#1 CODE |
# a model to generate PKM2–KRAS signal–response curves |
# initial conditions |
init KRAS=0, PKM2=0 |
# differential equations |
# KRAS represents the active form of KRAS |
KRAS’= (karas + karas’*PKM2)*(KRAST-KRAS)/(Jkras + KRAST-KRAS)−(kiras + kiras’*VitC)*KRAS/(Jkras + KRAS) |
# PKM2 represents the active form of PKM2 |
PKM2’ = (kapkm + kapkm’*KRAS + kapkm”*cMyc)*(PKM2T-PKM2)/(Jpkm + PKM2T-PKM2)−kipkm*PKM2/(Jpkm + PKM2) |
# steady state functions |
# mTOR represents the active form of mTOR |
mTOR = mTORT*GK(kamr + kamr’*KRAS + kamr”*PKM2,kimr + kimr’*CHL,Jmr,Jmr) |
# cMyc represents the active form of cMyc |
cMyc = cMycT*GK(kamyc + kamyc’*PKM2 + kamyc”*mTOR,kimyc,Jmyc,Jmyc) |
# ‘Goldbeter-Koshand’ function (GK) |
GB(arg1,arg2,arg3,arg4) = arg2-arg1+arg2*arg3+arg1*arg4 |
GK(arg1,arg2,arg3,arg4) = 2*arg1*arg4/(GB(arg1,arg2,arg3,arg4)+sqrt(GB(arg1,arg2,arg3,arg4)^2-4*(arg2-arg1)*arg1*arg4)) |
# parameters |
# to simulate cancer: karas=1 |
# to simulate chloroquine treatment in cancer: karas=1, kimr’=1.5 |
# to simulate Vitamin C treatment in cancer: karas=1, kiras’=1.5 |
# to simulate PKM2 over-expression: karas=0.01, kapkm=0.5 |
# to simulate PKM2 depletion: karas=0.01, PKM2T=0.01 |
# to simulate cMyc over-expression: karas=1, cMycT=10 |
# to simulate cMyc depletion: karas=1, cMycT=0.1 |
p karas=0.01, karas’=0.1, kiras=0.1, kiras’=0, KRAST=1, Jkras=0.1 |
p kamr=0.01, kamr’=0.1, kamr”=2.25, kimr=0.1, kimr’=0, mTORT=1, Jmr=0.1 |
p kapkm=0.05, kapkm’=0.1, kapkm”=0.2, kipkm=0.2, PKM2T=1, Jpkm=0.1 |
p kamyc=0.01, kamyc’=0.2, kamyc”=0.2, kimyc=0.3, cMycT=1, Jmyc=0.1 |
p CHL=1, VitC=1 |
done |
#2 CODE |
# a model to generate mTOR–KRAS signal–response curves |
# initial conditions |
init KRAS=0, PKM2=0 |
# differential equations |
# mTOR represents the active form of mTOR |
mTOR’ = (kamr + kamr’*KRAS + kamr”*PKM2)*(mTORT-mTOR)/(Jmr + mTORT-mTOR)−(kimr + kimr’*CHL)*mTOR/(Jmr + mTOR) |
# PKM2 represents the active form of PKM2 |
PKM2’ = (kapkm + kapkm’*KRAS + kapkm”*cMyc)*(PKM2T-PKM2)/(Jpkm + PKM2T-PKM2)−kipkm*PKM2/(Jpkm + PKM2) |
# steady state functions |
# KRAS represents the active form of KRAS |
KRAS = KRAST*GK(karas + karas’*PKM2,kiras + kiras’*VitC,Jkras,Jkras) |
# cMyc represents the active form of cMyc |
cMyc = cMycT*GK(kamyc + kamyc’*PKM2 + kamyc”*mTOR,kimyc,Jmyc,Jmyc) |
# ‘Goldbeter-Koshand’ function (GK) |
GB(arg1,arg2,arg3,arg4) = arg2-arg1+arg2*arg3+arg1*arg4 |
GK(arg1,arg2,arg3,arg4) = 2*arg1*arg4/(GB(arg1,arg2,arg3,arg4)+sqrt(GB(arg1,arg2,arg3,arg4)^2-4*(arg2-arg1)*arg1*arg4)) |
# parameters |
# to simulate cancer: karas=1 |
# to simulate chloroquine treatment in cancer: karas=1, kimr’=1.5 |
# to simulate Vitamin C treatment in cancer: karas=1, kiras’=1.5 |
# to simulate PKM2 over-expression: karas=0.01, kapkm=0.5 |
# to simulate PKM2 depletion: karas=0.01, PKM2T=0.01 |
# to simulate cMyc over-expression: karas=1, cMycT=10 |
# to simulate cMyc depletion: karas=1, cMycT=0.1 |
p karas=0.01, karas’=0.1, kiras=0.1, kiras’=0, KRAST=1, Jkras=0.1 |
p kamr=0.01, kamr’=0.1, kamr”=2.25, kimr=0.2, kimr’=0, mTORT=1, Jmr=0.1 |
p kapkm=0.05, kapkm’=0.1, kapkm”=0.2, kipkm=0.2, PKM2T=1, Jpkm=0.1 |
p kamyc=0.01, kamyc’=0.2, kamyc”=0.2, kimyc=0.3, cMycT=1, Jmyc=0.1 |
p CHL=1, VitC=1 |
done |