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Abstract: Streptococcus agalactiae, often referred to as group B streptococci (GBS), is a severe pathogen
that can infect humans as well as other animals, including tilapia, which is extremely popular in
commercial aquaculture. This pathogen causes enormous pecuniary loss, and typical symptoms
of streptococcosis—the disease caused by S. agalactiae—include abnormal behavior, exophthalmos,
and meningitis, among others. Multiple studies have examined virulence factors associated with
S. agalactiae infection, and vaccines were explored, including studies of subunit vaccines. Known
virulence factors include capsular polysaccharide (CPS), hemolysin, Christie-Atkins-Munch-Peterson
(CAMP) factor, hyaluronidase (HAase), superoxide dismutase (SOD), and serine-threonine protein
kinase (STPK), and effective vaccine antigens reported to date include GapA, Sip, OCT, PGK, FbsA,
and EF-Tu. In this review, I summarize findings from several studies about the etiology, pathology,
virulence factors, and vaccine prospects for S. agalactiae. I end by considering which research areas
are likely to yield success in the prevention and treatment of tilapia streptococcosis.
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1. Introduction

Streptococcus agalactiae (S. agalactiae), also commonly referred to as group B streptococ-
cus (GBS), is a severe pathogen that can infect humans and a diversity of other animals,
including reptiles, frogs, bovines, fish (including tilapia), and pigs, among others [1–3].
Streptococcosis—the disorder caused by GBS infection—is a major obstacle faced by the
tilapia aquaculture industry: in 2011, streptococcosis caused the loss of $40 million in the
tilapia industry in China, owing to high morbidity and mortality, which can reach up to
80% in outbreaks [4,5]. Given this potential for loss, it is unsurprising that researchers are
striving to develop effective means to control tilapia streptococcosis outbreaks. There has
been some progress in research regarding serotypes and virulence mechanisms, and there
are some promising prospects for effective vaccines; this review considers progress over
the past several years from investigations about these topics.

GBS, like many other pathogenic species, possesses many virulence factors, biomolec-
ular factors that promote the ability of pathogens to infect and/or damage hosts [6–8].
Among GBS virulence factors, a large number are known to affect adherence and invasion
of host cells, as well as evasion of host immunity [7]. A better understanding of these
virulence factors can support the development of control and therapeutic strategies. Studies
of GBS isolated from humans have split virulence factors into pore-forming toxins, factors
for immune evasion, resistance to antimicrobial peptides (AMPs), host-cell adherence
and invasion, and other virulence factors [7–9]. Pore-forming toxins—vitally important
pathogenesis factors—can facilitate the entry of GBS into host cells. The most common
kinds of pore-forming toxins are β-hemolysin/cytolysin (β-H/C) and Christie-Atkins-
Munch-Peterson (CAMP) factor. GBS can encode several virulence factors that promote
immune evasion. The adherent factors, such as fibrinogen-binding protein (FbsA/B/C),
laminin-binding protein (Lmb), the immunogenic bacterial adhesin (BibA), Pili (PilA/B/C),
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serine-rich repeat (srr), α C protein, and others, are responsible for GBS binding to ex-
tracellular matrix (ECM) components [7,8]. As a β-hemolytic bacterium, GBS has the
hemolytic property, which is essential for immune evasion and further infection [7,8].
Immune evasion factors include C5α peptidase (ScpB), hemolytic pigment, superoxide
dismutase (SodA), HylB, and so on. Several classes of resistance to AMPs factors have
been discovered, like D-alanylation of LTA and penicillin-binding proteins (PBPs). In
addition, pili possess the ability to mediate GBS resistance to AMPs [7–9]. Recently, other
virulence factors, cyclic di-AMP and cell wall-anchored ectonucleotidase (CdnP) have been
discovered [10].

The abuse of antibiotics to control streptococcosis can cause many problems, such as
the resistance of strains [11,12]. Moreover, the application regimes for antibiotics can be
inaccurate, and antibiotics can deleteriously affect food quality and safety. Vaccines—which
induce adaptive immune responses—can overcome some of these challenges. Given their
potent efficacy, the development of vaccines for preventing GBS outbreaks has been widely
investigated, including inactivated vaccines, attenuated vaccines, subunit vaccines, and
DNA vaccines.

2. The Etiology of Tilapia Streptococcosis

Several studies have sought to identify the pathogen responsible for tilapia strep-
tococcosis. Although this topic has been controversial, it is now acknowledged that the
major pathogen for tilapia streptococcosis affecting aquaculture is Streptococcus agalactiae
(GBS) [13]. In addition, there is evidence that Streptococcus iniae can cause similar disease
symptoms, and it is now clear that many aspects contribute to outbreaks of tilapia strepto-
coccosis, including environmental conditions as well as the presence of certain viruses and
fungi [14,15].

S. agalactiae, a Gram-positive bacterium, has a spherical shape with dimensions rang-
ing from 0.2 to 1.0 microns in diameter [16]. When cultured, S. agalactiae may grow in pairs
or chains. It is a facultative anaerobe and is catalase and oxidase negative; it possesses the
capacity for lactic acid fermentation [17] and is classified into Lancefield group B strepto-
coccus (based on the presence and type of its surface antigens) [18]. The serotypes of GBS
strains are assessed based on a capsular polysaccharide antigen, and to date, GBS has been
classified into ten kinds of distinct serotypes, including Ia, Ib, II-IX [19,20]. Among them,
serotypes Ia, Ib, II, and III are the most prevalent in tilapia infections. Notably, in 2018, our
group identified that among others also the IX serotype was an important agent in tilapia
streptococcosis [11]. This serotype has the potential to become a major infectious strain
for tilapia.

Tilapia streptococcosis is mainly observed in temperate and tropical tilapia-culturing
areas, including China [13], Malaysia [21], Austria [22], Brazil [23], Columbia [24], and Thai-
land [25], among other areas. Typically, large-scale infections of tilapia will breakthrough
in relatively warm seasons, especially summer. The mortality rate can reach 50–70% in less
than a week [26].

Although there is variability among tilapia, some of the most common symptoms
and pathological signs include erratic swimming and loss of orientation, unilateral or
bilateral exophthalmia (also named “pop-eye”), anorexia, abdominal distention, darkening
of the skin, and hemorrhaging skin around the anus or at the base of the fins, as well as
abdominal dropsy, pale, but enlarged liver, inflammations around the heart and kidney, and
meningitis [26,27]. There has been heated discussion about potential modes of transmission:
the introduction of infected fish is the most common mode, yet there is also solid evidence
supporting vertical transmission [26].

3. Virulence Factors
3.1. Capsular Polysaccharide

The capsular polysaccharide (CPS) is a pathogenic factor widely distributed among
Streptococcus serotypes; this molecule comprises glucose, galactose, N-acetylglucosamine,
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and N-acetylneuraminate [28]. CPS has been a traditional epidemiological tool for investi-
gating S. agalactiae infections in humans [29]; it is generally used for strain typing. CPS is
known to contribute to disease severity [30], and molecular serotyping techniques have an
elevated discriminatory power for epidemiological studies [31].

Experiments have shown that bacterial cells lacking the capacity to produce CPS lost
their virulence in a neonatal rat model of lethal group B Streptococcus infection [32,33].
Similarly, using tilapia challenge assays, CPS-deficient GBS showed attenuated patho-
genesis. And this mutant GBS was also cleared more easily from tilapia spleen tissue
compared to the wild type GBS strain examined [34]. It is now understood that CPS can
suppress the aggregation of the complement factor C3b to inhibit phagocytotic killing by
host cells [35,36]. Sialylated CPS mimics cell surface carbohydrate epitopes and thereby
decreases host immune recognition [37]. GBS is known to regulate CPS production in re-
sponse to environmental signals to adjust the capacity for adherence and host invasion [38].
Further, Barato et al. (2016) used an infection model and showed that mutant GBS cells
(unencapsulated) displayed increased adhesion to the tilapia intestinal epithelium [39].

3.2. CAMP Factor

The CAMP factor (also called co-hemolysin) is encoded by the cfb gene. This is an
extracellular protein of 23.5 kDa [40] that functions to promote GBS pathogenesis [41–43].
In vivo assays have shown that partially purified CAMP factors can lead to death in
rabbits [44]. Briefly, currently, understanding of the pathogenic impacts of CAMP includes
its oligomerization to support forming discrete pores on host membranes and its binding
to glycosylphosphatidylinositol (GPI)-anchored proteins, which can promote cell lysis [45].
Recently, two research groups identified the structure of CAMP, which provided more
details about its perforating function [46,47]. Podbielski et al. (1994) demonstrated that
a full-sized recombinant CAMP-factor exerts co-hemolytic activity [42]. Note that cfb
is widely used as an identification marker for Streptococcus agalactiae due to its exclusive
expression in GBS [40]; however, more recent studies have shown that there are homologs of
cfb in Streptococcus pyogenes, Listeria monocytogenes, Mobiluncus curtisis, and Propionibacterium
acnes [48,49].

3.3. HAase (Hyaluronidase)

Encoded by the cylB gene, GBS promotes its invasion of hosts by secreting HAase
to specifically hydrolyze the host-cell-wall component hyaluronic acid into unsaturated
disaccharide units as the end product. Its degradative enzyme function by cleaving
the glycosidic bond between N-acetyl-β-D-glucosamine and D-glucuronic acid residues
destroys the host’s normal connective tissues and nervous system, which leads to expose
to the host tissue cells to bacterial toxins and further facilitate deep tissue penetration
during infection [50,51]. It is also now clear that GBS uses HAase to counteract host
immune responses [52]. Whereas a host can normally promptly respond by generating
hyaluronan (HA) polymers, from which small fragments ultimately combine with Toll-like
receptors (TLRs) to elicit inflammatory responses, the secreted HAase from GBS degrades
proinflammatory HA fragments down into their component disaccharides, thus blocking
the host’s TLR2/4 signaling responses [52].

3.4. Cel-EIIB

The GBS phosphotransferase system (PTS) system, which is known to regulate bacte-
rial virulence, can phosphorylated sugar substrates, including lactose, fructose, cellobiose,
mannose, and sorbose [53]. Cellobiose-PTS (cel-PTS) is ubiquitously expressed in different
serotypes of GBS, and strains genetically deficient for cel-PTS have decreased colonization
ability and virulence [54]. One study showed that there are different expression levels of the
cel-PTS component cel-EIIB between low and high virulence GBS [55,56]. Xu et al. (2018)
reported that a cel-EIIB knockout strain showed a decreased ability of cellobiose utilization,
as well as significantly reduced biofilm formation ability compared with the wild-type
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GBS strain [57]. It was also notable that knockout of cel-EIIB caused a 20% decrease in the
accumulative mortality of tilapia due to GBS infection; the authors speculated that cel-EIIB
knockout significantly decreased invasion and colonization efficiency [57].

3.5. LuxS/AI-2 Quorum Sensing System

Quorum sensing (QS) refers to a coordinated mode of gene expression regulation that
supports bacterial communication and group activity [58]. The LuxS gene encodes S-ribosyl
homocysteinase, which catalyzes the biosynthesis of the QS signaling molecule known as
autoinducer 2 (AI-2), a furanosyl borate diester. LuxS is conserved among GBS serotypes
and is ubiquitously expressed [59,60]. This 483 bp gene is composed of a conserved active
center (H57, H61, C127) and a Zn2+-binding site (H-T-I-E-H) [61]. Ma et al. have reported
that a mutant strain deficient for LuxS was defective for quorum sensing and displayed
a more than 30-fold reduction in acid resistance compared to the wild-type strain [61].
The cell adherence was also decreased in the mutant strain. A study in tilapia showed a
significantly decreased extent of infection and demonstrated that reintroducing LuxS into
the luxS rescued hypervirulence [61].

3.6. Other Virulence Factors

Besides the aforementioned virulence factors, there are also other virulence factors,
which have not been experimentally confirmed in tilapia GBS infections, but, which have
been widely studied in mammalian GBS infections, including, for example, fibrinogen
receptor (FbsA, FbsB and FbsC) [62], superoxide dismutase (SOD), serine-threonine protein
kinase (STPK), C5a peptidase (scp) [14], serine-rich repeat glycoproteins (srr1 and srr2) [63],
β-hemolysin/cytolysin (cylE) [64], pili [65], proteins Cα (bca) [66], neul [67], and α-like
protein (Alp) [68], among others.

4. Progress Made in GBS Vaccinology
4.1. Inactivated Whole-Cell Vaccine

Formalin-inactivated and heat-killed whole-cell vaccines have been widely used in
studies of pathogenic infection. Pasnik et al. (2005) conducted experiments wherein the
relative percentage of survival (RPS) upon post-vaccination challenge was 49–50% [69,70].
Evans et al. (2004) performed similar assays using an inactivated whole-cell vaccination
approach and challenge methods and recorded an RPS of 80% [71]. Thus, inactivated
whole-cell approaches are useful for inducing immune responses to support basic studies
and can confer protection against GBS infection (Table 1).

4.2. SAGs (S. Agalactiae Ghosts)

So-called S. agalactiae ghosts (SAGs) are empty cell envelopes from dead cells that have
been explored as vaccine candidates owing to the presence of too many innate immunos-
timulatory agonists and their potent ability to activate innate and adaptive immunity
responses. SAGs have been shown to induce cytokine secretion, which, in turn, contributes
to the recruitment of T and B cells to lymph nodes. The recruitment of lymphocytes can
increase the recognition of foreign antigens to elicit strong immune responses [72]. Wang
et al. (2018) reported that immunization of tilapia with SAG elicited significantly higher
resistance against GBS compared to the PBS-immunized controls [73] (Table 1). More-
over, SAG-immunized tilapia has stronger innate immunity (including phagocytic activity,
lysozyme and superoxide dismutase activities) and adaptive immunity, especially IgM
antibody titers. Finally, they found that the SAG-immunized tilapia showed significantly
higher cytokine production (IL-1β, TNF-α, and TGF-β) than control animals.

4.3. Sip (Surface Immunogenic Protein)

There are some issues like inter-batch variability that can make use of inactivated
whole-cell approaches less attractive than using vaccination approaches, which rely on
more narrowly focused antigens (especially subunit vaccines) [74,75].
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Sip is encoded by a gene in the GBS chromosome; this cell surface protein has been
demonstrated as highly conserved; it is present in all GBS serotypes [76,77]. Given this
broad distribution, it is unsurprising that Sip has been explored as a candidate for de-
veloping a subunit vaccine against GBS infection [78,79]. A 2014 study explored the
immunogenicity of a Sip DNA vaccine, reporting an RPS value of 57% [79]; this was
considered to represent relative effective immunoprotection. He et al. (2014) evaluated
the truncated surface immunogenic protein (tSip) subunit vaccine and reported an RPS of
90% [78] (Table 1).

4.4. Surface Antigen Metabolic Enzymes

There have been attempts to assess the immunogenicity of enzymes present at the GBS
surface, including phosphoglycerate kinase (PGK) [80], ornithine carbamoyl-transferase
(OCT) [80], and the GapA subunit of glyceraldehyde-3-phosphate dehydrogenase of
GBS [75,80]. PGK is responsible for its virulence and immunoprotective functions [81].
Using the recombinant PGK protein, Wang et al. (2014) found that PGK (as a subunit
vaccine) against GBS infection of tilapia gave an RPS value of 82.4% [80]. The same study
investigated OCT, which catalyzes the production of citrulline and phosphate from or-
nithine and carbamoyl phosphate substrates. Using recombinant OCT protein as a vaccine
subunit gave an RPS value of 58.8%. Another study examining GapA as a subunit vaccine
showed an RPS value of 63.3% [75] (Table 1).

4.5. Fibrinogen-Binding Protein A, α-Enolase, and GroEL

FbsA and enolase are adhesion proteins on the surface of bacteria. Yi et al. (2014)
assessed potential immune protection against GBS infection upon vaccination with FbsA
and Enolase, reporting RPS values of 40.63% and 62.50%, respectively [82]. The above
data stated that the FbsA and enolase are multifaceted functions, including activating the
host’s innate immune responses and relevant antibody responses and immunoprotection
function. Thus, both of them can be efficient subunit vaccine candidates (Table 1).

GroEL is a heat shock protein (Hsp) of the chaperonin family of molecular chaperones;
it is ubiquitously expressed in many bacteria [83]. This highly conserved chaperone
functions in the proper folding of proteins. Li et al. (2019) reported that immunization of
tilapia with GroEL (delivered with FC or FIC adjuvants) conferred protection against GBS,
with an RPS value of 68.61% [74]. At the same time, which can increase antibody titers by
promoting lymphocyte proliferation [74,84] (Table 1).

Table 1. Inactivated whole-cell vaccines and subunit vaccines explored for controlling tilapia streptococcosis.

Vaccine RPS Adjuvant Vaccination Challenge Year Reference

Inactivated 49–80% Without Intraperitoneal Intraperitoneal 2004–2005 [69–71]
Inactivated 97% Without/feed-based adjuvant Oral Intraperitoneal 2004 [71]

Sip 57% – Intragastrical Intraperitoneal 2014 [79]
tSip 90% FIA Intraperitoneal Intraperitoneal 2014 [78]
PGK 82.4% Montanide ISA 763 AVG Intraperitoneal Intraperitoneal 2014 [80]
OCT 58.8% Montanide ISA 763 AVG Intraperitoneal Intraperitoneal 2014 [80]

GapA 63.3% FCA + FIA Intraperitoneal Intraperitoneal 2016 [75]
GapA 45.6% Montanide ISA 763 AVG Intraperitoneal Intraperitoneal 2016 [75]
FbsA 40.63% Adjuvant Intraperitoneal Intraperitoneal 2014 [82]

Enolase 62.50% Adjuvant Intraperitoneal Intraperitoneal 2014 [82]
LIC 70% Without Feed-based Intraperitoneally 2014 [85]

GroEL 68.61% FCA + FIA Subcutaneous Intraperitoneally 2019 [74]
CWSAP 465 77.5% FIA Intraperitoneal Intraperitoneal 2016 [86]
CWSAP1035 72.5% FIA Intraperitoneal Intraperitoneal 2016 [86]

ISP 48.61% FCA + FIA Intraperitoneal Intraperitoneal 2016 [87]
SAG 86.67% – Intraperitoneal Intraperitoneal 2018 [73]

Notes: Inactivated—inactivated whole-cell vaccine, RPS—relative percentage of survival, FIA—Freund’s incomplete adjuvant, FCA—
Freund’s complete adjuvant,—DNA vaccine without adjuvant, without—without adjuvant, LIC—cell wall surface anchor family protein,
CWSAP—cell wall surface anchor family protein, ISP—immunogenic secreted protein.
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4.6. Alternatives to Vaccines for Controlling Tilapia Streptococcosis

There has been research into other methods for managing, preventing, and treating
tilapia streptococcosis, including intestinal microbiota modifier [88,89] and bacteriophages.
Probiotics investigated to date include Bacillus subtilis, Bacillus licheniformis, and Lactobacillus
rhamnosus. Liu et al. (2017) [90] reported that Bacillus subtilis could enhance tilapia growth,
digestive enzyme activities, innate immune responses, and GBS resistance. Abarike et al.
(2018) [91] reported that Bacillus licheniformis could also promote tilapia growth, immune
responses, and GBS resistance. Xia et al. (2018) [92] showed supplementation with Lac-
tobacillus rhamnosus increased tilapia growth, intestinal microbiota, immune responses,
and GBS resistance. As for bacteriophages, Luo et al. (2018) [93] showed that tilapia
treated with the bacteriophage HN48 had about 60% greater survival than control animals.
Notably, there have been additional proposals about how to control GBS infections and
tilapia streptococcosis, including, for example, the use of Chinese medicinal herbs [94] and
alteration of water temperature [65,95], among others.

5. Conclusions and Prospects

This review has considered research progress into tilapia streptococcosis regarding
etiology, pathology, epidemiology, and prospects for control, including immunology-based
approaches. As genomics, transcriptomics, proteomics, metabonomics, and bioinformatics
continue to mature, it is clear that ever-more-powerful tools can be applied to identify and
better understand the biological basis and control prospects for GBS infections of many
animals generally and of tilapia streptococcosis in particular [5,12,96]. At the same time,
an increasing number of vaccine candidates and adjuvant (including Freund’s adjuvant,
Montanide adjuvant, aluminum-based adjuvants and others) are being explored, and this
is a promising area for control of disease outbreaks in aquaculture. There remain virulence
factors of GBS isolated from tilapia, which are still not fully understood, so there is a
knowledge gap for active research teams to fill. In the near future, it seems likely that
antibiotic treatment will remain the main control approach; however, in the long run,
as scientific research prompts breakthroughs in understanding and developing effective
technologies, there may be some innovative treatments and control measures like vaccines
plus probiotic and immune enhancers.
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