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Abstract

Segmentation of abdominal computed tomography (CT) provides spatial context, morphological 

properties, and a framework for tissue-specific radiomics to guide quantitative Radiological 

assessment. A 2015 MICCAI challenge spurred substantial innovation in multi-organ abdominal 

CT segmentation with both traditional and deep learning methods. Recent innovations in deep 

methods have driven performance toward levels for which clinical translation is appealing. 

However, continued cross-validation on open datasets presents the risk of indirect knowledge 

contamination and could result in circular reasoning. Moreover, “real world” segmentations can be 

challenging due to the wide variability of abdomen physiology within patients. Herein, we 

perform two data retrievals to capture clinically acquired deidentified abdominal CT cohorts with 

respect to a recently published variation on 3D U-Net (baseline algorithm). First, we retrieved 

2004 deidentified studies on 476 patients with diagnosis codes involving spleen abnormalities 

(cohort A). Second, we retrieved 4313 deidentified studies on 1754 patients without diagnosis 

codes involving spleen abnormalities (cohort B). We perform prospective evaluation of the 

existing algorithm on both cohorts, yielding 13% and 8% failure rate, respectively. Then, we 

identified 51 subjects in cohort A with segmentation failures and manually corrected the liver and 

gallbladder labels. We re-trained the model adding the manual labels, resulting in performance 

improvement of 9% and 6% failure rate for the A and B cohorts, respectively. In summary, the 

performance of the baseline on the prospective cohorts was similar to that on previously published 

datasets. Moreover, adding data from the first cohort substantively improved performance when 

evaluated on the second withheld validation cohort.
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1. INTRODUCTION

Abdominal multi-organ segmentation of computed tomography (CT) image aids in a variety 

of clinical tasks, including diagnosis, evaluation, and treatment delivery [1]. As such, 

segmentation of abdominal organ scans has been the subject of extensive research. While 

segmentations on carefully selected, well-controlled research cohorts are successful using 

existing models, the generalizability of these algorithms to clinical datasets remains a 

question (see Figure 1) [2]. The shape and distribution of abdominal organs can vary 

significantly between patients, as well as within a person over time depending on patient 

position and movement at the time the scan is taken [2]. Additionally, knowledge 

contamination due to continued cross-validation disrupts the efficacy of models trained on 

controlled research cohorts, which may cause the resultant algorithms to fail when tested on 

clinical imaging archives.

Current research on multi-organ abdominal segmentation has focused on the generation of 

3D volumetric segmentations through integration of convolutional neural networks with 

manual annotation, with a 2015 MICCAI challenge leading to the development of an 

application of the 3D U-Net deep learning architecture [4–5]. Several algorithms have been 

designed to perform automatic multi-organ segmentation using a variety of techniques, 

including multi-atlas segmentation (MAS) [1–3]. Many attempts at site-specific 

customization have also spurred movement toward efficient segmentation of CT images [6–

8]. Historically, these methods have proved compelling in controlled testing cases but have 

yet to be applied effectively to large-scale, clinically acquired CT scan data.

In this paper, we explore prevention of knowledge contamination through prospective 

validation on two large-scale testing cohorts. Additionally, we develop a new model trained 

on manually labeled failure scans of the liver and gallbladder, as it is often difficult to 

distinguish between these two organs through existing automatic segmentation techniques. 

We evaluate the performance improvement of the optimized algorithm as compared to the 

baseline to determine the generalizability of deep learning algorithms to a clinical dataset.

2. METHOD

In this paper, we present an algorithm for optimizing multi-organ segmentation to generalize 

to clinical images. Failure scans from the baseline algorithm are manually labelled and 

introduced into the training dataset under a 3D U-Net architecture and evaluated under a 

large-scale testing cohort of clinical images, as seen in Figure 2.

2.1 Baseline Algorithm

The baseline model is trained using an 80-scan cohort with multi-organ segmentation and a 

120-scan cohort with spleen segmentation, forming a 200-scan training dataset. All 200 
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scans are trained under the existing 3D U-Net model, producing the baseline algorithm for 

multi-organ segmentation. In testing the baseline algorithm, we first retrieve 2004 studies on 

476 patients with diagnosis codes involving spleen abnormalities (cohort A). Next, we 

retrieve 4313 studies on 1754 patients without diagnosis codes involving spleen 

abnormalities (cohort B). All studies were retrieved in deidentified form under IRB 

approval. Prospective evaluation of the baseline algorithm is performed on both cohorts with 

manual quality assurance (QA) on the generated segmentations. The segmentations are rated 

using a multi-level quality grading system of 0, 1, or 2 (Excellent, Usable, or Global fail). A 

grading value of 0 is defined as the segmentations where the algorithm visually correctly 

predicts almost all organs in the abdomen. A grading value of 1 is defined as segmentation 

where the algorithm visually correctly predicts most major organs, such as the liver and 

spleen. A grading value of 2 is defined as segmentations with major inconsistencies visible 

within organs. We observe performance of 13% and 8% global failure rate for both cohorts, 

respectively.

2.2 Manual Annotation

Taking 51 global failure scans from cohort A (splenomegaly cohort), we manually annotate 

the liver and gallbladder on the original images. A window and level of 35 and 190 

Hounsfield units (HU) are used, respectively. Annotations are made on the axial slices of the 

scans while also consulting the sagittal and coronal views. Livers in many of the failed scans 

show signs of cirrhosis, displaying a significant amount of surrounding fluid, which is not 

included in the labels. Transjugular intrahepatic portosystemic shunts (TIPS) embedded in 

the hepatic are also present in many scans. Since the hepatic vein runs through the liver, the 

TIPS are included in the liver labels to maintain continuity of the organ. The hepatic and 

portal veins are also included in the manual labels given they are within the main contours of 

the liver, though any fluid within the organ is excluded. These annotation guidelines are 

followed consistently for all slices of all images.

When annotating the gallbladder, the manual labels are checked against the liver labels to 

ensure no overlap between the manual segmentations of the two organs. The gallbladder is 

present in only 24 out of 51 scans, having likely been removed from the remaining patients 

in scans where it does not appear. The consistency of the hand label process is checked via a 

second party manually labelling 5 randomly selected scans from the 51 images and 

calculating the Dice loss between the two hand tracings. This manual protocol yielded an 

average Dice similarity metric of 95% between the two manual labels for both organs.

2.3 Preprocessing:

The manual labels and corresponding images are preprocessed in three steps. First, the 

original scans are saved under a soft tissue window. Second, the original images, soft-tissue 

windowed images, and labels are normalized and resampled using spline interpolation. 

Lastly, all images, soft images, and segmentation labels are cropped and resampled from 

dimension 512×512×52 to 168×168×64.
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2.4 Optimized Algorithm

To evaluate feasible performance improvement, the manual labels of the failure scans are 

added to the training dataset and the existing model is re-trained under a 3D U-Net 

architecture with 5-fold cross-validation. The new model is trained via transfer learning 

using the existing model trained on the original 200 scans (120-scan splenomegaly cohort 

and 80-scan multi-organ cohort). 41 hand-labelled liver and gallbladder scans are added to 

the training dataset for a total of 241 training scans. The 10 remaining manually labelled 

scans are placed in the testing cohort during each fold of cross-validation and used to 

calculate the average Dice value of the optimized algorithm. The model is trained for 150 

epochs for each fold, stopping once the Dice value improves <0.001 across 4 consecutive 

epochs. The optimized algorithm is then tested using the same large-scale clinical imaging 

cohorts A and B. Prospective validation of the optimized algorithm is performed on both 

cohorts with manual QA using the same multi-level quality grading scale (0, 1, 2) to assess 

the failure rate of the new algorithm. The 51 manually labelled scans are also tested against 

the baseline algorithm for 150 epochs, and the Dice score for each image is averaged across 

epochs to calculate the baseline algorithm Dice value.

3. RESULTS

Figures 3 and 4 compare the Dice values of the liver and gallbladder in the baseline and 

optimized algorithms. The Dice values presented for the baseline algorithm in Figure 3 are 

averaged across all epochs for the 51 manually labeled scans. The Dice values presented for 

the optimized algorithm in Figure 3 are averages across all epochs for the 10 scans placed in 

each testing cohort of 5-fold cross-validation. Based on a paired t-test, the Dice values of the 

optimized algorithm are significantly superior to those of the baseline algorithm for both the 

liver and gallbladder (p<0.001). Figure 5 compares the failure rate of the baseline and 

optimized algorithms amongst testing cohorts A and B. Based on a Chi-squared test, the 

failure rate of the optimized algorithm is significantly less than that of the baseline algorithm 

(p<0.001). Figures 6 and 7 display the qualitative results.

4. CONCLUSION

The method proposed in this paper generates an optimized algorithm that generalizes from 

controlled research datasets to clinical imaging datasets when integrated with site-specific 

customization. As seen in Figures 3 and 4, both the mean and the median Dice values of the 

51 manually identified failure scans increased from the baseline to the optimized algorithm 

on the liver and gallbladder. Additionally, the failure rate decreased when testing the 

optimized algorithm on clinical imaging cohorts A and B, shown in Figures 5 and 6. This 

improvement is seen qualitatively in Figure 7. The generalizability of the optimized 

algorithm supports the transition of automated multi-organ segmentation from research to 

clinical settings. While the optimized algorithm yields substantive performance 

improvement over the baseline on the withheld dataset under prospective evaluation, further 

exploration may be undertaken to refine the algorithm in regard to reducing outliers.
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Figure 1. 
Multi-organ segmentation of research cohorts compared to clinical imaging archives. Scans 

in research cohorts are well-controlled and have been shown to allow for effective 

segmentation, whereas clinical scans display wide variability. Clinical scans display tumors, 

liver disease, interventions, etc., which make automatic multi-organ segmentation 

challenging.
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Figure 2. 
Training and testing of baseline algorithm on clinical imaging cohorts A and B with manual 

QA, leading to manual labeling of failure scans. Re-training with manual labels added to 

produce optimized algorithm, with manual QA performed again to compare results from 

baseline to optimized algorithm. Blue arrows represent processes, while black arrows lead to 

final outputs.
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Figure 3. 
Average Dice values of 51 manually labeled scans calculated across all epochs in liver and 

gallbladder between baseline and optimized algorithms (p<0.001 using paired t-test). Error 

bars indicate standard deviation.
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Figure 4. 
Dice values of 51 manually labelled scans calculated at the final epoch in liver and 

gallbladder between baseline and optimized algorithms (p<0.001 using paired t-test).
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Figure 5. 
Failure rates in clinical imaging archive cohorts A and B are significantly reduced between 

baseline and optimized algorithms (p<0.001 using Chi-squared test).
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Figure 6. 
Cohorts A and B quality ratio breakdowns, displaying percentage of 0’s, 1’s, and 2’s in 

generated segmentations from both testing cohorts between baseline and optimized 

algorithms.
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Figure 7. 
Four levels of multi-organ segmentation quality using the same patient scans. Scans from 

each level either remained generally the same in quality or improved significantly in quality 

between the baseline and optimized algorithms.
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