented sample to have a
softmax score greater than a predetermined threshold z, then the model considers this
softmax score as the pseudo-label of the corresponding strongly-augmented image. The
model is then trained on the strongly-augmented sample along with its pseudo-label of the
weakly-augmented sample. For this study, we only implement FixMatch with RandAugment
[33] which produces strong distortions of the image, and we fix the threshold to the default
value of 7=.95.

Finally, for unlabeled loss, the softmax output of the strongly augmented data point is
compared against the one-hot encoded pseudo-label using a cross-entropy loss. Compared to
MixMatch’s MSE loss, cross-entropy loss severely punishes prediction errors.

A total of 387 slide images from 133 unique patients were collected. A selection of the
whole-slide image were manually annotated to highlight examples of each class (squamous,
Barrett’s, and dysplasia) within each slide image (Figure 2).

To create the labeled dataset, from 29 of the total 387 slide images, 68, 51, and 85 segments
of squamous, Barrett’s, and dysplastic tissue were annotated, respectively. The segments
were then subdivided into 1000x1000 pixel patches with 500-pixel overlap, and further
curated to remove patches with excessive white space. All patches were extracted at the 40x
magnification level. These clean samples were split at the patient-level into the labeled
training dataset and testing dataset.

To create the noisy unlabeled dataset, the remaining slides were patched similar to the clean
labeled set; however, no manual filtering was performed—leaving noise in the unlabeled
dataset. The total training set contained 2,849 labeled patches and 889,028 unlabeled
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patches, and the test set contained 2,645 labeled patches (the model was blinded to these
labels).

Table | summarizes the final class frequency of the dataset. Note the imbalanced nature of
the dataset as the total number of dysplasia examples.

IV. Experiments

This section compares and contrasts the classification performance of the two SSL methods
under various label size conditions and imbalanced settings.

A. Implementation

In all experiments, we use the ResNet-18 model. We will use the default settings for both the
MixMatch and FixMatch methods, except for FixMatch’s learning rate which we set to /r
=.001 (the default learning rate for MixMatch) as we have found it to converge better on the
experimental dataset. For the unlabeled loss, we designated A, = 1 for both methods. We
train both the models on 32 epochs with 512 iterations and batch size of 22 samples. The
reported implementations used 1024 epochs with batch size of 64. However, we notice no
increase in performance using 1024 epoch compared to 32 epochs. We used a Pytorch
implementation for both FixMatch® and MixMatchZ. These implementations were verified
to replicate their respective original results. Input data is resized from 1000x1000 pixels to
224x224 pixels and normalized between 0 and 1.

B. Performance Comparison

The standard way to analyze SSL methods is to measure their performance as we vary the
number of labeled samples. We train FixMatch and MixMatch on two levels of labeled
sample sizes: 36 and 72 patches per class; totaling 108 and 216, respectively. To test the
effects of patient diversity, we also control for the number of patients from which we
sample. We test 6 different patient-patch sampling combination levels: (6, 6), (4, 9), (2, 18),
(6, 12), (4, 18), and (2, 36). For example, the sampling level notation (4, 9) means that we
sample 4 random patients per class and, from each of these 4 patients, we sample 9 random
patches. These combinations were designed such that the number of total labels were held
constant to control for labeled sample sizes. We measure the average AUC and the per-class
AUC for each of these combinations over 5 trials. Table Il shows that MixMatch performs
better than FixMatch on the average AUC and dysplasia AUC. We also see that increasing
the number of patients has a bigger impact on the performance of both the models compared
to just increasing the number of labeled patches, signifying that patient diversity has a larger
role on the performance of these models. Figure 3 compares the performance of an identical
(6, 6) patient-patch sampling on both the FixMatch and MixMatch methods.

As a proxy to an upper bound, we trained the model using a fully supervised method trained
on all the labeled samples. The fully supervised model’s performance is comparable to

lhttps://github.com/valencebond/FixMatch_pytorch
2https://github.com/YUIut/MixMatch—pytorch
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MixMatch’s performance at the (6, 6) and (6, 12) combination levels, despite MixMatch
only having a small fraction of the total labels.

To offer an explanation as to why FixMatch produces poor results on the esophogeal dataset,
we designed a follow-up experiment by tracking the effects of the softmax score of 10 hand
picked, open-set examples on the AUC using the (2, 18) combination. We measure the
model AUC at every 126 iterations for 64 cycles and the corresponding softmax scores that
the 10 open-set examples produce. The softmax score is the probability that a given sample
belongs to a certain class. Figure 4 show the minimum and average softmax scores of the
last 48 cycles. This show that, as the model erroneously becomes more confident of the
open-set examples, the model’s performance deteriorates as well. More interestingly, the
model begins to deteriorate when the minimum softmax score exceeds .95 (FixMatch’s
default threshold value).

C. Effects of Imbalances

To test the effects of the various degrees of imbalances, we fix the patient-patch sampling
combination at (6, 12). We then decrease the amount of labeled dysplasia samples to 1, 3,
and 6 samples per patient-totaling 6, 18, and 36 samples for the dysplasia class, respectively,
compared to the 72 samples for Barrett’s and squamous. We measure the average AUC
across 5 trails. Table Il show that MixMatch is more robust to imbalances compared to
FixMatch on average. More interestingly, MixMatch has a higher average AUC on the
imbalanced dysplasia class, and comparable to the balanced result at (6, 12) combination.
Overall, however, both methods degrade with high level of imbalances due to their
performance on the dysplasia (minority) class.

V. Discussion

This study shows a method to train a histology detection model with only a few labeled
samples. With only a few exemplary images, one can train an effective model to detect
esophageal disease patterns on histopathology datasets. In this study, we compare and
contrast the performance of MixMatch and FixMatch. Although FixMatch performs better
overall in general computer vision datasets, our results show that MixMatch performs better
on histology datasets—where noisy, open-set samples are present. Also, MixMatch’s pseudo-
labeling and data augmentation procedures are more robust to the impact of histology
datasets, even under varying degrees of imbalanced scenarios. Finally, our experiments show
that patient diversity has a significant impact on the performance of SSL methods.

While there could be many compounding factors as to why FixMatch performs poorly on
datasets with open-set samples, we hypothesize that one major reason for FixMatch’s poor
performance is due to its use of the thresholding method for pseudo-labeling and cross
entropy loss to account for errors: the thresholding method incorrectly labels an open-set
sample as one of the classes in-question and the cross-entropy loss impels the model to over-
confidently predict an open-set sample as belonging to one of the classes in-question.
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Conclusion

This work contributes to the body of literature pertaining to SSL in medical imaging. In this
study, we applied the leading SSL methods to the problem of detecting disease in histology
images. We found that MixMatch performs better in the histology setting. This work also
motivates the development of SSL methods that are robust to open-set noise common in
histology datasets.

One weakness of this work is the lack of quantification of open-set noise; thus, future work
should perform a more controlled study on the effects of noisy unlabeled samples on these
methods.
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Fig. 1.
A) An example of normal squamous tissue of the esophagus, identified by flat, stratified

cells. B) An example of nondysplastic Barrett’s esophagus, characterized by large white
goblet cells filled with mucus and ovoid glands reminiscent of intestinal tissue. C) An
example of dysplasia of the esophagus in which nuclei become more prominent with varying
sizes and shapes (pleomorphism) and glands become more crowded. The bottom three
examples are instances of open-set data which are data points that do not belong to any of
the three classes in-question. They can include patches that add no information, tissue of a
different type (e.g. gastric and muscular tissue), and areas of the image that contain sensor
noise.
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Fig. 2.

E)?ample of the annotation process on a typical whole-slide image. Red, green, and yellow
highlights indicate areas that were annotated and from which labeled patches were taken.
Squamous tissue (black arrow), nondysplastic Barrett’s with Goblet cells (black arrowhead),
and dysplastic tissue with crowding and hyperchromasia (lower zoomed section) were all
present within the same whole-slide image.
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Per-class and Average ROC, MixMatch
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False Positive Rate

Per-class and average ROC curve of FixMatch and MixMatch trained on a (6, 12) patient-
patch combination.
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Fig. 4.

Softmax Score

Effects of softmax scores of 10 open-set samples on the model’s AUC for FixMatch using

(2, 18) patient-patch combination.
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Fig. 5.

Dgsplasia class’s AUC score for varying levels of imbalances applied to a (6, 12) patient-
patch combination. The various imbalance levels against the dysplasia class are 1:12, 3:12,
6:12, and balanced. The imbalance level 1:12 means that the dysplasia class will have 1
sample for 6 patients. And the Barrett’s and squamous class will have 12 samples from 6
patients each.
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TABLE |
Class frequency on patch-level
Type Dysplasia Barrett’s Squamous Total
Labeled Train 616 925 1,308 2,849
Unlabeled Train - - - 889,028
Labeled Test 159 1365 1121 2,645
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Per-class and average AUC for the esophageal Barrett’s dataset

TABLE Il

MixMatch
Per-class  (Patient, Dysplasia Barrett’s Squamous Micro-Ave.
patches Patch)
(6, 6) .91+.02 .97+.01 .99+.01 .95+.01
36 4,9) .89+.03 .96+.02 .99+.01 .93+.03
(2, 18) .83+.08 .92+.04 .98+.02 .87+.04
(6, 12) 91+.01 .97+.01 .99+.01 .95+.02
72 (4,18) .88+.05 .96+.01 .99+.01 .95+.02
(2, 36) .86+.03 .92+.05 .99+.01 .90+.05
FixMatch

Eg{;ﬂ?js (F’Z?Eiﬁ)nty Dysplasia Barrett’s Squamous Micro-Ave.
36 (6, 6) .82+.02 .74+.18 .99+.01 73+.12
4,9) .83+.01 .88+.02 .99+.01 .80+.09
(2, 18) .79+.04 .80+.12 .99+.01 .73+.10
72 (6, 12) .86+.04 .84+.13 .99+.01 .81+.13
(4,18) .83+.04 .86+.06 .99+.01 77+.09
(2, 36) .79+.04 .72+.16 .99+.01 .70+.08

Full-Supervision

Dysplasia Barrett’s Squamous Micro-Ave.

All .92+.01 .97+.01 .99+.01 .96+.01
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