Skip to main content
. 2021 May 25;2(4):295. doi: 10.1007/s42979-021-00687-5

Table 3.

Averages of classification accuracy, best fitness and selected features obtained from BDA and BDA-SA

Data set Accuracy Best Fitness Selected Features
BDA BDA-SA BDA BDA-SA BDA BDA-SA
Breastcancer 0.968 0.988 0.038 0.018 6.000 6.000
BreastEW 0.960 0.974 0.043 0.030 13.500 12.450
CongressEW 0.967 0.975 0.035 0.028 5.000 4.150
Exactly 0.982 1.000 0.023 0.005 6.250 6.000
Exactly2 0.744 0.759 0.244 0.240 1.450 1.450
HeartEW 0.842 0.895 0.159 0.109 5.950 6.900
IonosphereEW 0.919 0.929 0.079 0.074 11.650 10.400
KrvskpEW 0.958 0.976 0.031 0.028 18.350 14.400
Lymphography 0.872 0.911 0.131 0.092 7.400 8.500
M-of-n 0.995 0.997 0.006 0.008 6.200 6.150
PenglungEW 0.909 0.930 0.093 0.049 123.350 141.300
SonarEW 0.914 0.917 0.077 0.086 27.550 23.900
SpectEW 0.857 0.866 0.143 0.137 8.650 8.850
Tic-tac-toe 0.784 0.818 0.207 0.189 8.200 7.800
BDA Vote 0.953 0.964 0.049 0.037 6.550 3.050
WaveformEW 0.755 0.805 0.236 0.198 21.000 21.100
WineEW 0.987 0.999 0.009 0.008 6.200 8.850
Zoo 0.959 0.979 0.042 0.024 8.350 5.650

Bold values represent the best results