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Abstract

The field of lung nodule detection and cancer prediction has been rapidly developing with the 

support of large public data archives. Previous studies have largely focused cross-sectional (single) 

CT data. Herein, we consider longitudinal data. The Long Short-Term Memory (LSTM) model 

addresses learning with regularly spaced time points (i.e., equal temporal intervals). However, 

clinical imaging follows patient needs with often heterogeneous, irregular acquisitions. To model 

both regular and irregular longitudinal samples, we generalize the LSTM model with the 

Distanced LSTM (DLSTM) for temporally varied acquisitions. The DLSTM includes a Temporal 

Emphasis Model (TEM) that enables learning across regularly and irregularly sampled intervals. 

Briefly, (1) the temporal intervals between longitudinal scans are modeled explicitly, (2) 

temporally adjustable forget and input gates are introduced for irregular temporal sampling; and 

(3) the latest longitudinal scan has an additional emphasis term. We evaluate the DLSTM 

framework in three datasets including simulated data, 1794 National Lung Screening Trial (NLST) 

scans, and 1420 clinically acquired data with heterogeneous and irregular temporal accession. The 

experiments on the first two datasets demonstrate that our method achieves competitive 

performance on both simulated and regularly sampled datasets (e.g. improve LSTM from 0.6785 

to 0.7085 on F1 score in NLST). In external validation of clinically and irregularly acquired data, 

the benchmarks achieved 0.8350 (CNN feature) and 0.8380 (LSTM) on area under the ROC curve 

(AUC) score, while the proposed DLSTM achieves 0.8905.
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1 Introduction

Early detection of lung cancer from clinically acquired computed tomography (CT) scans 

are essential for lung cancer diagnosis [1]. Lung cancer detection is a binary classification 

(cancer or non-cancer) task from the machine learning perspective. Convolutional neural 
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network (CNN) methods have been widely used in lung cancer detection, which typically 

consist of two steps: nodule detection and classification. Nodule detection detects the 

pulmonary nodules from a CT scan with coordinates and region of interest (e.g., [2]), while 

the classification assigns the nodules to be either benign or malignant categories [3], and the 

whole CT scan is classified as cancer when containing at least one malignant nodule. One 

prevalent method was proposed by Liao et al. [3], which won the Kaggle DSB2017 

challenge. In this method, the pipeline was deployed on detecting top five confidence nodule 

regions to classify whole CT scan. The Liao et al. network focuses on a single CT scan, 

rather than multiple longitudinal scans.

In clinical practice, longitudinal CT scans may contain temporal relevant diagnostic 

information. To learn from the longitudinal scans, recurrent neural networks (RNN) have 

been introduced to medical image analysis when longitudinal (sequential) imaging data are 

available (e.g., [4]). Long Short-Term Memory (LSTM) [5] is one of the most prevalent 

variants of RNN, which is capable of learning both long-term and short-term dependencies 

between features using three gates (i.e., forget, input, and output gates). Many variants of 

LSTM have been proposed [6–8]. For instance, convolutional LSTM [6] is designed to deal 

with spatial temporal variations in images [9, 10].

In canonical LSTM, the temporal intervals between consecutive scans are equal. However, 

this rarely occurs in clinical practice. Temporal intervals have been modeled in LSTM for 

recommendation system in finance [8] and abnormality detection on 2D chest X-ray [11]. 

However, no previous studies have been conducted to model global temporal variations. The 

previous methods [8, 11] modeled the relative local time intervals between consecutive 

scans. However, for lung cancer detection, the last scan is typically the most informative. 

Therefore, we propose a new Temporal Emphasis Model (TEM) to model the global time 

interval between previous time points to the last scan as a global multiplicative function to 

input gate and forget gate, rather than a new gate as [8] or an additive term as [11].

Our contributions are: (1) this is the first study that models the time distance from last point 

for LSTM in lung cancer detection; (2) the novel DLSTM framework is proposed to model 

the temporal distance with adaptive forget gate and input gate; (3) a toy dataset called 

“Tumor-CIFAR” is released to simulate dummy benign and malignant cancer on natural 

images. 1794 subjects from the widely used National Lung Screening Trial (NLST) [12] and 

1420 subjects from two institutional cohorts are used to evaluate the methods.

2 Theory and Method

Distanced LSTM -

LSTM is the most widely used RNN networks in classification or prediction upon sequential 

data. Standard LSTM employ three gates (i.e., forget gate ft, input gate it, and output gate ot) 

to maintain internal states (i.e., hidden state Ht and cell state Ct). The forget gate controls the 

amount of information used for the current state from the previous time steps. To incorporate 

the “distance attribute” to LSTM, we multiply a Temporal Emphasis Model (TEM) D(dt, a, 

c) as a multiplicative function to the forget gate and the input gate with learnable parameters 

(Fig. 1).
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Briefly, our DLSTM is defined by following the terms and variables in [6]:

it = D dt, a, c ⋅ σ W xi * Xt + W ℎi * Ht − 1 + W ci ○ Ct − 1 + bi
ft = D dt − 1, a, c ⋅ σ W xf * Xt + W ℎf * Ht − 1 + W cf ○ Ct − 1 + bf
Ct = ft ○ Ct − 1 + it ○ tanℎ W xc * Xt + W ℎc * Ht − 1 + bi
ot = σ W xo * Xt + W ℎo * Ht − 1 + W co ○ Ct + bo
Ht = ot ○ tanℎ Ct

(1)

where xt is the input data of time point t, dt is the global time distance from any xt to the 

latest scan, W and b are the learnable parameters, and “*” and “○” denotes the convolution 

operator and Hadamard product respectively. Different from canonical LSTM, the TEM 

function is introduced in the proposed DLSTM as

D dt, a, c = a ⋅ e−c ⋅ dt (2)

where a and c are positive learnable parameters. Different from tLSTM [11], which 

introduced an additive term to model local relative time interval between scans, the proposed 

DLSTM introduces the TEM function as a global multiplicative function to model the time 

interval (distance) from each scan to the last scan. Using TEM in Eq. (1), both the forget 

gate ft and input gate it are weakened if the input scan is far from the last scan. Note the 

“LSTM” represents the convolutional version in this paper.

3 Experiment Design and Results

We include both simulation (Tumor-CIFAR) and empirical validations (NLST and clinical 

data from two in-house projects, see Table 1) to validate the baseline methods and the 

proposed method. Firstly, to test if our algorithm can handle the time-interval distances 

effectively, we introduce the synthetic dataset: Tumor-CIFAR.

In Tumor-CIFAR, we show the test results with a training/validation/test split (Fig. 2). We 

perform three different validations on lung datasets: (1) cross-validation on NLST with 

longitudinal data (Table 2); (2) cross-validation on clinical data with both cross-sectional 

and longitudinal scans (Table 3); and (3) external-validation on longitudinal scans (train and 

validation on NLST and test result on clinical data, Table 4).

3.1 Simulation: Tumor-CIFAR

Data.—Based on [13], the growth speed of malignant nodules is approximate three times 

faster compared with benign ones. To incorporate temporal variations in the simulation, we 

add dummy nodules on CIFAR10 [14] with different growth rate for benign and malignant 

nodules (malignant nodules grow three times faster than benign ones).

Two cases are simulated: image samples with the same “interval distribution” (Fig. 2a), or 

with the same nodule “size distribution” (Fig. 2b). The same interval distribution indicates 

intervals follow the same Gaussian distribution. The same nodule size distribution represents 

the growth rate of nodules follow the same Gaussian distribution (simulation code, detail 

descriptions and more image examples are publicly available at https://github.com/

MASILab/tumor-cifar).
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There are 5,000 samples in the training set and 1,000 samples in the testing set. Cancer 

prevalence was 50% in each dataset. Each sample is simulated with five different time 

points. The training/validation/test split is 40k/10k/10k.

Experimental Design.—The base network structure (CNN in Fig. 1) is employed from 

the official PyTorch 0.41 [15] example for MNIST (we call it “ToyNet”). The ToyNet is 

composed of two convolutional layers (the second with a 2D dropout) and followed by two 

fully connected layers along with a 1D dropout in the middle. “LSTM” and “DLSTM” in 

Fig. 2 represents a 2D convolutional LSTM component and 2D convolutional of our 

proposed DLSTM component is stacked in the beginning of the “ToyNet”, respectively. The 

maximum training epoch number is 100. The initial learning rate set to 0.01 and is 

multiplied by 0.4 at 50th, 70th and 80th epoch.

Results.—For the same time interval distribution (Fig. 2a), the LSTM achieves higher 

performance compared with baseline CNN method, while the DLSTM works even better. 

This task is relatively easy since the malignant nodules clearly grow faster compared benign 

nodules. However, if we control the sampling strategy to guarantee the same nodule size for 

corresponding samples (Fig. 2b), the task becomes challenging if the time intervals are not 

modeled in the network design since the nodules are now having the same size. In this case, 

the CNN and LSTM only achieve 0.5 AUC values, while our DLSTM is able to almost 

perfectly capture the temporal variations with an AUC value of 0.995.

3.2 Empirical Validation on CT

Data.—The National Lung Screening Trial (NLST) [12] is a large-scale randomized 

controlled trial for early diagnosis of lung cancer study with low-dose CT screening exams 

publicly available. We obtain a subset (1794 subjects) from NLST, which contains all 

longitudinal scans with “follow-up confirmed lung cancer”, as well as a random subset of all 

“follow-up confirmed not lung cancer” scans (Table 1). One in-house dataset combines two 

clinical lung sets Molecular Characterization Laboratories (MCL, https://mcl.nci.nih.gov) 

and Vanderbilt Lung Screening Program (VLSP, https://www.vumc.org/radiology/lung) 

which is also evaluated by our algorithm. These data are used in de-identified form under 

internal review board supervision.

Experimental Design.—The DLSTM can be trained in an end-to-end network 

(simulation experiments in Sect. 3.1) or as lightweight post-processing manner. In this 

section, we evaluate the proposed DLSTM as a post processing network for the imaging 

features extracted from Liao et al. [3]. We compare the DLSTM with a recently proposed 

benchmark tLSTM [11], which models the relative time interval as an additive term. Five 

highest risk regions (possible nodules) for each scan are detected by [3], and the feature 

dimension for each region is 64, then the scan-level feature is achieved by concatenating 

region features as 5 × 64 inputs. For a fair comparison, the same features are provided to the 

networks Multi-channel CNN (MC-CNN), LSTM, tLSTM, and DLSTM, with 1D 

convolutional layer of 5 kernel size. MC-CNN concatenates multi-scan features in the 

“channel” dimension. The maximum training epoch number is 100, the initial learning rate 

is set to 0.01 and multiplied by 0.4 at the 50th, 70th, and 80th epoch. Since most of the 
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longitudinal lung CT scans contain two time points, we evaluate the MC-CNN, LSTM, 

tLSTM and DLSTM with two time points (“2 steps”) in this study (the last two points are 

picked if the patient with more than two scans).

The “Ori CNN” in Tables 2, 3 and 4 represents the results obtained by open source code and 

trained model of [3]. If there is on special explanation, our results are reported at subject-

level rather than scan-level, and the “Ori CNN” reports the performance of the latest scan of 

patients.

Preprocessing.—Our preprocessing follows Liao et al. [3]. We resample the 3D volume 

to 1 × 1 × 1 mm isotropic resolution. The lung CT scan is segmented using (https://

github.com/lfz/DSB2017) from the original CT volume and the non-lung regions are zero-

padded to Hounsfield unit score of 170. Then, the 3D volumes are resized to 128 × 128 × 

128 to use pre-trained model for extracting image features.

Results: Cross-validation on Longitudinal Scans.—Table 2 shows the five-fold 

cross-validation results on 1794 longitudinal subjects from the NLST dataset. All the 

training and validation data are longitudinal (with “2 steps”).

Results: Cross-validation on Combining Cross-sectional and Longitudinal 
Scans.—More than half of the patients only have cross-sectional CT (single time point) 

scans from clinical projects (see Table 1). Therefore, we evaluate the proposed method as 

well as the baseline methods on the entire clinical cohorts with both longitudinal and cross-

sectional testing with cross-validation on all 1420 subjects by duplicating scans for subjects 

with only one scan to 2 steps. Table 3 indicates the five-fold cross-validation results on the 

clinical data. As for tLSTM [11] and the proposed DLSTM, we set the time interval and 

time distance to be zero for cross-sectional scans, respectively.

Results: External-validation on Longitudinal Scans.—We directly apply the trained 

models from NLST to the in-house subjects as external validation, without any further 

parameter tuning (Table 4). Note that the longitudinal data are regularly sampled in NLST 

while the clinical datasets are irregularly acquired. The final predicted cancer probability is 

the average of five models trained on five-folds of NLST. The “Ori CNN (all scans)” in 

Table 4 represents the scan-level results of all scans from longitudinal subjects.

Analyses: In both public dataset NLST and our private datasets, the proposed DLSTM 

achieves competitive results in accuracy, AUC, F1, recall and precision. For example, the 

proposed DLSTM improves the conventional LSTM on F1 score from 0.6785 to 0.7085 

(Table 2, NLST dataset), and from 0.7417 to 0.7611 (Table 3, clinical datasets). External 

validation experiments indicate the generalization ability of the proposed method.

In the external validation, (1) the latest scans achieve higher performance compare with 

longitudinal scans, which indicates that emphasis on latest longitudinal scan in our DLSTM 

is meaningful. (2) the algorithms with time information (tLSTM and the proposed DLSTM) 

outperform those methods without temporal emphasis when the test dataset is irregularly 

sampled.
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4 Conclusion and Discussion

In this paper, we propose a novel DLSTM method to model the global temporal intervals 

between longitudinal CT scans for lung cancer detection. Our method has been validated 

using both simulations on Tumor-CIFAR, empirical validations on 1794 NLST and 1420 

clinically subjects. From cross-validation and external-validation, the proposed DLSTM 

method achieves generally superior performance compared with baseline methods. 

Meanwhile, the Tumor-CIFAR dataset is publicly available.
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Fig. 1. 
The framework of DLSTM (three “steps” in the example). xt is the input data at time point t, 
and dt is the time distance from the time point t to the latest time point. “F” represents the 

learnable DLSTM component (convolutional version in this paper). Ht and Ct are the hidden 

state and cell state, respectively. The input data, xt, could be 1D, 2D, or 3D.
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Fig. 2. 
The receiver operating characteristic (ROC) curves of Tumor-CIFAR. The left panels 

simulate the situation that the images are sampled with the same interval distribution, while 

the right panels are sampled with the same size distribution. The upper panels show the 

examples of images in Tumor-CIFAR. The noise (white and black dots) are added, while the 

dummy nodules are shown as white blobs (some are indicated by red arrows). The lower 

panels show the Area Under the Curve of ROC (AUC) values of different methods.
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Table 1.

Demographic distribution in our experiments

Lung data source NLST MCL VLSP

Total subject 1794 567 853

Longitudinal subject 1794 105 370

Cancer frequency (%) 40.35 68.57 2.00

Gender (male, %) 59.59 58.92 54.87

Mach Learn Med Imaging. Author manuscript; available in PMC 2021 May 25.
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Table 2.

Experimental results on NLST dataset (%, average (std) of cross-validation)

Method Accuracy AUC F1 Recall Precision

Ori CNN [3] 71.94(2.07) 74.18(2.11) 52.18(2.83) 38.07(2.63) 83.24(4.24)

MC-CNN 73.26(3.10) 77.96(0.98) 59.39(3.70) 47.91(4.87) 78.62(3.09)

LSTM [5, 6] 77.05(1.46) 80.84(1.20) 67.85(2.41) 59.92(4.43) 78.68(3.32)

tLSTM [11] 77.37(2.97) 80.80(1.45) 67.47(3.58) 58.65(5.12) 79.81(3.34)

DLSTM(ours) 78.96(1.57) 82.55(1.31) 70.85(1.82) 61.61(2.01) 83.38(4.34)

*
The AUC represents Area Under the Curve of receiver operating characteristic, and best result is shown in bold (also used in the following).
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Table 3.

Experimental results on clinical datasets (%, average (std) of cross-validation)

Method Accuracy AUC F1 Recall Precision

Ori CNN [3] 84.80(2.43) 89.00(1.65) 70.29(4.26) 63.46(3.51) 78.83(5.70)

MC-CNN 84.51(1.29) 90.85(1.13) 70.55(1.29) 62.85(1.53) 80.84(4.42)

LSTM [5, 6] 86.27(1.29) 90.27(1.15) 74.17(2.47) 69.73(2.62) 79.56(5.69)

tLSTM [11] 86.42(1.48) 91.06(1.48) 74.36(1.99) 68.55(1.55) 81.49(5.28)

DLSTM(ours) 86.97(1.45) 91.17(1.53) 76.11(2.68) 72.71(2.38) 80.04(5.18)
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Table 4.

Experimental results on cross-dataset test (external-validation)

Method Accuracy AUC F1 Recall Precision

Train and Test both on longitudinal subjects

Ori CNN (all scans) 0.8342 0.8350 0.5253 0.4577 0.6266

Ori CNN [3] 0.8758 0.8510 0.5931 0.5513 0.6418

MC-CNN 0.8589 0.7654 0.5621 0.5513 0.5733

LSTM [5, 6] 0.8589 0.8380 0.5732 0.5769 0.5692

tLSTM [11] 0.8673 0.8869 0.6631 0.7949 0.5688

DLSTM(ours) 0.8863 0.8905 0.6824 0.7436 0.6304
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