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Abstract

Background: This commentary discusses the study by Telesford and colleagues in which they 

use network science to analyze resting state functional magnetic resonance imaging (rsfMRI) data 

collected in nonhuman primates.

Methods: Their findings using a network science approach in nonhuman primates are considered 

in the context of results from human studies.

Results: The network science approach to analyzing rsfMRI data from nonhuman primates 

yields results that are, for the most part, similar to results using alternative analyses methods in 

human studies.

Conclusions: Network science to analyze rsfMRI may promote a better understanding of the 

brain as a complex system.
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IN “THE EFFECTS OF ALCOHOL on the Nonhuman Primate Brain: A Network Science 

Approach to Neuroimaging,” Telesford and colleagues (2013) use network science, 

previously used to analyze human data, to analyze functional magnetic resonance imaging 

(fMRI) data from nonhuman primates “at rest” for the first time. The network science 

approach models the relations between different brain regions by constructing a graph (e.g., 

Fig. 1). Brain graphs, made up of nodes (i.e., brain regions) and edges (i.e., physical or 

functional connections between brain regions), demonstrate properties such as small-

worldness (a balance between network segregation and integration), modularity 

(decomposability of the system into smaller subsystems), and heterogeneous degree 

distributions (the likely presence of highly connected nodes or “hubs”). This approach 

models the brain as a system with multiple interacting regions that produce complex 

behaviors (cf., Bullmore and Bassett, 2011). In this study, graph analysis of resting state 

fMRI (rsfMRI) data from anesthetized monkeys (1 Rhesus macaque and 10 Vervet 

monkeys) revealed in both species overlapping hubs that included the medial prefrontal 

cortex, cingulate cortex, temporal lobes, and visual cortex. The Vervet monkeys additionally 

showed hubs specific to anterior cingulate and parietal lobe regions. These hubs were 

categorized as belonging to the “default mode network.”
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Based on brain regions with highly synchronous blood-oxygen-level-dependent (BOLD) 

activity, analyses of human fMRI data collected during resting state (i.e., without task 

demands or at “rest”) have identified multiple “intrinsic functional connectivity networks 

(IFCNs)” (for review, see Sporns, 2010). Two popular methods of processing rsfMRI data 

are region of interest (ROI) and independent component analysis (ICA). The ROI analysis 

uses signals from seed regions (i.e., clusters of voxels delineating a known ROI) chosen a 

priori to seek significant correlations with synchronous activities of every other voxel of the 

brain, thereby providing a hypothesis-driven approach to identifying functional networks 

(Margulies et al., 2007; Van Dijk et al., 2010). ICA, a highly data-driven statistical approach 

requiring few a priori assumptions, separates BOLD signals into maximally independent, 

nonoverlapping spatial and time components before extraction of networks (Beckmann et 

al., 2005).

Correlated BOLD activity in the resting condition is believed to reflect intrinsic neural 

connectivity representing functional anatomical networks, the nodes of which are not 

necessarily connected structurally or that have connections yet to be identified (Beckmann et 

al., 2005; Buckner et al., 2008; Damoiseaux and Greicius, 2009; Krienen and Buckner, 

2009; Raichle, 2009; Seeley et al., 2007). The first IFCN identified in humans was the 

“default mode network” (Raichle et al., 2001), comprising medial frontal, cingulate, and 

inferior parietal regions, as well as the precuneus (Greicius et al., 2003; Mazoyer et al., 

2001; Raichle et al., 2001; Shulman et al., 1997); other studies include regions of the 

temporal lobe (Andrews-Hanna et al., 2010; Greicius et al., 2004; Minoshima et al., 1997) 

and lobules of the cerebellum (Habas et al., 2009). Functions ascribed to the default mode 

network include homeostatic and personal awareness, as well as readiness for impending 

action (Buckner et al., 2008; Raichle et al., 2001). Other IFCNs, considered pertinent to 

specific sensory or cognitive functions include the auditory, executive control, or salience 

detection networks (Greicius et al., 2003; Raichle et al., 2001; Seeley et al., 2007; Yeo et al., 

2011).

Graph theory, although similar to ICA, “places less emphasis on specific brain regions and 

focuses on global interactions across the brain” (Telesford et al., 2013). Whereas ICA 

focuses on a particular group of brain areas, graph theory measures the functional integration 

(ability to rapidly combine information from distributed brain areas) and segregation (ability 

to process information within densely interconnected groups of brain areas) of all areas as a 

whole (global level) and the role of a given area within the whole-brain network (regional 

level). In addition to permitting estimates of stable, static resting state, intrinsic functional 

connectivity, graph theory is able to uncover dynamic and mutable connectivity patterns that 

likely occur to enable the brain to flexibly and rapidly shift between intrinsic networks to 

facilitate complex behavior (Cole et al., 2013).

As the main goal of the Telesford and colleagues (2013) study was to demonstrate the ability 

of graph theory to construct IFCNs, the question is whether their analysis successfully 

reproduced previous rsfMRI findings. The inclusion of frontal, cingulate, and parietal 

cortices in the default mode network seems robust across a number of both human (Greicius 

et al., 2003; Mazoyer et al., 2001; Raichle et al., 2001; Shulman et al., 1997) and nonhuman 

primate (Hutchison et al., 2011; Mantini et al., 2011; Margulies et al., 2009; Rilling et al., 
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2007; Vincent et al., 2007) studies as well as in the current experiment (with the exception of 

parietal region which was not included in the network constructed from analysis of the 

single Rhesus monkey). However, although human studies and 3 previous studies in 

nonhuman primates (i.e., Hutchison et al., 2011; Margulies et al., 2009; Vincent et al., 2007) 

include the precuneus in the default mode network, and although the single Rhesus monkey 

analyzed by graph theory in the current study had a hub encompassing the precuneus, the 

precuneus was notably absent from network identified in the Vervet monkeys. Also notable 

in this study was the inclusion of the visual cortex in the default mode network, which 

comports with previous monkey results (Hutchison et al., 2011; Margulies et al., 2009), but 

is in contrast with the human literature. It is unclear whether these discrepant findings are 

due to species differences, anesthesia used in the monkey studies (whereas humans are 

typically awake), or the method of analysis.

Indeed, a recurring and much debated problem is that of the appropriate method to use in 

analyzing fMRI data: there is no “gold standard,” approaches are heterogeneous, and false 

positives often emerge (Duncan and Northoff, 2013; Eklund et al., 2012). Is it reasonable, 

however, to expect a consensus? Telesford and colleagues (2011) argue in favor of the 

network science approach suggesting that the complex system that is the brain must be 

understood by depicting its organization as a whole rather than by representing the system as 

independent elements or by explaining only its constituent parts. To move forward, however, 

investigators must understand complex systems analyses and apply them correctly.

Another application of network science investigation involves identification of spatial and 

temporal changes in brain function in response to pharmacological stimulation, a method 

commonly referred to as pharmacological MRI. Identifying how centrally active molecules 

may alter IFCNs could enhance understanding of normal brain organization. Telesford and 

colleagues (2013) use graph theory to analyze fMRI data following acute (1 g/kg) alcohol 

administration to the Rhesus monkey. They demonstrate that acute alcohol increases the 

randomness of the default mode network, or in other words, decreases its integration. This is 

in contrast to human studies that have explored the effects of acute alcohol administration on 

IFCNs: none have reported effects on the default mode network (Esposito et al., 2010; 

Khalili-Mahani et al., 2012; Spagnolli et al., 2013). Instead, all 3 studies thus far conducted 

in healthy human volunteers demonstrate that acute alcohol affects the IFCN related to the 

visual system (Esposito et al., 2010; Khalili-Mahani et al., 2012; Spagnolli et al., 2013). 

That Telesford and colleagues (2013) did not show effects on the visual network could be 

due either to the lack of statistical power (i.e., n = 1) or because the default mode network 

they identify in their Rhesus and Vervet monkeys includes the visual cortex.

The Telesford and colleagues (2013) study highlights the importance of careful 

consideration of the kind of analyses methods to be applied to fMRI data and offers network 

science as an appealing method to promote accurate understanding of the brain as a complex 

system. Although preliminary, the study also provides support for the use of 

pharmacological MRI to gain a better understanding of the brain in health and disease.
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Fig. 1. 
An exemplary graph where the numbered circles represent nodes and the lines connecting 

them represent edges.
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