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Abstract

High-affinity guests have been reported for the macrocyclic host cucurbit[7]uril (CB[7]), enabling 

widespread applications, but hindering CB[7] materials from being returned to their guest-free 

state for reuse. Here, we present polyhedral boron clusters (carboranes) as strongly-binding, yet 

easily removable, guests for CB[7]. Aided by a Pd-catalyzed coupling of an azide anion, we 

prepared boron-functionalized 9-amino-ortho-carborane that binds to CB[7] with a Ka≈1010 M−1. 

Upon basic treatment, ortho-carborane readily undergos deboronation to yield anionic nido-

carborane, a poor guest for CB[7], facilitating recovery of guest-free CB[7]. We showcase the 

utility of the modified ortho-carborane guest by recycling a CB[7]-functionalized resin. With this 

report, we introduce stimuli-responsive decomplexation as an additional consideration in the 

design of high-affinity host-guest complexes.
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Molecular recognition is ubiquitous in nature with the biological processes relying on non-

covalent interactions between biomolecules.1,2 Chemists have been inspired to develop host-

guest complexes with comparable degrees of specificity for applications in functional 

materials,3 sensors,4 biological assays,5 and therapeutics.6–9 Early molecular recognition 

work involved crown ether, cyclophane, and cyclodextrin hosts that exhibit modest binding 

affinities (Ka≤105 M−1).10 Recently, focus has been on the development of high-affinity 

(Ka≥109 M−1) host-guest complexes that rival the binding affinities of Nature’s best 

molecular recognition systems: antibody-antigens and (strept)avidin-biotin.11 High binding 

affinity complexes facilitate the expansion of host-guest chemistry to applications in dilute, 

complex settings and decrease the need to exploit multivalency.12 However, large Ka values 

also lead to difficulties in readily dissociating the pair, limiting the reversibility and 

flexibility of the system (Figure 1A).13 Here we present “decomplexation”, the ability to 

remove a guest on demand, as an important feature in the design of high-affinity host-guest 

pairs (Figure 1B).

Cucurbiturils, cyclic oligomers of glycoluril linked by methylene units, have become the 

host of choice for high-affinity complexes.14,15 The heptamer, cucurbit[7]uril (CB[7]) 

displays the largest binding affinities, with the highest reported Ka being 1017 M−1 for 

complexation with 1,6-N-trimethylammonium diamantane.16 Other notable high-affinity 

guests for CB[7] are adamantylamine (Ka=1012 M−1) and derivatives (Ka=104–17 M−1)16,17 

and functionalized ferrocenes (Ka=109–15 M−1).15 These guests all display excellent size and 

shape complementarity with the cavity and alignment of cationic functionality with the 

carbonyl rings.18

These high binding affinities have led to the exploration of the CB[7] scaffold as a biotin-

(strept)avidin mimic.19–23 CB[7] has also found use in small molecule separation,24 

dynamically crosslinked polymers,3,25 surface patterning26,27 and sensor development.28 In 

most of these applications, CB[7] is immobilized on solid-supports and the high binding 

affinity of guests with CB[7] render these materials one-time use. If compounds captured by 

the immobilized CB[7] need to be released, a higher affinity guest is introduced to displace 

the captured material, leaving complexed CB[7]. The difficulty in returning surfaces and 
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devices containing CB[7] to their initial guest-free state limits the use of CB[7] to highly 

specialized applications where cost and scale are not significant factors.

To enable recycling of CB[7]-containing materials, we designed a high-affinity guest for 

CB[7] that upon chemical treatment could be transformed into a weak guest for easy 

removal. This guest could either be employed as the primary guest in the experiment or be 

used to displace an application-specific guest and then undergo decomplexation to allow 

regeneration of the CB[7] material. Notable previous efforts to reduce binding affinity and 

facilitate guest removal have used electrochemical or pH-dependent switching; however, 

complete removal from the cavity requires salt treatment or organic solvent (see SI Note 1).
29–34 High-affinity guest removal from CB[7] has only been achieved via excessive salt 

treatment.23,35

In our search for guests to fit the criteria of both high binding affinity to CB[7] and the 

ability of triggered decomplexation, we looked to guests with shape complementarity to the 

cavity of CB[7] that could be readily transformed into a fragment that is poorly encapsulated 

by CB[7].17,36–38 Icosahedral carboranes (C2B10H12) appeared primed to meet these 

requirements. These 3D aromatic clusters39–41 bear a close topological similarity to 

adamantane42,43 and one of the three isomers, ortho-carborane, has previously been 

employed as a guest for CB[7], although no Ka was reported.44 Importantly, carboranes 

undergo Lewis base-mediated B–H vertex removal (termed “deboronation”) to generate the 

nido-7,8-C2B9H11 anion (Figure 1B).45–47 Ortho- and meta-carboranes have significantly 

different rates of deboronation, and distinct dipole moments.42,48 We set out to explore the 

binding affinities of derivatives of these two carborane isomers with CB[7] and their 

potential for removal upon deboronation to create a reliable recycling system for CB[7].

The electronic non-uniformity of carboranes is widely recognized, resulting in different 

electronic influences on bound substituents depending on the cage vertex.49 Given the 

similar inductive electronic effects of B-bound substituents on carboranes compared to bulky 

alkyl groups, we targeted N-substitution at the B9 vertices of the carboranes to most closely 

mimic the electronic environment of adamantylamine. Despite a variety of methods to 

functionalize ortho- and meta-carborane,50–54 the synthetic methodology developed for the 

amination of 9-Br-meta-carborane55 is incompatible with 9-Br-ortho-carborane (1) due to 

basic conditions leading to deboronation. Alternative routes to nitrogen-substituted ortho-

carboranes were similarly unsuccessful.56

Thus, a new synthetic route (Figure 2A) to furnish the B9 aminated ortho-carborane target 

was necessary. Treatment of 1 with NaN3 under Pd-catalyzed cross-coupling conditions 

afforded the desired 9-N3-ortho-carborane (2)49 in 67% yield. This is a rare example of Pd-

catalyzed cross-coupling of an azide anion.57 Staudinger reduction and hydrolysis with 

concentrated HCl gave the desired hydrochloride salt 4, confirmed by crystallography 

(Figure 2E). To probe the effect of a permanent positive charge on the guest, 

trimethylammonium derivatives 5 and 7 were prepared (Figure 2B,C). We synthesized the 

analogous hydrochloride salt 9-NH3-meta-carborane (8) by treating the corresponding amine 

with gaseous HCl (Figure 2D) to aid in binding affinity investigations.
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The aqueous solubility of the 9-amino- and 9-ammonium-carboranes (4, 5, 7, 8) allowed 

binding affinities to be determined by 1H-NMR spectroscopy in acetate buffer (Figure 3, 

Figures S1–S4). Competition experiments against (trimethylsilyl)methylamine were 

performed.17 Notably, the binding affinities are lower than those observed with 

adamantylamine, despite the structural analogy between carborane and adamantane.58 

Carboranes’ greater inherent net dipole could be altering the positioning in the CB[7] 

hydrophobic pocket. We hypothesize that in 8 the net dipole allows for better positioning in 

the CB[7] cavity than its isomer 4. Similarly, trimethylation affects the Ka differently for 

ortho- and 9-meta-aminocarboranes. The decreased Ka for 7 compared to 5 could result from 

competing alignment of the trimethylammonium group with the CB[7] portals and carborane 

net dipole within CB[7].16,17,59 Overall, at Ka=109–11 M−1 we have established carboranes 

as a new class of high-affinity guests for CB[7].

Next, we investigated the ability for carborane guests to be removed from CB[7] on demand. 

Initially, we employed unfunctionalized ortho-and meta-carborane, which have orthogonal 

decomplexation properties (Figure 4A). We characterized the CB[7]•carborane complexes in 

trifluoroacetic acid (TFA), due to limited water solubility of carboranes (Figure S5–S6).72 

We found that a stable complex between CB[7] and ortho- and meta-carborane (35–55 mM, 

1.2 eq) readily formed upon sonication and could be purified by washing with organic 

solvent (Figure S7). Carborane is clearly seen in the aqueous solution of host-guest complex 

via 11B-NMR spectroscopy when both ortho- (9) and meta-carborane (10) are introduced 

(Figure S8).

After screening a small family of Lewis bases known to deboronate ortho-carborane (9) 

(Figure 4B, Figure S9–S13, Table S1), we established 20% aqueous piperidine at 60 °C as 

optimal decomplexation conditions for CB[7]•9 and CB[7]•4. Interestingly, when CB[7] was 

not present, other Lewis acids deboronated 4 at similar rates to piperidine (Figure S14), 

suggesting that a piperidine CB[7] interaction may enhance deboronation. We hypothesize 

that an electrostatic attraction of piperidine with the carbonyl portal improves the solubility 

of CB[7]•9 (or CB[7]•4), facilitating deboronation (see SI Note 2, Figure S15).

As predicted, when subjecting the meta-carborane complex (CB[7]•10) to similar 

conditions, no transformation is apparent for 10 in the presence or absence of CB[7] (Figure 

4B, entry 6, Figure 4C–F, Figure S16–S18). These results are consistent with the diminished 

electrophilicity of the boron vertices adjacent to carbon vertices in meta-carborane (10) 

versus ortho-carborane (9) and demonstrate the potential for orthogonal chemical behavior 

of sterically identical guest molecules encapsulated by CB[7].

To showcase the utility of the on demand decomplexation offered by the ortho-carborane 

guests, we used 9 to isolate CB[7]-OH (Figure 5A). CB[7]-OH is an important intermediate 

for the creation of CB[7] conjugates, materials, and devices. CB[7] can be readily 

monohydroxylated by treatment of CB[7]•12 with persulfate salts; however, we found 

efficient removal of 12 from the CB[7]-OH cavity to be difficult (Scheme S1–S2).35 

Gratifyingly, 12 could be displaced with 9 in less than 30 min in a H2O/TFA mixture (Figure 

5B,C, blue). Upon TFA removal, treatment with piperidine for 1 h followed by a 

dichloromethane wash provided guest free CB[7]-OH (Figure 5B,C, red). In our hands, this 
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is the fastest and highest yielding procedure to isolate guest-free CB[7]-OH. The 

decomplexation method was also used to prepare guest-free CB[7]-N3 (Figure S19).60,61

To demonstrate the ability to recycle CB[7]-constructs via decomplexation of ortho-

carborane guests, we conjugated CB[7]-N3
60,62 to bicyclononyne-functionalized Wang resin 

(Wang-BCN, Figure 6A, Scheme S3) using copper-free click chemistry and confirmed 

successful immobilization using fluorescein adamantylamine conjugate 13 (Ka=108 M−1, 

Figure S20–S21). The resulting Wang-CB[7] resin was added to Jurkat lysate (2 mg/mL) 

containing 13 to selectively isolate the fluorescent guest from a complex mixture (Figure 6B, 

Step A). After washing away cell lysate, displacement with 4 rapidly releases 13 (Figure 6B, 

Step B). Finally, treatment with piperidine deboronates 4 to produce 14 and regenerate 

Wang-CB[7] (Figure 6B, Step C).73

The success of each step was monitored through the fluorescence of Wang-CB[7] (red) and 

compared to fluorescent Wang-CB[7]•13, where displacement by 4 was omitted (green) and 

non-fluorescent Wang-CB[7], where addition of 13 and 4 were omitted (gray) (Figure 6C). 

The cycle was repeated twice, at which point the signal became too low due to significant 

loss of resin in the washing steps (Figure S22–S23). We expect this limitation can be 

overcome by using a more water-compatible solid support. Recycling of the resin represents 

a novel method of reusing precious CB[7]-constructs that can be applied for payload 

isolation in biological and materials applications. Work toward even milder conditions for 

decomplexation is underway.

In summary, we present carboranes as high-affinity (Ka≈1010 M−1) binders for CB[7], which 

may be removed on demand through deboronation chemistry. We designed 9-
aminocarborane guests to mimic the size and charge of adamantylamine and took advantage 

of the differential reactivity of carborane isomers to prepare guests that were (ortho) and 

were not (meta) readily deboronated. We utilized this scaffold to efficiently prepare guest-

free CB[7]-OH and showcase the opportunity to “recycle” CB[7]-constructs that can be 

employed in biological assays and materials applications. We envision this work will 

overcome limitations of traditional biotin-(strept)avidin systems and enable CB[7] sensors 

and technologies. Finally, this work highlights how unique stimuli-responsive features of 

boron clusters can aid in the development of new hybrid chemical systems.63–71
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) Schematized synthetic host-guest pairs with low (green) and high (blue) binding 

affinities. (B) (i) This work presents triggered decomplexation as an advantageous property 

for high-affinity host-guest complexes, (ii) which we demonstrate with a cucurbit[7]uril 

(CB[7]) and 9-amino-ortho-carborane host-guest pair that undergoes decomplexation with 

base.
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Figure 2. 
(A) Synthetic route to 9-amino-ortho-carborane (4) through 9-azido-ortho-carborane (2). (B, 
C) Treatment of 4 and 6 with Me-I affords trimethylated derivatives 5,7. (D) Formation of 

salt 8. (E) Single crystal X-ray diffraction of 4 (chloride counterion and cage-based 

hydrogens removed for clarity).
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Figure 3. 
(A) Association of carborane with CB[7]. (B) Binding affinities of water-soluble carborane 

derivatives (4,5,7,8) (1 eq.) determined by 1H NMR spectroscopy competition experiments 

with (trimethylsilyl)methylamine (1.5 eq.) in 50mM NaOAc buffer.17
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Figure 4: 
(A) Decomplexation of the CB[7]•9 complex through deboronation of ortho-carborane (9) 

with base to yield nido-ortho-carborane (11) and free CB[7]. (B) Conditions screened to 

evaluate the decomplexation of CB[7]•carborane complexes. CB[7]•carborane and base (5 

equiv.) were combined in H2O, stirred at 60 °C, and monitored by 11B-NMR spectroscopy. 

Generation of 11 was calculated by relative integration of baseline corrected 11B-NMR 

spectra (Figure S9–S13, Table S1) (C-F) 11B-NMR spectra taken before (C) and after (D) 

1h of subjecting CB[7]•9 complex (C,D) or CB[7]•10 complex (E,F) to 20% piperidine/H2O 

(v/v) at 60 °C. a, b denote the peaks used for relative integration measurements. *denotes 

borate side-product known to form during deboronation of 9.
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Figure 5: 
(A) Isolation of guest-free CB[7]-OH by guest exchange with 9 and subsequent 

decomplexation with piperidine. (B,C) Displacement of 12 by ortho-carborane (9) and 

formation of CB[7]-OH•9 (top, blue) and decomplexation and removal of (11) to form a 

guest-free CB[7]-OH cavity (bottom, red) observed by 1H-NMR (B) and 11B-NMR 

spectroscopy (C).
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Figure 6: 
(A) Attachment of CB[7]-N3 to bicyclononyne (BCN)-functionalized Wang resin to produce 

Wang-CB[7]. (B) Wang-CB[7] was used to isolate payload, 13, from Jurkat lysate in 50% 

DMF/H2O (Step A), and was regenerated by complexation of 4 (Step B) followed by 

decomplexation (Step C). (C) Fluorescence of Wang-CB[7] throughout the recycling 

sequence (red) compared to fluorescent Wang-CB[7]•13 (green, samples not incubated with 

4 in Step B) and non-fluorescent Wang-CB[7] (gray, samples not incubated with 13 or 4 in 

Steps A and B). Error bars represent standard deviation of three replicate samples. *P≤0.05, 

**P≤0.01, ***P≤0.001, ****P≤0.0001.
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