#3 CODE |
# a model to simulate time courses |
# initial conditions, |
init KRAS= 0.0146, mTOR= 0.5365, PKM2= 0.0405, cMyc= 0.0607, AUTA= 0.0332, GLUT1= 0.1612 |
# differential equations |
# KRAS represents the active form of KRAS |
KRAS’= (karas + karas’*PKM2)*(KRAST-KRAS)/(Jkras + KRAST-KRAS)−(kiras + kiras’*VitC)*KRAS/(Jkras + KRAS) |
# mTOR represents the active form of mTOR |
mTOR’ = (kamr + kamr’*KRAS + kamr”*PKM2)*(mTORT-mTOR)/(Jmr + mTORT-mTOR)−(kimr + kimr’*CHL)*mTOR/(Jmr + mTOR) |
# PKM2 represents the active form of PKM2 |
PKM2’ = (kapkm + kapkm’*KRAS + kapkm”*cMyc)*(PKM2T-PKM2)/(Jpkm + PKM2T-PKM2)−kipkm*PKM2/(Jpkm + PKM2) |
# cMyc represents the active form of cMyc |
cMyc’ = (kamyc + kamyc’*PKM2 + kamyc”*mTOR)*(cMycT-cMyc)/(Jmyc + cMycT-cMyc)−kimyc*cMyc/(Jmyc + cMyc) |
# AUTA represents the active autophagy |
AUTA’ = (kaau + kaau’*KRAS)*(AUTAT-AUTA)/(Jau + AUTAT -AUTA)−(kiau + kiau’*mTOR)*AUTA/(Jau + AUTA) |
# represents the active form of GLUT1 |
GLUT1’ =(kaglu + kaglu’*cMyc)*(1-GLUT1)/(Jglu + 1-GLUT1)−kiglu*GLUT1/(Jglu + 1-GLUT1) |
# parameters |
# to simulate cancer: karas=1 |
# to simulate chloroquine treatment in cancer: karas=1, kimr’=1, AUTAT=0.1 |
# to simulate Vitamin C treatment in cancer: karas=1, kiras’=1 |
# to simulate PKM2 over-expression: karas=0.01, kapkm=0.5 |
# to simulate PKM2 depletion: karas=0.01, PKM2T=0.01 |
# to simulate cMyc over-expression: karas=1, cMycT=10 |
# to simulate cMyc depletion: karas=1, cMycT=0.1 |
p karas=0.01, karas’=0.1, kiras=0.1, kiras’=0, KRAST=1, Jkras=0.1 |
p kamr=0.01, kamr’=0.1, kamr”=2.25, kimr=0.1, kimr’=0, mTORT=1, Jmr=0.1 |
p kapkm=0.05, kapkm’=0.1, kapkm”=0.2, kipkm=0.2, PKM2T=1, Jpkm=0.1 |
p kamyc=0.01, kamyc’=0.2, kamyc”=0.2, kimyc=0.3, cMycT=1, Jmyc=0.1 |
p kaau=1, kaau’=7.5 kiau=0.01, kiau’=7.5, Jau=0. 1, |
p kaglu=0.01, kaglu’=3, kiglu=1, Jglu=0.01 |
p CHL=1, VitC=1 |
done |