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Abstract

Background: Elevated temperatures can cause physiological, biochemical, and
molecular responses in plants that can greatly affect their growth and development.
Mutations are the most fundamental force driving biological evolution. However,
how long-term elevations in temperature influence the accumulation of mutations in
plants remains unknown.

Results: Multigenerational exposure of Arabidopsis MA (mutation accumulation) lines
and MA populations to extreme heat and moderate warming results in significantly
increased mutation rates in single-nucleotide variants (SNVs) and small indels. We
observe distinctive mutational spectra under extreme and moderately elevated
temperatures, with significant increases in transition and transversion frequencies.
Mutation occurs more frequently in intergenic regions, coding regions, and
transposable elements in plants grown under elevated temperatures. At elevated
temperatures, more mutations accumulate in genes associated with defense
responses, DNA repair, and signaling. Notably, the distribution patterns of mutations
among all progeny differ between MA populations and MA lines, suggesting that
stronger selection effects occurred in populations. Methylation is observed more
frequently at mutation sites, indicating its contribution to the mutation process at
elevated temperatures. Mutations occurring within the same genome under elevated
temperatures are significantly biased toward low gene density regions, special
trinucleotides, tandem repeats, and adjacent simple repeats. Additionally, mutations
found in all progeny overlap significantly with genetic variations reported in 1001
Genomes, suggesting non-uniform distribution of de novo mutations through the
genome.

Conclusion: Collectively, our results suggest that elevated temperatures can
accelerate the accumulation, and alter the molecular profiles, of DNA mutations in
plants, thus providing significant insight into how environmental temperatures fuel
plant evolution.

Keywords: Arabidopsis thaliana, Heat, Molecular evolution, Mutation accumulation,
Mutation bias, Mutation rate, Mutation spectrum, Transposable element, Warming
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Background
Mutations are the ultimate source of genetic variations within and among all species

and act as the fundamental driving force of biological evolution [1, 2]. DNA sequence

mutations result from single-base substitutions, small insertions and deletions (indels),

and large duplications/deletions, leading to changes in the genomic sequence compos-

ition. An accurate assessment of the rates, types, and molecular spectra of these muta-

tions within a species is critical to advancing understanding of diverse problems in

evolutionary biology, such as species divergence time [3], population genetic diversity

and effective population size [4–6], intra-organism mutation rate variation [7], and

adaptation to specific environments [8–11]. However, mutation rates are difficult to es-

timate because mutations are often subject to purifying selection and drift in natural

populations [2, 12]. The prevailing mutation accumulation (MA) experiments involve

establishing multiple independent lines from a single progenitor and repeatedly propa-

gating these lines for many generations, such that the effect of selection can be greatly

reduced [13]. Given the effectiveness of this experimental system, MA experiments

combined with whole-genome sequencing technology have been extensively conducted

to investigate spontaneous mutation rates and spectra in multiple eukaryotic species,

including Chlamydomonas reinhardtii [14, 15], Drosophila melanogaster [16–18], Cae-

norhabditis elegans [19, 20], Escherichia coli [1, 21], Saccharomyces cerevisiae [22], and

Arabidopsis thaliana [23]. These MA studies have provided important reference data

for estimating overall spontaneous mutation rates and the patterns underlying the mo-

lecular evolution of various species.

In nature, however, organisms often encounter various environmental stresses, and

the effect of these stresses (such as elevated temperatures) on mutations has begun to

receive increasing attention. In E. coli, accumulated genetic changes under high-

temperature stress were characterized in a long-term evolution experiment with repli-

cate populations [8]. A recent MA study on yeast grown under high temperatures also

revealed accumulated mutations associated with thermotolerance [24]. However, these

studies focused on unicellular organisms; few studies have examined accumulated mu-

tations in multicellular organisms under high temperature conditions through MA

experiments.

Global warming is accelerating [25], resulting in frequent occurrences of extremely

high temperatures and prolonged warming. Such changes have a profound impact on

plant growth and development, productivity, and adaptation [26–28]. As sessile organ-

isms, plants have evolved sophisticated mechanisms to cope with elevated tempera-

tures. Over the last decade, mechanisms of heat stress response and the regulation

thereof, as well as heat memory and priming in plants, have been well elucidated [29–

32]. Moreover, phenological and life-history traits underlying adaptive evolution in re-

sponse to climate warming have also been explored in plant populations [27, 33]. How-

ever, most studies have focused on the short-term (within a generation) responses to

heat stress and phenological changes due to warming; little is known about the longer-

term evolutionary genetic consequences of exposure of plants to high temperatures and

mild warming over successive generations.

A. thaliana, as a model plant, is an ideal organism for investigating MA at the gen-

omic level. Previous MA studies have characterized DNA sequence mutations accumu-

lating in A. thaliana lineages grown in non-stress [23] and high-salinity soil stress [34]
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environments. Although elevated temperatures significantly affect plant growth and de-

velopment, how elevated temperatures induce MA in plants is still unknown. To ad-

dress this question, we combined long-term MA experiments on lines and populations

with deep whole-genome sequencing to determine the genome-wide mutation rates

and profiles of A. thaliana grown under extreme heat, moderate warming, and control

conditions for 10–22 successive generations. We found significantly increased mutation

rates, along with distinct mutation spectra, mutated genes, and mutation bias, under el-

evated temperature conditions (moderate and extreme), providing insights into plant

molecular evolution under environmental warming.

Results
MA experiments and whole-genome sequencing

We conducted long-term MA experiments on A. thaliana in both single-seed descent

lineages and populations grown under Control (day 23 °C / night 18 °C), Heat (day

32 °C / night 27 °C), and Warming (day 28 °C / night 23 °C) conditions (Fig. 1a, b) (see

“Methods”). The elevated temperature treatments, especially Heat (32 °C), resulted in

various stress symptoms such as significantly decreased leaf size, shorter siliques

(Fig. 1c, d), and shorter generation times. We sequenced 35 A. thaliana genomes, in-

cluding 15 plants from MA lines at generation 10 (G10; five plants from each treat-

ment) and 15 plants from MA populations [five plants each from G16 (Control, A16),

G19 (Warming, C19), and G22 (Heat, B22)], spanning 10–22 successive generations, as

well as their ancestor genomes (five individual plants from G0). In total, approximately

165 Gb of clean reads (30 libraries) from 30 genomes of progeny, and 25 Gb of clean

reads from five libraries (see “Methods”) representing the genetic background of the an-

cestor (Additional file 1: Table S1) were obtained. For all MA lines and populations, an

average of 99.68% of sequenced reads was mapped to the A. thaliana reference gen-

ome, with average depths of 52.5×, 49.7×, 47.4×, 42.7×, 37.4×, and 36.3× per individual

in D10 (Control), E10 (Heat), F10 (Warming), A16 (Control), B22 (Heat), and C19

(Warming), respectively. Accordingly, an average of 116Mb (96.9%) of the reference

genome was accessible for variant calling (Additional file 1: Table S1). To obtain sufficient

coverage of the genetic background of the ancestor, the five G0 libraries (average coverage

37.1×) were combined. This sequencing depth/coverage and number of accessible

reference sites allowed for precise detection of mutations at the whole-genome level.

Accumulated mutations and mutation rates in MA lines and populations under elevated

temperatures

We obtained a total of 211 homozygous de novo mutations from MA lines under three

temperature treatments (Fig. 2a and Additional file 1: Tables S2-S3), including 39 mu-

tations (31 single-nucleotide variants [SNVs] and 8 indels) in D10 (Control), 98 muta-

tions (69 SNVs and 29 indels) in E10 (Heat), and 74 mutations (54 SNVs and 20

indels) in F10 (Warming). Most (85.9%) of the 57 indels in the MA lines were short

(1–3 bp) deletions (dels) and insertions (ins) (Fig. 2c). Furthermore, the indels of E10

(25 dels vs. 4 ins) and F10 (17 dels vs. 3 ins) showed strong biases toward dels. In

addition, we also detected 376 homozygous de novo mutations in MA populations, in-

cluding 70 mutations (60 SNVs and 10 indels) in A16 (Control), 183 mutations (130
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Fig. 1 (See legend on next page.)
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SNVs and 53 indels) in B22 (Heat), and 123 mutations (88 SNVs and 35 indels) in C19

(Warming) (Fig. 2b and Additional file 1: Tables S2-S3). Similar to the indels identified

from MA lines, most indels in the MA populations were short (1–3 bp) and biased to-

ward dels in B22 (42 dels vs. 11 ins) and C19 (22 dels vs. 13 ins) (Fig. 2d). Moreover,

we found no novel transposable element (TE) insertion event in any MA line or

population.

We further estimated the accuracy of the mutation calling pipelines using two simu-

lation tests [14, 35]. For the first test, we simulated 600 random SNVs using six copies

of reference genomes (see “Methods”). After read mapping and SNV filtering against

the mutated reference genomes, our pipeline recovered 588 (98%) of 600 expected

SNVs (Additional file 1: Table S4). For the second simulation test, we introduced

homozygous SNVs and performed heterozygous SNV filtering, resulting in the recovery

of 71–91% homozygous SNVs (Additional file 1: Table S5). To confirm our mutation

calls, we experimentally examined all SNVs and indels from MA lines by Sanger se-

quencing. In total, 205 of 211 mutations were confirmed (six mutations were identified

as PCR failures) (Additional file 1: Table S6).

We estimated the SNV mutation rate (μSNV) and indel mutation rate (μindel) per site

per generation in the MA lines. Mutigenerational growth of A. thaliana under heat

conditions caused significant increases relative to Control D in the average rates of

SNVs [μE-SNV = 1.18 (± 0.09) × 10− 8 vs. μD-SNV = 5.28 (± 0.95) × 10− 9; two-sample t

test, p = 1.0 × 10− 3] and indels [μE-indel = 4.94 (± 0.50) × 10− 9 vs. μD-indel = 1.36 (± 0.43)

× 10− 9, p = 6.3 × 10− 4; Fig. 3a]. Similarly, Warming also increased the SNV [μF-SNV =

9.21 (± 0.68) × 10− 9, p = 9.9 × 10− 3] and indel [μF-indel = 3.41 (± 0.71) × 10− 9, p = 0.04]

mutation rates. Furthermore, the mutation rates of dels were more than 5-fold higher

than those of ins in both Heat E [μE-del = 4.26 (± 0.47) × 10− 9 vs. μE-ins = 6.82 (± 1.70) ×

10− 10] and Warming F [μF-del = 2.90 (± 0.88) × 10− 9 vs. μF-ins = 5.12 (± 3.41) × 10− 10],

in contrast to the lack of difference observed in Control D. The overall MA mutation

(See figure on previous page.)
Fig. 1 Schematic illustration and morphological comparison of A. thaliana grown under Control, Heat, and
Warming conditions. a Schematic illustration of A. thaliana mutation accumulation (MA) lines and
populations. Two MA experiments were conducted in this study (see “Methods”). For MA line experiments,
seeds from a single Col-0 ancestor plant were grown independently under Control (D), Heat (E), or
Warming (F) conditions for 10 successive generations. Five 10th generation (Generation 10, G10) plants (five
MA lines) from each treatment (D10, E10, F10) were used for individual whole-genome sequencing. For MA
population experiments, seeds from the same ancestor plant as the MA lines were divided into three
groups (~ 35 seedlings per group) and planted under Control conditions (A) for 16 generations, Warming
conditions (C) for 19 generations, or Heat conditions (B) for 22 generations [the first 9 generations grown
under gradual warming, i.e., increase of 1 °C per generation (from 24/18 °C to 32/27 °C [day/night]); the
following 13 generations were grown at constant 32/27 °C]. Five 16th, 22th, and 19th generation plants
from each treated population were also randomly selected for sequencing. To maximize coverage and
provide progenitor background genetic information (reference genome sequence) for MA experiments, five
individuals (G0) were combined for sequencing. Genome-sequenced plants from MA lines and populations
are highlighted in yellow- and grey-shaded (blue outline) boxes, respectively; see also Additional file 1:
Table S1. b Growth status of MA plants exposed to Control, Heat, and Warming conditions at stage 5
(bolting) and stages 8–9 (silique ripening and senescence). Leaves at stage 5 (major axis≤ 1 cm) were
sampled for DNA extraction and sequencing. Scale bar, 5 cm. c Ripened siliques from the Control, Heat, and
Warming treatments. Scale bar, 0.5 cm. d Phenotypic statistics of leaf area and silique length under different
temperature treatments. Leaves at stage 5 (bolting) and siliques at stage 9 were measured. The experiments
were repeated three times and the data are presented as means ± standard errors of the mean (SEMs; n =
30). Significant differences were revealed using analysis of variance (ANOVA) with post hoc tests (*p < 0.05,
**p < 0.01 vs. Control or Warming)
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rates (SNVs and indels) of the Heat and Warming lines were 1.67 (± 0.06) × 10− 8

(μE-total) and 1.26 (± 0.13) × 10− 8 (μF-total) per site per generation, approximately 2.5-

fold (p = 8.6 × 10− 6) and 1.9-fold (p = 4 × 10− 3) higher than the Control [μD-total = 6.65

(± 0.83) × 10− 9], respectively (Fig. 3a). In addition, we observed significantly higher

rates of total mutations and SNVs in Heat E compared to Warming F (p < 0.05),

whereas the difference in indel rates was not significant (p = 0.1).

In parallel, we also estimated the average mutation rates in MA populations (Fig. 3b).

The plants grown under Heat conditions had significantly higher SNV rates than Con-

trol plants, such as μB-SNV (Heat) = 1.03 (± 0.06) × 10− 8 vs. μA-SNV (Control) = 6.53 (±

0.76) × 10− 9 (p = 1.6 × 10− 4), whereas no significant difference was observed between

Warming (μC-SNV = 8.08 (± 0.63) × 10− 9) and Control conditions (p = 0.2). However,

the total mutation rates of Heat B and Warming C were 1.45 (± 0.09) × 10− 8 (μB-total)

Fig. 2 Distribution across chromosomes of de novo mutations [single-nucleotide variants (SNVs) and small
insertions and deletions (indels)] detected in genomes of Arabidopsis from the Heat, Warming, and Control
MA lines and populations. a,b Labels indicate the type of mutation; colors indicate the functional class or
predicted consequence. Single-base insertions (ins) and deletions (dels) are indicated by base letters
preceded by a plus and minus sign, respectively. Large ins and dels are indicated by a plus (with the
number of inserted base pairs) and minus sign (with the number of deleted base pairs), respectively.
Individual colors indicate intergenic region (red), intron (yellow), synonymous/non-frameshift (orange),
nonsynonymous/frameshift/stop gain (blue), UTR3/5 (purple), upstream/downstream (green), splicing (pink),
transposable element (violet), and noncoding/pseudogene (lake blue) mutations. Red labels in each MA
population indicate the same mutations detected in at least two sequenced samples. c, d Frequencies and
categories of ins and dels were determined based on their indel lengths (see also Additional file 1:
Table S3)
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and 1.13 (± 0.09) × 10− 9 (μC-total), nearly 2.0- and 1.5-fold (p < 0.05) higher than in

Control A [μA-total = 7.61 (± 0.08) × 10− 9], respectively (Fig. 3b). Additionally, compared

to Warming C, Heat B had significantly higher total mutation and SNV rates (p <

0.05). However, the SNV rates and total mutation rates were lower in both the Heat

and Warming populations than in the MA lines under elevated temperatures.

Molecular spectra of mutations in A. thaliana under elevated temperatures

Base substitution mutation spectra varied after multigenerational growth of A. thaliana

under Heat, Warming, and Control conditions. We found a strong C:G→T:A bias

(driven by C→T and G→A) in six mutational spectra that commonly occurred in

MA lines under all three temperature treatments (Fig. 3c); however, C:G→T:A muta-

tions under elevated temperatures (Heat and Warming) had much higher rates

Fig. 3 Estimation of mutation rates of observed mutations (SNVs, indels) and molecular spectra in Control,
Warming, and Heat MA lines and populations. a, b SNV, indel, and total mutation rates (per site per
generation) of de novo mutations in MA lines and populations subjected to different temperature
treatments. Significant differences were revealed using a two-tailed Student’s t test (*p < 0.05, **p < 0.01
compared to the Control or Warming treatments). c, d Mutation rates of different mutation types in MA
lines and populations subjected to different temperature treatments. Conditional rates of each mutation
type per site per generation were estimated by dividing the number of observed mutations by the number
of analyzed sites capable of producing a given mutation and the number of generations of MA in each
Control, Warming, and Heat lineage and population lineage. Error bars indicate SEM. e, f Mutation
frequencies (per genome per generation) of transition and transversion mutations accumulated in MA lines
and populations subjected to different temperature treatments. Significant differences were revealed using
a two-tailed Student’s t test (*p < 0.05, **p < 0.01 compared to the Control or Warming treatments). g
Transition/transversion ratios (Ts/Tv) of SNVs accumulated in MA lines and populations subjected to
different temperature treatments
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compared to Control. Furthermore, compared to Heat E (μE-C:G→ T:A = 1.47 × 10− 8 per

site per generation), Warming F exhibited a lower C:G→T:A mutation rate (μF-C:G→

T:A = 1.23 × 10− 8). In addition, in Heat E and Warming F, the second most frequent

substitution was A:T→ T:A (mutation rate, μE-A:T→ T:A = 3.20 × 10− 9); however, this

differed from Control D, in which the second most frequent substitution was A:T→G:

C (μE-A:T→G:C = 2.39 × 10− 9). In general, the mean rate of mutations occurring at C:G

sites was nearly 3-fold higher than at A:T sites in Heat E and Warming F (Fig. 3c), in

contrast to ~ 2-fold in Control D. In MA populations, we observed similar results

under Heat and Warming (Fig. 3d); for example, the most frequent substitutions in

Heat B and Warming C were also biased toward C:G→T:A (μB-C:G→ T:A = 1.50 × 10− 8;

μC-C:G→T:A = 1.54 × 10− 8) and were higher than in Control A (μA-C:G→ T:A = 1.01 ×

10− 8). The second most frequent substitutions (mutation rate) in Heat B occurred at A:

T→T:A (μB-A:T→ T:A = 2.37 × 10− 9) sites, similar to Heat MA lines. By contrast, the

second most frequent substitutions in Warming C were A:T→G:C (μC-A:T→G:C = 2.16

× 10− 9), somewhat different from Warming MA lines.

We calculated the transition and transversion frequencies (per genome per gener-

ation) for the three treatments. In MA lines, the transition (Ts) and transversion (Tv)

frequencies in Heat E (0.84 and 0.54, respectively) and Warming F (0.68 and 0.40, re-

spectively) showed obvious increases compared to Control D (0.46 and 0.16, respect-

ively; Fig. 3e,f), resulting in significantly decreased Ts/Tv ratios at both elevated

temperatures (Fig. 3g and Additional file 1: Table S7). Moreover, compared to Heat E,

Warming F had a higher Ts/Tv ratio, which can be attributed to its lower frequencies

of Ts and Tv. The Ts/Tv ratios were higher in Heat and Warming MA populations

than in the MA lines (Fig. 3g). Within MA populations, the Ts/Tv ratios were signifi-

cantly decreased in Heat B (1.83) compared to Control A (2.53; Fig. 3g). Nevertheless,

the Warming population showed a high Ts/Tv ratio due to its higher transition and

lower transversion rates relative to the Heat and Control populations.

Mutation frequency distribution across different genomic regions in A. thaliana under

elevated temperatures

We annotated the mutations and estimated their frequencies across different genomic

regions in MA lines and populations. All MA lines showed higher mutation frequencies

in intergenic regions than in genic regions. Heat E and Warming F showed > 50% in-

creases in mutation frequencies in both genic (1.4–2.2-fold increases) and intergenic

(0.5–1-fold increases) regions compared to Control D (p < 0.05; Fig. 4a; Additional file 1:

Table S8A). Notably, within genic regions of Heat E and Warming F, higher mutation

frequencies occurred in coding regions than in noncoding regions, different from Con-

trol D. The predominance of variants in coding regions of Heat E and Warming F was

attributed to the disproportionate occurrence of nonsynonymous mutations (Add-

itional file 1: Table S8A). For example, the nonsynonymous mutations in Heat E (0.26)

were significantly more frequent than in Control D (0.02; p < 0.05). In addition, Heat E

showed higher mutation frequencies in intergenic and genic regions than Warming F,

but this difference was not significant (p > 0.05). In noncoding regions, the frequencies

of intronic and untranslated region (UTR) mutations were highest in Heat E. Interest-

ingly, more mutations occurred in transposable elements (TEs) under the Heat
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treatment, with a significantly increased frequency in Heat E compared to Control D

(p = 0.02). Finally, we calculated SNV rates within intergenic, genic, and TE regions

(Fig. 4a), all of which increased with temperature.

In MA populations, we found that the mutation frequencies of intergenic regions and

TEs in Heat B were significantly higher than those in Control A (p < 0.01; Fig. 4b). By

contrast, the frequency of nonsynonymous mutations in Heat B (0.07) was lower than

that in Warming C (0.18) (Additional file 1: Table S8B). Consistently, the mutation fre-

quency of coding regions in Heat B (0.13) was lower than those in Warming C (0.26)

(Fig. 4b). Notably, the mutation frequencies of coding regions in Heat and Warming

populations were also lower than in the Heat and Warming lines, with a significantly

lower frequency of nonsynonymous mutations observed in Heat B population (0.07)

than in the Heat E lines (0.26) (Additional file 1: Table S8B); this indicates the stronger

selection effects for nonsynonymous mutations in MA populations at high tempera-

tures. To further investigate the selection effects on MA populations, we used the KaKs

calculator to determine the ratio of nonsynonymous to synonymous substitutions (Ka/

Ks ratio). The Heat E lines had a Ka/Ks ratio of 0.92, whereas the Heat B population

had a Ka/Ks ratio > 1 (1.51), suggesting that the Heat MA population had been sub-

jected to positive selection.

Nonsynonymous SNVs, gains and losses of stop codons, and indels within coding re-

gions are likely to affect fitness [36]. Therefore, we estimated the rates of diploid gen-

omic mutations affecting fitness under different treatments. These rates were 0.48 (±

0.1) and 0.36 (± 0.2) per generation in Heat E and Warming F, respectively, and these

values were higher than those in Control D (0.13 ± 0.1; Heat vs. Control, p = 0.005;

Warming vs. Control, p = 0.16). Similarly, genomic mutation rates affecting fitness were

significantly higher in Heat B (0.16) and Warming C (0.24) than in Control A (0.05; p <

0.003). In addition, genomic mutation rates affecting fitness were lower in MA popula-

tions than MA lines.

Fig. 4 Comparison of mutation frequencies in various genomic regions among the Control, Heat, and
Warming lines (a) and populations (b). The numerical values in the stacked bar chart indicate the
frequencies of total mutations (SNVs and indels) in the genomic regions. The mutation frequency of each
region in each sample was calculated using the formula m = n/g, where n is the number of identified
mutations and g is the number of generations. Accordingly, the mean mutation frequency of each
treatment (five samples) was estimated by the ∑m/5. Numerical values above the bars indicate SNV rates in
the genomic regions. The SNV rates of each genomic region (per site per generation) were estimated by
dividing the number of observed mutations by the number of analyzed sites capable of producing a given
mutation and the number of generations of MA
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Mutations in functional genes of A. thaliana under elevated temperatures

To investigate the accumulated mutations in functional genes that may be involved in

various biological processes underlying high-temperature responses, we performed

Gene Ontology (GO) functional analysis of 29, 46, and 55 genes with mutations from

the Control, Warming, and Heat MA lines and populations, respectively (Add-

itional file 1: Table S3). We found that these genes were enriched in multiple related

terms, including the cellular process, metabolite process, cell part, membrane, binding,

and catalytic activity (Fig. 5a). In contrast, elevated temperatures resulted in the enrich-

ment of more genes associated with the “response to stimulus,” “reproductive process,”

“development process,” and “biological regulation” terms. Kyoto Encyclopedia of Genes

and Genomes (KEGG) functional analysis showed enrichment of common pathways,

including “signaling transduction,” “development,” and “replication and repair” at ele-

vated temperatures (Additional file 2: Fig. S1).

To further determine whether these mutations occurred at genes involved in the

transcriptional response to heat and warming, we used a previously obtained RNA-seq

dataset to identify potential temperature-responsive (significantly differentially

expressed) transcripts among the Heat, Warming, and Control treatments (see

“Methods”). Interestingly, 9 (16%) of 55 genes from Heat MA samples showed signifi-

cantly differential expression between the Control and Heat treatments, and 10 (22%)

of 46 genes from Warming MA samples were differentially expressed between Control

and Warming (Fig. 5b). In particular, mutations occurred in two genes encoding heat-

shock protein 70-17 (HSP70-17) and heat stress transcription factor A-1a (HSFA1A),

which were upregulated under Heat treatment and were identified in Heat E and B,

respectively.

We further focused on genes with nonsynonymous, frameshift, stop-gain SNVs, or

indels (Fig. 5c). In Heat lines, in addition to HSP70-17, described above, a nonsynon-

ymous mutation was found in a gene encoding fumarate hydratase 2 (FUM2), which is

associated with respiratory metabolism. Interestingly, a mutation occurred in the gene

encoding a proliferating cell nuclear antigen (PCNA) domain-containing protein

(AT4G17760), which is associated with DNA repair. Moreover, a frameshift del and a

nonsynonymous SNV in the defense-related (i.e., disease resistance) protein Toll inter-

leukin 1 receptor-like nucleotide-binding leucine-rich repeat (TIR-NB-LRR;

AT5G48770 and AT4G10780) were identified in the Heat E and warming F lines, re-

spectively. In contrast to the accumulated mutations in MA lines, we found many ex-

onic mutations distributed in genes associated with development and signal

transduction, such as those encoding the calcium-dependent lipid-binding family pro-

tein (AT1G48090) and WD40 repeat-like superfamily protein (AT3G54190), in MA

populations (Fig. 5c). Notably, the mutation distribution patterns among all individuals

differed significantly between MA populations and MA lines. For example, some muta-

tions within a MA population were shared by different individuals, whereas MA line

mutations were scattered widely among individuals (Fig. 5c, Additional file 1: Table

S3); these results demonstrated the distinct mutation landscapes of MA populations

and MA lines. Given the experimental design applied to MA populations, we speculate

that these common exonic mutations probably originated from a parental individual in

the same generation (not the ancestor plant), suggesting that some genetic variants are

more likely to spread in populations under selective pressure over multiple generations.

Lu et al. Genome Biology          (2021) 22:160 Page 10 of 27



Interaction between methylation and TE annotation

We conducted whole-genome bisulfite sequencing of MA lines and identified more

methylated cytosines (mCs) in Heat E (10.54%) and Warming F (10.44%) than in Con-

trol D (9.78%; Additional file 1: Table S9). mCs in CG, CHG, and CHH (where H refers

to A, T, or G) contexts are summarized in Supplemental Table 8. Spontaneous deamin-

ation of methylated cytosine (mC) to thymine is known to be a major source of muta-

tions, resulting in elevated mutation rates at methylated sites [37]. We thus focused on

mutations in the Control, Heat, and Warming MA lines in three contexts methylated

and nonmethylated contexts. In the Heat treatment, the proportions of methylation at

Fig. 5 Functional enrichment of mutated genes in MA lines and populations. a GO enrichment of mutated
genes in the Control (A and D), Heat (B and E), and Warming (C and F) treatments. The arrow indicates an
important biological process. b Expression levels of mutated genes under Heat and Warming differed
significantly from the Control (expression dataset obtained from NCBI GSE118298). Log10-transformed FPKM
expression values for each treatment were visualized using a heatmap. Red color indicates a high
expression level, and blue color indicates a low expression level. c Nonsynonymous (orange), frameshift
deletion (blue), frameshift insertion (yellow), and stop gain (grey) mutations in gene coding regions of MA
lines and populations. Each gene involved in a putative biological process is shown. Defense response- and
DNA repair-associated genes are marked in blue, and asterisks indicate the differentially expressed genes
shown in (b)
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mutated bases were much greater than the genome-wide occurrence of methylation in

the CG (Fisher’s exact test, p = 4.58 × 10–8), CHG (Fisher’s exact test, p = 1.92 × 10–21),

and CHH (Fisher’s exact test, p = 1.63 × 10–3) contexts (Fig. 6b). High frequencies of

methylation at mutation sites were also found in the Warming (Fisher’s exact test: CG,

p = 3.36 × 10–4; CHG, p = 1.92 × 10–15; CHH, p = 0.02) and Control (Fisher’s exact test:

CG, p = 3.56 × 10–12; CHG, p = 2.27 × 10–21; CHH, p = 0.08) treatments (Fig. 6a, c). Be-

cause methylation and TEs correlate significantly [35, 38], we further tested the main

effects of methylation and TE position (two-way analysis) on mutation rates under ele-

vated temperatures using a logistic regression model. The methylated sites and TE re-

gions were associated positively with mutations in the Control, Heat, and Warming

MA lines (Additional file 1: Table S10). In general, methylated sites within and outside

TEs had higher mutation rates than did nonmethylated sites in MA lines (Add-

itional file 2: Fig. S2). Compared with those in Control lines, methylated and non-

methylated sites in the Heat and Warming lines showed higher mutation rates

regardless of location (within or outside TEs); Heat E had the highest mutation rate on

methylated sites outside TEs (Fig. 6d). In addition, we observed that nonmethylated

sites within TEs had a higher rate in Warming F than in Heat E, but this difference was

not significant.

Mutational bias and context effects of A. thaliana under elevated temperatures

We estimated the relative contributions of various genomic properties to mutation fre-

quency, including gene density and GC content. In both MA lines and populations, we

found that fewer mutations in high versus low gene density regions in all three treat-

ments (Fig. 7a). For MA lines, the mutation rate was significantly biased toward low

versus high gene density region in Heat E (t test, p = 0.02; Fig. 7b) and Warming F (p =

0.03). By contrast, no significant difference in mutation rate of Control D was observed

between the high and low gene density regions (p = 0.45). This result suggests that

multigenerational exposure of A. thaliana to high temperatures accelerates the accu-

mulation of DNA mutations toward low gene density region compared to plants under

ambient (Control) temperature. We also estimated whether GC content (per 1-kb win-

dow) affected local mutation rates in the MA lines and populations of each treatment.

For all MA lines and populations, the GC contents and observed mutation rates were

not well correlated (Additional file 2: Fig. S3), suggesting that GC content did not affect

the mutation rate in our MA experiments.

We evaluated the effect of local sequence context on the mutation rates of A/T and

G/C positions flanked by different nucleotides at either site, regardless of DNA strand

orientation (for example, AAG and its complement CTT both contribute to the muta-

tion rate in the central AT position under the category AAG). As expected, GC bases

had significantly higher mutation rates than did AT bases in all treatments (t test, p <

0.03) except Control D (p > 0.14; Fig. 7c–e). In general, mutation rates of AT bases in

all contexts were uniform for each MA experiment (G test, p > 0.15), but mutation

rates of GC bases were not (p < 0.01), except in the Warming treatments (Warming F,

p = 0.98; Warming C, p = 0. 44). Moreover, the nucleotides located one position up-

stream or downstream had significant effects on the mutation rate in the Heat B popu-

lation (t test, p < 3.32 × 10–4; Fig. 7d), whereas those in other MA lines and
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populations did not (p > 0.05). Of all 16 possible combinations of flanking nucleotides,

GCG in Control A (two-tailed Z test, p = 5.56 × 10–13), GCG in Heat B (p = 7.40 × 10–

14), and CCG in Warming C (p = 3.97 × 10–6) had significantly higher mutation rates

than did other GC contexts. In contrast to MA populations, the Control D, Heat E, and

Warming F lines showed significantly higher mutation rates in the CCC (p = 3.03 × 10–

4), CCG (p = 0.02), and GCT (p = 6.24 × 10–5) contexts than in other GC contexts

(Fig. 7g, h). However, the trinucleotides CCG (or GGC) and GCG (or CGC) appeared

to have high mutation rates in all MA groups, regardless of temperature treatment. In

addition, we observed that almost all indels within the Heat (E10 and B22), Warming

(F10 and C19), and Control groups (D10 and A16) either occurred near simple repeats

or involved tandem-repeat dels and ins (Additional file 1: Table S11), suggesting that

the occurrence of indels is strongly biased toward repeat sequences in A. thaliana.

Comparison of de novo mutations with natural genetic variations

The 1001 Genomes Consortium (2016) reported 10,707,430 single-nucleotide polymor-

phisms (SNPs) and 1,424,879 indels (≤ 40 bp) in 1135 natural accessions of A. thaliana.

Fig. 6 Estimation of the effects of cytosine methylation and TE region on mutation rates in the Control,
Heat, and Warming MA lines. a–c Comparison of cytosine methylation percentages at all bases in the
genome and mutated bases in the Control D (A), Heat E (B), and Warming F (C) lines. H refers to A, T, or G.
The methylation percentage is much higher at mutated bases than the corresponding genome-wide
occurrence for all three contexts: CG (Fisher’s exact test, p = 4.58 × 10–8), CHG (Fisher’s exact test, p = 1.92 ×
10–21), and CHH (Fisher’s exact test, p = 1.63 × 10–3). d Effects of cytosine methylation and TE region on
mutation rates in the Control D (D), Heat E (E), and Warming F (F) lines. The x axis shows log-transformed
(log10) mutation rates per site per generation. Mutation rates for non-TE and TE positions are marked in
orange and blue, respectively. Mutation rates for nonmethylated and methylated CG positions are indicated
with triangles and squares, respectively. Differences in mutation rates among Control D, Heat E, and
Warming F lines were assessed using Student’s t test. Error bars indicate SEMs. Asterisks indicate significant
differences from Control D at p < 0.05 (*) and p < 0.01 (**), respectively
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Fig. 7 (See legend on next page.)
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To compare de novo mutations with natural variations, we merged the mutations from

all MA lines and populations into 263 unique SNVs and 93 indels. We found that 64

(24%) of 263 total SNV sites coincide with biallelic SNPs in the 1001 Genomes dataset,

and 50 (19% of the total) of these 64 shared SNVs are identical (Fig. 8). Among the 93

indels identified in MA experiments, 40 (43%) overlap with indels from the 1001 Ge-

nomes population, 12 (13% of the total) of which are identical. These identical sites

(86% of shared SNVs, 75% of shared indels) are derived mainly from the Heat and

Warming lines. Compared with the expected overlap (based on a random distribution

of mutations and polymorphisms), the overlap between polymorphisms in all of our

MA lines and populations with those of natural variants is highly significant (Fisher’s

exact test: SNV, p = 2 × 10–24; indel, p = 1 × 10–12; Fig. 8). To determine whether the

SNVs identified in our MA results were biased toward conserved or substitution sites

in A. thaliana, we compared them with the 219,909 ancestral variants (SNPs occurring

at substitution sites in A. thaliana) and 1,799,125 derived variants (SNPs occurring at

conserved sites) from the 1001 Genomes biallelic SNP dataset (see “Methods”). Among

all SNVs identified in our MA results, only four SNVs (1% of SNVs from Warming C

and F and Heat E) overlap with ancestral variants and one SNV (from Heat B) is shared

with derived variants, indicating a low frequency of de novo SNVs (identified under ele-

vated temperatures) at the conserved sites.

Discussion
MA experiments in combination with whole-genome sequencing have been used to in-

vestigate spontaneous mutations in various model organisms with short generation

times [1, 2, 14, 15, 23, 39, 40]. In unicellular MA studies, the organisms generally repro-

duce clonally (asexually), with each clonal population propagating for multiple genera-

tions, allowing the accumulation of mutations in a nearly neutral manner (minimal

selection pressure) [1, 2]. By contrast, multicellular organisms usually produce progeny

by sexual reproduction; thus, large numbers of progeny inevitably suffer from environ-

mental selection pressure, resulting in accumulated mutations that differ from those

arising from clonal reproduction. To avoid such selection effects, single-seed descent

lines have been employed to accurately reflect mutation profiles under ideal conditions

[23, 40]. In nature, however, plants generally occur in populations rather than in groups

descended from a single seed. Therefore, a combination of MA populations and single-

(See figure on previous page.)
Fig. 7 Mutational biases of Control, Heat, and Warming lines and populations. Analysis of correlations
between gene density and mutation rates across chromosomes in Control, Heat, and Warming lines and
populations. a Distribution of mutations across A. thaliana chromosomes shown in a Circos plot. From
outer circle to inner circle, the plot shows the chromosomes, genes (purple bars), and mutations in A16
(green bars), B22 (yellow bars), C19 (red bars), D10 (pink bars), E10 (purple bars), and F10 (blue bars). Each
chromosome is divided into multiple bins (bin size = 100 kb), which are grouped into high and low gene
density regions. b Comparison of mutation rates between regions with high gene density and those with
low gene density. Significant differences were revealed using two-tailed Student’s t test (p < 0.05, high vs.
low gene density regions). c–h Neighbor-dependent mutation rates at AT and GC bases estimated for the
Control, Heat, and Warming MA lines (c–e) and populations (f–h). The trinucleotide context-dependent
mutation rate is shown for each treatment. The x axis shows the focal nucleotides (uppercase, mutation
site) and immediate flanking nucleotides (lowercase), regardless of strand orientation (e.g., the tAt class
includes the overall mutation rate at tAt and aTa sites). For each treatment, the mutation rates of G/C bases
were generally elevated relative to those of A/T bases. Red dots indicate significantly elevated
mutation rates
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seed descent MA lines could better reveal how spontaneous or environmentally in-

duced MA shapes genetic variation. In our study, we employed both single-seed des-

cent line and population MA experiments with A. thaliana grown under ambient,

extreme heat, and moderately warming temperatures, and estimated their mutation

profiles.

Environmental changes can promote genome-wide accumulation of mutations and

change the profiles of new mutations in organisms, in turn potentially contributing to

long-term evolutionary adaptation [8, 11, 24, 34, 41–44]. However, in plants, only one

environmental factor (high-salinity soil) and artificial irradiation have been reported to

induce MA [34, 45, 46]. In this study, we revealed that multigenerational exposure of

A. thaliana to high and moderate heat could significantly increase the rates of accumu-

lated de novo mutations in both MA lines and populations, which showed overall mu-

tation rates that were more than 1.4-fold (1.49 for Warming C and 1.90 for Warming

F) and 1.9-fold (1.91 for Heat B and 2.51 for Heat E) higher than Control groups. How-

ever, the rates of both spontaneous (5.28–6.53 × 10− 9) and temperature-driven SNVs

(1.18 × 10− 8) in A. thaliana are lower than that of the long-lived perennial plants

(Populus trichocarpa, 2.66 × 10− 8; Oak, 4.2–5.8 × 10− 8) [47, 48]. The majority of accu-

mulated SNVs in trees were likely to be result from long-term exposure to ultraviolet

light and longer lifespan (with higher number of mitoses), which is different from A.

thaliana maintained in the laboratory (lower ultraviolet light and short life cycle, 2~3

months). On the other hand, the increased mutation rates under Heat and Warming

temperatures were mainly attributed to the accumulation of a large proportion of SNVs

Fig. 8 Overlap between mutations identified in MA lines/populations (SNVs) and variants detected in the
1001 Genomes population (SNPs). Comparison of expected and observed proportions of SNVs and indels
that overlap the SNPs and indels in the 1001 Genomes dataset. Numbers at the tops of the bars are
absolute overlap values. Asterisks indicate p < 0.05 (*), p < 0.01 (**), and p < 0.001 (***) based on Fisher’s
exact test with Bonferroni correction
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and small (≤ 3 bp) deletions. This relatively high frequency of deletions at elevated tem-

peratures provides evidence that A. thaliana genomes are still shrinking [49]. More-

over, these accumulated mutations in Heat (E, B) and Warming (C, F) treatments

exhibited distinct molecular spectra compared to Control, with significantly increased

rates of specific transversions (A:T→T:A) and transitions (C:G→T:A) under Heat

treatment in particular. These results differ from those obtained in a salt stress MA

study in which only the transversion rate was significantly increased [34], suggesting a

possible divergence in response mechanisms driven by heat and salt stresses in A. thali-

ana. Nevertheless, the relatively low Ts/Tv ratios generated by Heat (1.56) and Warm-

ing lines (1.70) were similar to those generated by salt stress and irradiation in A.

thaliana lineages [34, 45], further demonstrating that environment factors are respon-

sible for changes in plant molecular spectra.

Given that altered lifespans, increased reactive oxygen species (ROS) levels (oxidative

stress), and DNA repair impairments are induced by environmental stresses (including

heat stress) in plants [26, 50–53], the increased mutation rates in A. thaliana grown

under Heat and Warming temperatures may be explained by three previously proposed

major causes of environmental stresses: generation time, metabolic rate, and DNA re-

pair [26, 34, 54, 55].

Compared with MA lines, it is interesting that the accumulated mutations in MA

populations showed different distribution pattern, e.g., some shared mutations retained

in the final progeny. This result was probably due to the selective sweep or selection ef-

fects in MA populations, resulting in the relative concentration of mutations in some

loci. Furthermore, our selection analysis on populations indicated that Heat MA popu-

lation may have experienced a stronger positive selection effect (Ka/Ks > 1). In

addition, the slightly lower rates of total mutations and coding mutations in population

lineages than lines were likely also a result of our artificial selection procedure. A recent

MA study of C. elegans showed that larger population sizes (N = 10, 100) with increas-

ingly intense selection show lower spontaneous mutation rates compared to small (N =

1) populations [40]. This result, together with our results regarding the mutation rates

of populations (N = 35) and lines (N = 1), may support the hypothesis that larger popu-

lation sizes show lower mutation rates under selection pressure.

The datasets from 1001 Genomes provide abundant polymorphism resources for nat-

ural populations of A. thaliana [56]. The overlap between our identified de novo muta-

tions and 1001 Genome biallelic variants was significantly greater than expected,

indicating that these variants were not distributed uniformly in our MA results. When

an organism is exposed to long-term environmental stress, the genomic distribution of

accumulated variants usually changes compared to that under non-stress conditions,

and such stress-induced mutations were increased in exonic regions of yeast and E. coli,

for the purposes of evolutionary adaptation [8, 24]. In the present study, we observed

significantly higher mutation frequencies and rates in coding regions of A. thaliana

MA lines exposed to Heat (E) and Warming (F) temperatures compared to Control

(D), especially nonsynonymous mutations; this suggests that elevated temperatures

could accelerate the accumulation of mutations in coding regions. When the plants are

exposed to high temperatures (especially in Heat MA lines), the accelerated rate of mu-

tations in protein-coding regions may increase the load of deleterious mutations,

thereby affecting fitness. Assuming that nonsynonymous SNVs (including stop codon
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gain) and indels in coding regions affect fitness, the significantly higher mutation rates

affecting fitness in the Heat and Warming treatments suggest that long-term exposure

to high temperatures has a stronger effect on fitness and may contribute to genetic

variation affecting fitness. In contrast to MA lines, the Heat MA population displayed

lower mutation frequencies in coding regions but higher frequencies in noncoding re-

gions, indicating that long-term heat stress coupled with strong selection constraints

strongly restricted the accumulation of potentially deleterious mutations in A. thaliana.

The low mutation rate affecting fitness estimated for the Heat MA population further

suggests that the negative effects on fitness in this population may be offset by selective

pressures, despite the increase in the genome-wide mutation rate.

Transposons are mobile DNA elements that are prevalent in eukaryotic genomes,

and play important roles in regulating gene expression, accelerating sequence muta-

tions, genome reshaping, and adaptive variation [57–61]. Transposon activity can be

triggered by environmental stress, indicating that TEs can exhibit stress-responsive

transposition or movement [62, 63]. In our MA study, we found higher mutation rates

in TEs of the Heat and Warming groups than in those of the Control. Given that a high

mutation rate in TEs could result in their transposable inactivation [64], we suggest

that the growth of multiple generations at high temperatures can accelerate genome-

wide transposon mutations in A. thaliana, consequently affecting stress-responsive

transposition or movement of TEs.

Methylated cytosines contribute to changes in spontaneous deamination to thymi-

dine, thereby leading to elevated mutation rates in MA lines [23, 37]. Consistent with

these findings, the present study revealed that the frequency of methylation (in all three

contexts) at mutated bases is significantly elevated in plants exposed to high tempera-

tures. Further analysis confirmed that methylated sequences were associated positively

with mutations in the Heat and Warming MA lines. These results suggest that methy-

lation contributes to the accumulation of mutations at high temperatures. In addition,

the occurrence of DNA methylation was biased toward TE regions [35, 38]. Indeed, we

observed higher mutation rates of methylated sites within TEs, suggesting a universal

mechanism of methylated TE-biased mutations in A. thaliana regardless of environ-

mental factors. However, heat treatment increased the mutation rate at methylated sites

outside TEs, suggesting that methylation within and outside of TEs contributes to the

high mutation rate observed after multigenerational exposure of A. thaliana to heat

stress.

Plants subjected to excess heat exhibit a characteristic set of cellular and metabolic

responses, and transcription responses [26, 65, 66]. In this study, we observed that

mutigenerational growth of A. thaliana at high temperatures led to greater accumula-

tion of mutations in genes involved in responses to stimuli, stress response

(AT5G48770 and AT4G10780), reproduction, replication and repair, and development,

relative to growth under control conditions. These results suggest that mutigenera-

tional growth of A. thaliana at high temperatures causes mutations in temperature re-

sponse- or stress-associated genes. Given that mutations in some functional genes (e.g.,

loss-of-function) are important for plant adaptation [67, 68], whether these gene muta-

tions contribute to high-temperature adaptation of plants requires further investigation.

We also found that one gene (AT4G17760) associated with DNA repair and DNA dam-

age checkpoints was mutated in a Heat MA line. Under heat stress, ROS-induced DNA
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damage is usually repaired by both the nucleotide and base excision repair processes,

during which DNA repair pathways are activated [52, 69]. These results suggest that

multigenerational exposure of A. thaliana to high temperatures promotes the muta-

tions in stress response genes, thereby exerting influences on physiological and devel-

opmental processes in response to long-term high-temperature stress.

Elevated temperatures, including both extreme heat and moderate warming, have re-

portedly caused genetic variations in plant phenology and developmental timings [26,

33, 70–73]. However, how plants respond to long-term moderate or extreme heat stress

at the whole-genome level remains unknown. Our results from both MA lines and pop-

ulations revealed higher mutation rates of accumulated SNVs and indels in A. thaliana

exposed to multigenerational heat stress (Heat E, B) compared to moderate warming

(Warming F, C). Moreover, almost all mutation types in both genic and intergenic re-

gions showed higher mutation frequencies under Heat compared to Warming tempera-

tures. The lower Ts/Tv ratio in Heat E (1.56) compared to Warming F (1.70) suggests

that plants exposed to extremely high temperatures might accumulate more deleterious

variations (e.g., more transversions in coding regions). Possible explanations for this in-

clude greater DNA damage driven by increased amounts of free radicals under environ-

ment stress [34, 54], and successive induction of DNA damage due to long-term heat

stress coupled with greater impairment in DNA repair mechanisms. In addition to

these differences, a common mutation bias toward a high rate of A:T→ T:A (transver-

sions) was observed in the Heat and Warming groups, which suggests potential conver-

gence of the mutation mechanisms induced by the two elevated temperature

treatments.

The effect of epigenetic variations (e.g., DNA methylation) on the probability of mu-

tation may be ubiquitous in plants, and more epigenetic modifications occur in re-

sponse to environmental stresses [23, 34, 74–76]. Thus, investigations into epigenetic

variations, and in particular epimutations across generations (non-transient variations),

could shed additional light on the genetic evolutionary mechanisms activated in re-

sponse to long-term high-temperature stress.

Conclusion
Growth of Arabidopsis under elevated temperatures over multiple generations signifi-

cantly accelerated mutation accumulation and altered mutation profiles. The increased

mutation frequency occurred in intergenic regions, coding regions, and transposable el-

ements, as well as in nonsynonymous mutations in functional genes. Different mutation

distribution patterns of progeny between populations and lines suggested stronger se-

lection effects on populations. Our results reveal the fundamental mutation spectrum

under environmental warming, improving the understanding of genetic variations in

plants under long-term heat stress.

Methods
Plant materials, experimental design, temperature treatments, and growth conditions for

the MA experiments

We used the wild-type Columbia (Col-0) strain of A. thaliana to conduct MA experi-

ments; this strain has been maintained for several years in our laboratory [53]. A single
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ancestral Col-0 plant was planted in soil and grown in a growth chamber under a 16-h

light/8-h dark photoperiod and 150 μmol m− 2 s− 1 of photosynthetically active radiation

(PAR) provided by fluorescent tubes (Philips Electronics Trading & Services, Shanghai,

China), at 23/18 °C (light/dark) ambient temperature and 50/80% relative humidity

(RH). In addition, the plant was alternately watered to saturation with 1/2 Murashige

and Skoog (MS) solution or deionized water every week. The ancestral plant was self-

pollinated, and its progeny seeds were harvested for our MA line and population exper-

iments. The MA line and population experiments were performed under 23/18 °C

(light/dark), 28/23 °C, and 32/27 °C temperature regimes, and all detailed treatment

methods are described in the Additional file 3: Supplementary detailed methods.

DNA extraction, sequencing, quality trimming, and filtering

The 15 MA lines (D10, E10, F10) at G10, and 15 plants from MA populations (five

plants per population) at G16 (Control, A16), G22 (Heat, B22), and G19 (Warming,

B19) (Fig. 1a), were chosen for sampling and sequencing. When each plant was grown

to the bolting stage [leaves were fully expanded and matured in this stage; Fig. 1b

(growth stage 5 according to [77])], the leaves were sampled and immediately frozen in

liquid nitrogen. Similarly, the leaves of five plants representing the progenitor were also

collected separately. Genomic DNA was extracted and purified from each plant using a

MiniBEST Plant Genomic DNA Extraction Kit (TaKaRa, Dalian, China). To obtain

DNA samples representing the progenitor (G0) (Fig. 1a), genomic DNA samples from

five independent plants (G0-1–G0-5) were used to construct five separate libraries.

These five libraries were combined to constitute the genetic background of the progeni-

tor. All DNA sequencing (paired-end) projects were performed by Frasergan Genomics

Institute (Wuhan, China) and Novogene (Beijing, China) according to the manufac-

turer’s specifications (Illumina, San Diego, CA, USA). Finally, the Illumina HiSeq 2500

and HiSeq X Ten platforms were employed to generate raw sequences with 125-bp

(MA populations and G0) and 150-bp (MA lines) read lengths, respectively.

Raw reads were cleaned by removing the following types of reads: (1) reads contain-

ing adaptor sequences; (2) reads with Phred quality ≤ 20; and (3) reads with length ≤ 50

bp. The remaining paired-end reads were used for variant calling. Consequently, we ob-

tained approximately 190 Gb of high-quality sequences with an average of 43.3× gen-

ome coverage, which were used for subsequent analyses (Additional file 1: Table S1).

Sequence alignment, variant calling, and annotation

We aligned the high-quality reads from each sample to the A. thaliana genome

(TAIR10) using the BWA-MEM (version 0.7.16a) algorithm [78]. To obtain high-

quality SNVs and indels from each sample, we applied the Genome Analysis Toolkit

(GATK, version 4.0.4.0) [79] procedures to perform SNV and indel callings. In the rec-

ommended GATK procedure, after removing the duplicate reads with Picard MarkDu-

plicates, we called the SNVs and indels using the HaplotypeCaller method [80].

Subsequently, the variant calls from GATK were further filtered with the following pa-

rameters: (1) for SNVs, QD < 2.0 || FS > 60.0 || MQ < 20.0 || MQRankSum < – 12.5 ||

ReadPosRankSum < –8.0, DP < 8; and (2) for indels, QD < 2.0 || FS > 200.0 || MQ <

20.0 || ReadPosRankSum < – 20.0, DP < 5. After filtering, the preliminary high-quality
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SNVs and indels from each sample were retained for base quality score recalibration

(BQSR), which was performed using the BAM files generated through the GATK call-

ing method described above.

To ensure the accuracy of de novo mutations called in the MA lines (G10) and popu-

lations (G16 for Control, G22 for Heat, G19 for Warming), we employed the following

stringent criteria: (1) for MA and ancestor (background) samples, SNVs and indels

must be called in at least eight reads and five reads, respectively; (2) the called SNVs

must include both the forward and reverse reads; (3) in each MA sample, the mutation

candidates were compared to the background (G0-1–G0-5) to discard spurious candi-

dates resulting from variation between the reference genome sequence and the genome

of the background; (4) owing to alignment difficulties in the vicinity of indels, SNVs lo-

cated around indels (< 10 bp on each side) in each MA sample were removed; (5) called

indels with a ≤ 20-bp interval between them were discarded; (6) called indels that were

repeated multiple times at that site in the reference genome were subjected to further

validation through Sanger sequencing to ensure the accuracy of the indels. In addition,

we further filtered the variant sites (SNVs and indels) that were heterozygous in G0

samples, resulting in the identification of homozygous SNVs and indels in each MA

sample. Finally, all filtered variants remaining in the MA lines and populations were

inspected manually using Integrated Genome Viewer software [81]. Accordingly, we

obtained a list of reliable new homozygous variants in our MA lines and populations.

De novo TE insertions in each sample were detected with the Jitterbug software pack-

age [82]. There were three main steps in this process. First, the deduplicated alignment

BAM files (for each MA sample) and TE annotation (from TAIR10) were used as the

input for Jitterbug. All parameters were kept as default with the exception of “--mem”

parameter. Second, high-quality predictions were selected using jitterbug_filter_results_

func.py under default settings as described in https://github.com/elzbth/jitterbug.

Third, the predicted results of TE for each sample from the MA lines and the MA pop-

ulations were further filtered by removing TE predictions found in the progenitor sam-

ples using BEDTools v2.29.2 [83].

To validate the reliability of our mutation calling pipeline, we conducted two types of

simulation. For the first simulation, 600 random point mutations from throughout the

reference genomes of six selected MA lines and populations (with different reference

genome coverage depths, 100 mutations per reference) were simulated to test whether

our pipeline could recover them [14, 35]. The simulated mutation positions remained

independent among the six reference genomes. Twenty mutations per chromosome

were simulated. Each clean read from these MA lines and populations was mapped sep-

arately to one of the mutated reference genomes, and then their genotypes were called

using GATK. The number of simulated mutations recovered and the corresponding ac-

cessible nonvariant sites were reported. For the second simulation, homozygous muta-

tions were introduced to the sequencing reads in the BAM files for the same MA lines

and populations; for detailed simulation methods, refer to [35].

We then used the ANNOVAR software [84] to annotate the identified SNVs and

indels and divided them into groups of variations occurring in intergenic regions, ex-

onic regions (overlapping a coding exon), intronic regions (overlapping an intron), spli-

cing sites, upstream or downstream regions (within a 1-kb region upstream from the

transcription start site or downstream from the transcription stop site), UTR regions,
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noncoding RNAs, and pseudogenes, on the basis of A. thaliana genome annotation in-

formation (TAIR10). SNVs in coding regions were further divided into nonsynonymous

SNVs (those that caused amino acid changes) or synonymous SNVs (those that did not

cause amino acid changes); frameshift, stop-gains, and stop-losses caused by mutations

were also classified in coding regions. In addition, an Araport11 genes and transposons

GFF file [85] was used to further annotate mutations occurring in TEs. In addition, pre-

vious studies have suggested that 66% of mutations in coding regions could be purged

through natural selection. According to the method of [23], we estimated the genomic

mutation rate (diploid) affecting the fitness of each MA line by multiplying our muta-

tion rate (per site per generation) in the line’s coding region by the mean selective con-

straint of 0.66, and then doubling that value to obtain the total number of coding sites.

Finally, the average genomic mutation rates affecting fitness in the Control, Heat, and

Warming groups were calculated. In addition, the estimation of Ka/Ks ratios were con-

ducted using KaKs calculator software (version 2.0, [86]).

To identify the mutations occurring in potential temperature-responsive transcripts

in MA lines and population, we firstly retrieved the previous transcriptome datasets

(deposited in GSE118298 [72];) of A. thaliana leaves grown at prolonged warming, heat

shock, and control. Then, differentially expressed genes (control vs heat shock; control

vs prolonged warming) occurred in the mutated gene of MA lines and populations

were considered as temperature-responsive transcripts.

Sanger sequencing validation

We employed Sanger sequencing to estimate the accuracy of our mutation calls. All

identified mutation calls (211 mutations) including SNVs and indels from MA lines

were selected for verification. Primers were designed around the mutations using Pri-

mer5 to amplify a 200–600-bp region (Additional file 1: Table S6). All but six muta-

tions were verified through PCR as being present in MA lines but absent in the

progenitor (background, G0), indicating a negligible false-positive detection rate; six

mutations could not be verified through PCR amplification.

Mutation rate calculations

We calculated the mutation frequency (per genome per generation) and rate (per site

per generation) using the formulas m = n/g and μ = n/gb (or m/b), respectively, where n

is the total number of mutations per line detected, g is the number of generations, and

b is the number of bases (A. thaliana genome bases) analyzed. Detailed methods are il-

lustrated in Additional file 3: Supplementary detailed methods. In addition, we also cal-

culated the conditional mutation rates for all six substitution possibilities in each line

and population using the same equations, but with m representing the number of sub-

stitutions of the focal substitution type, and n representing the total number of ana-

lyzed sites capable of producing a given mutation. For our analysis of mutation rates

within chromosomes with different regions, we first divided each chromosome into

multiple 100-kb bins, and then classified these bins into high and low gene density

groups based on the gene distribution in each chromosome. Mutation rates in each

group were measured by dividing the total number of SNVs and indels from our study

(Control, Heat, and Warming) by the product of the total number of sites in each
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group and the number of generations per line using the following formula: μ = n/gb. Al-

though the actual mutation rate in each treatment might be underestimated, this has

little effect on the mutation rate comparisons (see Additional file 3: Supplementary de-

tailed methods).

Comparison of genetic variations between MA and natural populations

All VCF files of natural variations were downloaded from the 1001 Genome Project

website (http://1001genomes.org). SNP loci and allele frequencies were assessed. An-

cestral and derived variants were defined according to Weng et al. [35]. Briefly, triple

whole-genome alignment among A. thaliana (TAIR10), A. lyrata, and Capsella rubella

was performed, and identical sites within the alignment regions of all three species were

identified as conserved. Sites that were the same in A. lyrata and C. rubella, but differ-

ent in A. thaliana were considered to be ancestral. De novo variants from MA lines or

populations at conserved and ancestral sites were identified as derived and ancestral

mutations, respectively.

DNA methylation and interaction analysis

Whole-genome bisulfite sequencing (WGBS) was conducted using the same genomic

DNA extracts used for whole-genome sequencing. Genomic DNA was fragmented to

200–300 bp with a Covaris sonicator, followed by end repair and adenylation. The puri-

fied DNA fragments were bisulfite converted using the EZ DNA Methylation-GoldTM

Kit (Zymo Research). WGBS libraries were sequenced on the Illumina HiSeq 2500 plat-

form (Novogene, China). The raw paired reads were quality controlled and trimmed,

and then aligned to the reference genome (TAIR10) using Bismark software v0.16.1

[87] with the default parameters. Methylated cytosines (mCs) in each sequence were

extracted from the aligned reads using the Bismark methylation extractor. The propor-

tions of mCG, mCHG, and mCHH (where H refers to A, T, or G) contexts were calcu-

lated by dividing the number of mCs by the total number of Cs. Methylation-level

analysis was performed using divided bins (bin size = 100 bp). The methylation level

(ML) of each C was defined as reads (mC) / reads (mC) + reads (C). mCs with cor-

rected p values ≤ 0.05 were used for subsequent interaction analysis. A logistic regres-

sion model was used to test the effects of C methylation and TE on the mutation

probability of a given nucleotide. Analysis of interaction among cytosine methylation

(mC or nonmethylated cytosine), and TE (TE or non-TE) was generally conducted ac-

cording to the method of Weng et al. [35].

Local sequence context and GC content analyses

To investigate the effect of local sequence context on the mutation rate in each treat-

ment, we extracted the flanking bases (1 bp upstream and downstream of the mutation

site) at A/T and G/C positions surrounding the mutation sites. We calculated the rates

of trinucleotide mutation in MA lines and populations under the Control, Heat, and

Warming conditions. In addition, we estimated the relative contribution of the GC con-

tent to mutability through calculating the mutation rate under a given GC content,

using a sliding window of 1000 bp (bin size = 1000 bp) and 0.005 intervals of GC con-

tent. The formula used is μ = n / (m·g·1000), where μ represents the mutation rate
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under a given GC content, m represents the number of bins in a given GC content,

and n represents the total number of mutations within m.

Statistical analyses

All statistical analyses were performed in R Studio (version 1.0.143) using the Stats ana-

lysis package (R Development Core Team, Vienna, Austria) and SPSS software (version

23.0; IBM Corp., Armonk, NY, USA). p values < 0.05 and < 0.01 were indicative of sig-

nificant and very significant results, respectively.
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