
1.  Introduction
The association between short- and long-term exposure to ambient air pollution as pollution within the out-
door breathable air, especially particulate matter (PM), and Cardiovascular diseases (CVD) morbidity and 
mortality have been investigated in many studies (Atkinson et al., 2013; Beelen et al., 2008; Bell et al., 2008; 
Brook et al., 2004; Dominici et al., 2006; Grahame & Schlesinger, 2010; Le Tertre et al., 2002; Lim et al., 2014; 
Luo et al., 2016; Meister et al., 2012; Pope et al., 2004; Qiu et al., 2017; Stockfelt et al., 2017; Sun et al., 2010; 
Sunyer et  al.,  2003; Zhang et  al.,  2014). The World Health Organization (WHO) defines cardiovascular 
diseases (CVD) as a group of disorders of the heart and blood vessels and includes coronary heart disease, 
cerebrovascular disease, peripheral arterial disease, rheumatic heart disease, congenital heart disease, deep 
vein thrombosis and pulmonary embolism (WHO, 2019). CVD was the leading cause of death with over 17.9 
million premature deaths in 2016 (Hadley et al., 2018). In a relatively recent study of Global Burden of Dis-
eases, it was estimated that about 4.7 million deaths in 2015 were attributable to ambient particle mass with 
a diameter less than 2.5 µm (PM2.5; Cohen et al., 2017), mainly through CVD (Thurston & Newman, 2018).

To manage the effects of multiple air pollutants on CVD health outcomes, healthcare policies and interven-
tion efforts need to be informed of where in space these associative effects are particularly more pronounced 
to devise place-specific intervention approaches, with a full view of the environmental, demographic and 
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social-economic conditions prevailing in the specific places. This would subsequently enable effective pol-
lutant-specific measures to be designed and implemented for different areas.

In Sweden, whereas some scholars have studied air pollution and CVD, they have only considered selected 
cities. For example, Le Tertre et al. (2002) and Sunyer et al. (2003) observed significant short-term effects 
of air pollution on CVD admissions in eight European cities, including Stockholm. Stockfelt et al. (2017) 
observed long-term effects of total and source-specific particulate matter (both <10 µm in diameter (PM10) 
and PM2.5) air pollution on CVD incidence in Gothenburg city, calling for efforts to reduce air pollution 
if its negative health effects are to be minimized. Additionally, Segersson et al. (2017) studied the health 
impacts of source-specific air pollution (PM10, PM2.5, and Black Carbon (BC)) in Stockholm, Gothenburg 
and Umea cities. They concluded that the majority of the observed premature deaths were related to local 
emissions and that road traffic and residential wood combustion had the largest impact.

To study the effect of these local emissions on CVD hospitalization requires the use of local spatial regres-
sion models. However, such local studies have not yet been done in Sweden. So, whereas the effect of dif-
ferent air pollutants might be known for some selected cities (mainly Stockholm, Umea and Gothenburg), 
the multi-pollutant associations with CVD across the whole of Sweden remain to be studied. Moreover, 
single-city analyses are prone to publication bias (R. Chen et al., 2017), where authors choose to publish 
only cities with positive associations.

The main objective of this study, therefore, was to analyze multi-pollutant (PM10, PM2.5, BC, Sulfur oxides 
(SOx), and Carbon monoxide (CO)) associations with CVD and their spatial variation across Sweden for 
the years 2005–2010, using Geographically Weighted Poisson Regression (GWPR). This was done while ac-
counting for neighborhood deprivation, using the computed Neighborhood Deprivation Index (NDI) from 
the four socioeconomic factors low education, unemployment, low income, and recipient of social welfare 
(Winkleby et  al.,  2007), an index that is independently associated with CVD (Lawlor et  al.,  2005; X. Li 
et al., 2019; Sundquist, Malmström, & Johansson, 2004). The advantage with the GW(P)R framework lies in 
its robustness to the effects of multicollinearity (Fotheringham & Oshan, 2016), a condition common with 
multi-pollutant data (Stockfelt et al., 2017). Our goal was thus to identify how the strength of the association 
between CVD hospitalization and each of the ambient air pollution variables varies across Sweden while 
accounting for underlying socioeconomic factors through NDI. Areas of particularly high associations pro-
vide opportunities for further research to pinpoint the possible causality factors as well as aiding targeted 
sensitization, intervention and control measures.

2.  Literature Review
The pathophysiological pathways of CVD as triggered by particulate matter (PM) air pollution were investi-
gated by Pope et al. (2004), identifying pulmonary and systemic inflammation, accelerated atherosclerosis, 
and altered cardiac autonomic function as possible mechanisms (Vidale & Campana, 2018).

Whereas most studies have almost exclusively concentrated on PM air pollution, especially PM10 and 
PM2.5 (Bell et al., 2008; Cohen et al., 2017; Dominici et al., 2006; Lim et al., 2014; Meister et al., 2012; Pope 
et al., 2004; Qiu et al., 2017; Segersson et al., 2017; Stockfelt et al., 2017; Zhang et al., 2014), others have 
also studied other gaseous air pollutants like nitrogen oxides (NOx), CO, sulfur dioxide (SO2), ozone (O3) 
and BC (Atkinson et al., 2013; Beelen et al., 2008; Grahame & Schlesinger, 2010; Le Tertre et al., 2002; Sun 
et al., 2010; Sunyer et al., 2003) with an assumption that they trigger the same pathways in CVD as triggered 
by particulate matter. For most of these studies, their motivating question could be generally summarized 
as: “in my study area, is ambient air pollution significantly associated with CVD morbidity and/or mortality; 
if so, to what extent?” Consequently, most of these studies have been limited to the boundaries of single 
cities. Other studies have considered multiple cities but only for comparison reasons (Segersson et al., 2017; 
Zhang et al., 2014) to evaluate where the effects of air pollution are contributing more to CVD health out-
comes. However, such studies ignore the fact that even within cities, the association between air pollution 
and CVD can be and is often heterogeneous (Luo et al., 2016).

In a recent paper detailing clinical handling of the CVD-air pollution challenge, Hadley et al. (2018) high-
lighted the importance of geospatial maps in identifying areas of elevated CVD risk from ambient air 
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pollution to aid targeted intervention at individual and population level. Their recommendations call for lo-
calized spatial regression models to help distil the heterogeneity within the relative risk, but also to link the 
different risk factors to CVD outcomes. Among other risk factors, neighborhood deprivation has previously 
been shown to independently predict heart disease morbidity (Sundquist, Malmström, & Johansson, 2004). 
Using a Neighborhood Deprivation Index (NDI), Winkleby et al. (2007) found that age-adjusted Coronary 
Heart Disease (CHD) incidence and case fatality from CHD was about twice as high for persons in high 
versus low deprivation neighborhoods in Sweden. Similarly, having accounted for age and other individ-
ual-level factors, Lawlor et al. (2005) found that the odds for CHD were 27% higher for women in British 
wards with higher deprivation scores than the median score. More recently, X. Li et al. (2019), showed after 
adjusting for potential confounders a significant and still retained association between neighborhood dep-
rivation and heart failure among patients with diabetes mellitus in Sweden.

To address spatial heterogeneity, different studies have used different methods that are subsequently dis-
cussed. For example, Alexeeff et al. (2018) used Cox proportional hazard regression to study the association 
between the incidence of CVD and long-term exposure to transport-related air pollution (TRAP), including 
nitrogen dioxide (NO2), nitric oxide (NO), and BC, in Oakland California. Their results show that street-lev-
el variation in TRAP exposure within urban neighborhoods significantly contributes to differences in risk 
of CVD events. However, as with most studies using Cox proportional hazard regression (Jerrett et al., 2017; 
Qiu et al., 2017; Stockfelt et al.,  2017), they did not explicitly account for heterogeneity in the obtained 
association. Failure to account for spatial heterogeneity and spatial autocorrelation, a phenomenon where 
similar values tend to be near each other, has been shown to lead to underestimation of the uncertainty 
associated with the effects of air pollution on health outcomes (Burnett et al., 2001).

Luo et al. (2016) used a mixed Cox proportional hazard model to analyze the spatial heterogeneity of the 
effects of NO2 on Cardiovascular mortality in the 16 districts of Beijing. They applied conditional logistic 
regression to evaluate the district-specific effects of NO2 on Cardiovascular mortality. Their results showed 
independent and spatially varied effects of NO2 on CVD mortalities, providing actionable evidence of dis-
tricts with higher risk. They, however, also did not explicitly handle the spatial effects of spatial autocorre-
lation and spatial heterogeneity within the NO2 and CVD data. Blangiardo et al. (2016) used a two-stage 
Bayesian model, first to estimate the concentration of NO2 from sparse monitoring stations to spatial units 
(used by the Clinical Commissioning Group - CCG) across England, and second to investigate the effect of 
NO2 on chronic respiratory disease drug prescription rates using integrated nested Laplace approximations. 
However, given the nature of the prescription data used (aggregated at CCG level), they could not make 
inference at the individual level or link the data with hospital admissions. Additionally, the use of Bayesi-
an-based methods is extremely computer intensive resulting in lengthy processing times for large data sets.

Regarding methods that explicitly address spatial heterogeneity, most of them fall within the category of 
Geographically Weighted Regression (GWR), with slight modifications to account for the nature of the 
data being modeled (Gomes et al., 2017). For example, whereas both GWR and Geographically Weighted 
Poisson Regression (GWPR) can be used for modeling of spatially heterogeneous processes (Fothering-
ham, Brunsdon, & Charlton, 2015; Nakaya, 2015), they are different modeling frameworks–GWR assumes 
Gaussian outcomes (Fotheringham, Crespo, & Yao,  2002) and GWPR assumes Poisson counts (Nakaya 
et al., 2005). Poisson counts are more appropriate for modeling small area disease rates, especially where 
the local expected number is low (Nakaya et al., 2005), as was with our case. For data with overdispersion, 
Geographically Weighted Negative Binomial Regression (GWNBR) model is sometimes preferred (da Silva 
& Rodrigues, 2014). These models have been used in many studies and compare differently.

By using scan statistics and GWR, Lim et al. (2014) investigated the correlation between PM10 and CVD 
mortality (daily counts of death from 2008 to 2010) in the Seoul metropolitan area, South Korea. They 
concluded that CVD mortality was related to the concentration of PM10 and that this relationship was 
heterogeneous across their study area. Since count data was used in their study, we argue that GWPR would 
have been a more appropriate model. By comparing the Root Means Square Error (RMSE) from GWPR 
and global negative binomial (GNB) models, Z. Li et al. (2013) found that GWPR performed better than 
the GNB model since it had a lower RMSE. Gomes et al.  (2017) also studied the performances of GNB, 
GWPR and GWNBR models. They concluded that GWPR and GWNBR models performed better than the 
GNB model. They also asserted that GWNBR had performed better than GWPR, judging by the Akaike 
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Information Criterion (AIC) metric. However, in their study, GWPR outperformed GWNBR when judged 
using the RMSE metric as used by Z. Li et al. (2013). Additionally, the use of GWNBR resulted in a wider 
bandwidth, hence banding effects were observed in the obtained coefficient maps (more homogeneous). 
Given that our primary concern was spatial heterogeneity of the associations, between the two (GWNBR 
and GWPR), GWPR was more tailored for our specific problem.

GWPR has been used in analyzing local variations in associations between health outcomes (disease counts, 
incidence rates, mortality risks, etc.) and a set of environmental and socio-economic characteristics (Alves 
et al., 2016; Feuillet et al., 2015; Nakaya et al., 2005). Specific to CVD, GWPR was used by V. Y.-J. Chen 
et al. (2010) to examine the non-stationary effects of extreme cold on mortality in Taiwan. By studying these 
non-homogeneous spatial patterns between disease outcomes and a set of variables, these studies provide 
actionable tools in managing diseases and increase our understanding of how geography influences these 
associations.

In Sweden, however, such local spatial regression analyses for CVD and ambient air pollution at a coun-
trywide level have hitherto not been studied. Moreover, CVD is the highest cause of death in Sweden with 
about 91,000 deaths in 2015 (Brooke et al., 2017). The prevalence of CVD in 2015 was 1,942,532 cases in 
2015; approximately 20% of the 9.747 million Swedish population in 2015 (Wilkins et al., 2017). Where-
as some studies have been done on CVD and air pollution in Sweden (Le Tertre et  al.,  2002; Segersson 
et  al.,  2017; Stockfelt et  al.,  2017; Sunyer et  al.,  2003), they only considered selected cities (Stockholm, 
Gothenburg, and Umea), and so the multi-pollutant effect of air pollution on CVD and the spatial variation 
of such effects across Sweden remains to be studied. We aimed to adopt a Poisson modeling framework to 
analyze the association between PM10, PM2.5, BC, CO, and SOx, and CVD hospitalization while accounting 
for neighborhood deprivation, and the spatial variation of this association across the whole Sweden.

3.  Materials and Methods
3.1.  Scale of Modeling

All modeling and analysis were carried out at (Small Area for Market Statistics (SAMS) level, which is a 
census regional division, defined by Statistics Sweden (http://www.scb.se), based on homogenous types of 
buildings so that they approximately contain 1,000 residents. The admissions at the individual level and 
emission values for each pollutant were aggregated to these SAMS blocks. For SAMS whose underlying 
population was less than 50 persons, they were excluded from the analysis as their inclusion would lead to 
unstable statistical estimates (Sundquist, Winkleby, et al., 2004; Sundquist & Yang, 2007). This reduced the 
original number of SAMS from the original 9194 to 8419.

3.2.  Data Acquisition

3.2.1.  Cardiovascular Data

The CVD data used in this study are based on Swedish hospital records of CVD admission between January 
1, 2005 and December 31, 2010. According to the World Health Organization's International Classification 
of Diseases (ICD-10), the following CVDs were considered: Coronary heart disease (CHD) codes including 
I20, I21, I22, I23, I24, and I25; Ischemic stroke codes including I63 (excluding I63.6), I65, I66, I67.2, I67.8, 
G45, and G46 (G46 was only included when it was in combination with another diagnosis), and atheroscle-
rotic and aortic disease codes including I70, I71, I72, I73 (excluding I73.0, I73.1), I74, and I77.1.

Hospital admissions including date of admission were obtained from the Swedish National Board of Health 
and Welfare and comprised 538,573 hospital admissions across Sweden for the years 2005–2010 as shown in 
Figure 1. From National Population Registers, the approximate location of each patient within 100 m was 
also obtained, providing a basis for spatial aggregations.

3.2.2.  Emission Data

The emission data (hereinafter used interchangeably with “air pollution”) used in this research was based on 
the Swedish Environmental Emissions Data (SMED) and consists of particulate matter (PM10 and PM2.5), 
Black Carbon, Sulfur Oxides and Carbon monoxide emission records across Sweden, in a 1 km by 1 km grid 
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resolution for the period 2005 to 2010. The details for the calculation of the 1 km by 1 km grid estimates 
and the validation of these estimates were discussed by Gidhagen, Johansson, and Omstedt  (2009). The 
SMED consortium uses this very emission inventories for the report of greenhouse gases to the European 
Commission, under the Climate Convention obligation (Gidhagen, Johansson, & Omstedt, 2009; Gidhagen, 
Omstedt, et al., 2013). The data was generated by SMED as annual averages from eight sectors of the power 
supply, industrial processes, product usage, transportation, work machines, agriculture, waste and sewer-
age, and international aviation and shipping (SMED, 2016). As such, this emission data was used as a proxy 
for exposure. The same data has previously been used, at the urban level, by Stockfelt et al. (2017) in their 
study of air pollution and CVD in the city of Gothenburg, Sweden.

3.2.3.  Neighborhood Deprivation Index

NDI is a summary measure used to characterize neighborhood-level deprivation. Deprivation indicators that 
have been used in previous studies (Crump et al., 2011; Lofors and Sundquist, 2007; Winkleby et al., 2007) 
were identified to characterize neighborhoods; principal component analysis was then used to generate 
the SAMS specific z-score (first principal component) indicative of NDI. Four variables were selected for 
persons aged 25–64 years. These four were low educational status (<10 years of formal education); unem-
ployment (not employed, excluding full-time students, those completing compulsory military service, and 
early retirees); social welfare recipient (receiving social welfare support); and low income (income from all 
sources, defined as less than 50% of individual median income.

Emission variables (BC, CO, PM10, PM2.5, and SOx) and NDI have been visualized through Figure 2. For 
brevity, only the first (2005) and the last (2010) years have been visualized here. The visualizations for the 
remaining years can be found in Appendix A.

The NDI ranges are: <−1 = low deprivation; −1 to 1 = moderate deprivation; >1 = high deprivation (Win-
kleby et al., 2007).
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Figure 1.  Sweden Counties (with SAMS) and trends of CVD hospital admissions in Sweden from 2005 to 2010. CVD, 
cardiovascular disease; SAMS, small area for market statistics.
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Figure 2.  Emission variables and NDI for 2005 and 2010. NDI, Neighborhood Deprivation Index.
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3.3.  Study Methodology

To study the associative spatial heterogeneity of air pollutants and CVD morbidity, we used a Poisson frame-
work, in a progressive way, to model the associative relationships between ambient air pollution and CVD 
admissions in Sweden while accounting for neighborhood deprivation. Poisson was chosen because the 
observed CVD admissions were recorded as counts the local expected number was low.

Global Poisson model (GPM) was applied first to recognize the relations of individual pollutants with CVD, 
in addition to understanding the significance of these relations at the global level. The existence of spatial 
correlation in data results in biased estimates of the global models (Anselin, 1988; Anselin & Rey, 1991). 
Given that the GPM does not account for spatial effects in the observed CVD, a spatial lag term was intro-
duced to address the influence of neighborhood values on the observed CVD values to the GPM, leading to 
the spatial auto-regression Poisson (SAR-Poisson) model. This was important as CVD cases in a region are 
also influenced by the underlying socio-economic, demographic and environmental factors (Poulter, 1999), 
which are seldom random in space. However, SAR-Poisson, being a global model, does not handle local 
spatial heterogeneity in the obtained associations.

Regression models that allow for geographical weighting are better suited for handling spatial heterogeneity 
(Nakaya, 2015). We thus employed Geographically Weighted Poisson Regression (GWPR) model that allows 
for the establishment of coefficient terms and all other regression parameters for each spatial unit (8,419 
units for our case).

3.4.  Statistical Methods

We investigated the associations between annual ambient air pollution exposures (PM10, PM2.5, BC, SOx, 
and CO) from the eight sectors (power supply, industrial processes, product usage, transportation, work ma-
chines, agriculture, waste and sewerage, and international aviation and shipping), NDI and CVD admission 
count. Let iy  be the CVD admission count for a particular SAMS  i . Denote the five ambient air pollution 
determinants, and NDI as  , , 1, 2, ., 6k ix k . The SAMS specific population is taken as an offset and is de-
noted by iN . The conventional GPM can then be specified by Equation 1.


  

   
   

 ,Poisson exp .i i k k i
k

y N x� (1)

To model for the possible existence of spatial dependence in the observed CVD admissions, SAR-Poisson 
model was derived from the original GPM in Equation 1 by adding a spatial lag term,   i iW y , shown in 
Equation 2.

  
  

   
   

 ,Poisson exp ,i i i i k k i
k

y N W y x� (2)

where i iW y  is the spatially lagged dependent variable for the weights matrix iW , and   is a spatially lagged 
coefficient. The weight matrix was defined by considering n-nearest neighbors.

GWPR extends this traditional model by allowing for all parameters to vary with geographical location, 
defined by SAMS in our study. This introduces a location parameter,   ,i xi yiu uu , a vector containing the 
two-dimensional coordinates describing the location of the particular SAMS (centroid coordinates). The 
Poisson model in Equation 1 can be rewritten as Equation 3.

 
  

   
   

 ,Poisson exp .i i k i k i
k

O N xu� (3)
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The regression coefficients s in Equation 3 are calculated for every SAMS  i , making them spatially vary-
ing. This makes GWPR a local spatial regression model allowing for geographically varying parameters. In 
our study, there were a total of 8,419 estimated coefficients corresponding to the 8,419 SAMS used.

The geographical weighting in GWPR is such that a kernel window is placed around every SAMS, and the 
s are computed using all the data contained within the kernel window, allowing for neighborhood data to 
contribute to the value of   at that specific SAMS. A bi-square adaptive weighting kernel, defined by Equa-
tion 4, was used for our study.

         

22

1 if ; otherwise 0,ik
ik ik

dw d h
h

� (4)

where ikd  is the distance between SAMS  i  and the nearby SAMS  k . Observations closer to SAMS  i  would 
carry more weights and have greater impacts on parameter estimates than those far away, following the 
first law of geography (Tobler, 1970). h is a constant bandwidth defining the neighborhood, and for GWPR. 
It denotes a value that yields the lowest Akaike Information Criterion (AIC), a metric that deals with the 
trade-off between the goodness of fit of the model and model simplicity. It is defined by Equation 5, through 
the bandwidth selection procedure (Nakaya et al., 2005).

      AIC 2 ,G D G K G� (5)

where D and K denote the deviance and the effective number of parameters in the model with bandwidth 
G, respectively.

4.  Results
To examine the possible determinants the spatial variation of CVD across Sweden and over time, each am-
bient air pollution variable and NDI were regressed against the SAMS-specific CVD outcome. Table 1 shows 
the model estimates for the GPM model combining all the independent variables. Generally, the associa-
tions were both positive and negative except for SOx that was positive throughout.

Table 2 shows the SAR-Poisson model estimates. All the variables generally remained significant through-
out the years, consistent with the results from the GPM. However, the introduction of the lag term created 
some changes in the nature of the associations observed in the overall GPM. For example, PM10 becomes 
consistently negative while PM2.5 becomes consistently positive. CO and the NDI term retain their mixed 
associations.

This unstable nature of the associations could be possibly due to multicollinearity existing within the air 
pollution and NDI variables as shown by Table 3.
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Estimate (2005) Estimate (2006)
Estimate 

(2007)
Estimate 

(2008)
Estimate 

(2009)
Estimate 

(2010)

(Intercept) −0.207*** a −0.2364*** −0.271*** −0.3117*** −0.3911*** −0.4653**

NDI −0.058*** 0.05548*** 0.05565*** 0.05709*** −0.0618*** −0.06027***

BC −5.275E−07** −4.846E−07** −8.8E−07*** −1.1E−06*** −1.8E−06*** −1.6E−06***

CO −7.064E−09*** −7.53E−09*** −4.1E−09** 3.56E−09*** 3.85E−09* 3.98E−09.

PM10 2.295E−07*** 1.559E−07*** 2.23E−07*** 1.3E−07*** 5.28E−08 −3.7E−08

PM2.5 −2.798E−07*** −1.173E−07** −2.6E−07*** −1.8E−07*** −1E−07. 3.49E−08

SOx 3.19E−08*** 1.531E−08* 3.12E−08*** 3.82E−08*** 4.92E−08*** 3.51E−08***

Abbreviation: BC, Black Carbon; CO, Carbon monoxide; NDI, Neighborhood Deprivation Index; PM, particulate 
matter; SOx, Sulfur oxides.
aSignificant codes: “***” 0.001; “**” 0.01; “*” 0.05; “.”; 0.1; “ ” 1.

Table 1 
Global Poisson Model Estimates (2005–2010)
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Table 3 shows that the correlation between NDI and most air pollutants is low and mixed (both positive and 
negative). Negative correlations were observed for 2005, 2009, and 2010 while positive correlations were ob-
served for 2006, 2007, and 2008 (except for CO). As expected, the air pollutants exhibited high correlations 
between each other with the highest being between PM10 and PM2.5. The lowest correlation was consist-
ently exhibited between BC and CO.

Additionally, by computing for the Variation Inflation Factor (VIF) statistic for the five variables, values 
ranging from 2 to 20 were obtained. Ideally, these values should be less than 5; values between 5 and 10 indi-
cate moderate multicollinearity while values above 10 indicate extreme multicollinearity (Alves et al., 2016). 
It thus showed that we were dealing with a substantial amount of multicollinearity.

Being a local regression model, GPWR accounts for spatial heterogeneity and is robust against multicollin-
earity (Fotheringham & Oshan, 2016). Figure 3 shows the performance of the three models: the GPM, the 
SAR-Poisson model and the GWPR model. The lower the AIC value, the better the performance. It shows 
that GWPR is the best model as it consistently has the lowest AIC values, followed by SAR-Poisson, and 
GPM is the worst as it has the highest AIC values throughout the study period.

Table 4 shows the summary of parameter estimates as obtained from the GWPR model. They are described 
by the minimum, lower quartile, median, upper quartile, and the maximum. Given that the parameter val-
ues were not standardized in the global models, the intercept is the only comparable parameter between the 
global and these local estimates. We note that the median intercept coefficient estimates for both models 
(GWPR and overall GPM) were relatively similar, for all the years. Additionally, some parameter estimates 
range from negative to positive over the study area, exhibiting a wider dynamic range compared to the av-
eraged values reported by GPM.

The spatial variation of the associations between CVD and the five air pollution variables (BC, CO, PM10, 
PM2.5, and SOx) were visualized by maps. The mean spatial variations of the coefficients of all the five air 
pollutants are given by Figure 4. This was obtained by averaging SAMS-specific coefficients for individual 
pollutants, over the 6 years. Labels (a–e) in Figure 4 was used to distinguish the spatial coefficient variations 
for BC, CO, SOx, PM10, and PM2.5, respectively. By averaging, areas of particularly persistent high associa-
tions were highlighted. For example, BC (a) shows a moderately strong association in Gotland (an island in 
the southeast), across mid-lower-western regions and mid-upper-western regions of Sweden. Weaker asso-
ciations for BC are observed mainly in the northern parts of Sweden. PM10 (d) is the most pronounced with 
strongest associations in the mid-lower parts of Sweden and persistently moderate to strong associations in 
the North. CO (b) and SOx (c) show generally moderate associations while PM2.5 (e) shows generally low 
associations with CVD, across Sweden. The upper northern part particularly shows lower associations with 
PM2.5 over the 6-year study period.
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Estimate (2005) Estimate (2006)
Estimate 

(2007)
Estimate 

(2008)
Estimate 

(2009)
Estimate 

(2010)

(Intercept) −0.3904*** −0.4181*** −0.4546*** −0.4975*** −0.5718*** −0.6523***

Lag 0.01426*** 0.01464*** 0.01518*** 0.01585*** 0.01656*** 0.01834***

NDI −0.04152*** 0.03937*** 0.03987*** 0.04134*** −0.04672*** −0.04522***

BC −3.926E−07** −2.47E−07. −6.3E−07*** −8.7E−07*** −1.2E−06*** −1.3E−06***

CO −5.843E−09*** −3.807E−09** −3.6E−09* 3.17E−09*** 2.02E−09 4.67E−09*

PM10 −3.321E−07*** −2.619E−07*** −3.3E−07*** −4.2E−07*** −5E−07*** −5.8E−07***

PM2.5 4.747E−07*** 3.837E−07*** 4.92E−07*** 5.76E−07*** 6.76E−07*** 7.67E−07***

SOx 1.156E−08 7.031E−09 8.4E−09 2.2E−08* 2.25E−08* 1.52E−08.

Abbreviation: BC, Black Carbon; CO, Carbon monoxide; NDI, Neighborhood Deprivation Index; PM, particulate 
matter; SOx, Sulfur oxides.

Table 2 
Spatial Autoregressive Global Poisson Model Estimate (2005–2010)
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NDI_2005 BC CO PM10 PM2.5 SOx

NDI_2005 1 −0.161a −0.180a −0.119a −0.062a −0.023b

BC – 1 0.822a 0.674a 0.629a 0.480a

CO – – 1 0.845a 0.789a 0.463a

PM10 – – – 1 0.983a 0.662a

PM2.5 – – – – 1 0.694a

SOx – – – – – 1

NDI_2006 BC CO PM10 PM2.5 SOx

NDI_2006 1 0.153a 0.178a 0.131a 0.037a 0.025b

BC – 1 0.804a 0.683a 0.554a 0.447a

CO – – 1 0.851a 0.698a 0.429a

PM10 – – – 1 0.943a 0.655a

PM2.5 – – – – 1 0.708a

SOx – – – – – 1

NDI_2007 BC CO PM10 PM2.5 SOx

NDI_2007 1 0.147a 0.173a 0.126a 0.071a 0.020

BC – 1 0.809a 0.675a 0.633a 0.441a

CO – – 1 0.851a 0.795a 0.447a

PM10 – – – 1 0.979a 0.655a

PM2.5 – – – – 1 0.696a

SOx – – – – – 1

NDI_2008 BC CO PM10 PM2.5 SOx

NDI_2008 1 0.128a −0.016 0.104a 0.053a 0.008

BC – 1 −0.050a 0.652a 0.625a 0.430a

CO – – 1 −0.045a −0.037a −0.009

PM10 – – – 1 0.982a 0.683a

PM2.5 – – – – 1 0.716a

SOx – – – – – 1

NDI_2009 BC CO PM10 PM2.5 SOx

NDI_2009 1 −0.142a −0.149a −0.094a −0.050a −0.015

BC – 1 0.812a 0.657a 0.619a 0.471a

CO – – 1 0.874a 0.832a 0.561a

PM10 – – – 1 0.985a 0.742a

PM2.5 – – – – 1 0.772a

SOx – – – – – 1

NDI_2010 BC CO PM10 PM2.5 SOx

NDI_2010 1 −0.115a −0.123a −0.080a −0.040a −0.010

BC – 1 0.763a 0.628a 0.610a 0.459a

CO – – 1 0.905a 0.881a 0.654a

Table 3 
Pearson Correlation Between Participating Variables
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5.  Discussion
This study employed a spatial perspective with emphasis on spatial non-stationarity to assess the associa-
tion between ambient air pollution variables (BC, CO, PM10, PM2.5, and SOx) and CVD admissions while 
accounting for neighborhood deprivation in Sweden from 2005 to 2010. Neighborhood deprivation in the 
form of the established index, NDI, was used to account for the underlying socio-economic variables main-
ly because it has been shown to independently predict heart disease morbidity. The results of our analysis 
also showed that NDI had a mixed but significant association with CVD in Sweden, as indicated by the 
results of the global Poisson models. The significant association was consistent with the results obtained by 
previous studies in Britain (Lawlor et al., 2005) and Sweden (Kawakami et al., 2011; Sundquist, Winkleby, 
et al., 2004; Winkleby et al., 2007). The mixed nature of the association could point to the inability of the 
global model to evaluate the associations correctly, given their spatial heterogeneity.

The GWPR model as an effective tool to evaluate these non-stationary relations was used to compute the 
spatially varying regression parameter estimates across Sweden. GWPR assumes a Poisson distribution to 
model count-based outcomes and is hence statistically more appropriate than conventional regression mod-
els based on Gaussian distribution like conditional and simultaneous autoregressive models (V. Y.-J. Chen 
et al., 2010). Through the Akaike Information Criterion (AIC) statistic, Figure 3 shows that GWPR was 
the best model fit against global Poisson models as measured by the lowest AIC value. It was followed by 
SAR-Poisson, and global Poisson model was the worst of the models. To examine how GWPR successfully 
captured the spatially non-stationary variations in the coefficient parameters, Table 4 was examined. Here, 
some estimated coefficients range from negative to positive over the study area. This indicates how GPWR 
was able to capture the spatial non-stationarity, and how the global models (in Tables 1 and 2) can be mis-
leading by assuming constant association coefficients across the study area.

We argue that traffic-related PM10 could be responsible for the persistent strong associations with CVD in 
the middle-south and southwest of Sweden (Figure 4). This position is consistent with the results of Segers-
son et al. (2017) who contended that PM10 and BC are primarily produced by road traffic through both wear 
particles and exhaust. However, the moderately stronger associations of PM10 in the northern part of Swe-
den were unclear to attribute to any specific source. PM2.5, CO, and BC are known to be mainly produced 
by residential wood combustion and road traffic sources (Segersson et al., 2017; Stockfelt et al., 2017). We 
thus speculate that residential wood heating, fuel burning, and road traffic could be largely responsible for 
the observed spatial patterns between BC, PM10, PM2.5, and CO air pollution and CVD in Figure 4 (vis-
ualization of the spatial patterns while not accounting for NDI is provided in Appendix B). On the other 
hand, SOx is known to be a shipping pollutant due to the high sulfur content of marine fuels (Nikopoulou 
et al., 2013). Therefore, the patterns observed in SOx associations could be attributed to the numerous nav-
igational routes along the coastline (especially the southern half of Sweden).

It should be emphasized that our interpretation of place-specific association obtained in this study is more 
general as pollutants may exhibit associations in places away from their sources. This noncommittal in-
terpretation was called for by Meister et  al.  (2012) who cautioned about the interpreting place-specific 
associations of PM2.5 and health outcomes as large portions of it in cities tend to be transported over long 
distances.
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Table 3 
Continued

NDI_2010 BC CO PM10 PM2.5 SOx

PM10 – – – 1 0.988a 0.785a

PM2.5 – – – – 1 0.806a

SOx – – – – – 1

Abbreviation: BC, Black Carbon; CO, Carbon monoxide; NDI, Neighborhood Deprivation Index; PM, particulate matter; SOx, Sulfur oxides.
aCorrelation is significant at the 0.01 level (2-tailed). bCorrelation is significant at the 0.05 level (2-tailed).
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Our findings, having considered spatial heterogeneity, were consistent with conclusions from previous 
studies (Alves et al., 2016; Feuillet et al., 2015; Gomes et al., 2017; Z. Li et al., 2013; Lim et al., 2014; Na-
kaya, 2015; Nakaya et al., 2005) regarding the heterogeneity of relations. From global models, we observed 
generally weak but highly significant associations between air pollution variables and CVD, evidenced 
by relatively small coefficient values. These weak and mixed associations were also observed by R. Chen 
et al. (2017) in China, Stockfelt et al. (2017) and Taj et al. (2017) in their city-specific studies in Sweden. This 
could be generally explained by the fact that CVD is multi-factorial (Poulter, 1999) and influenced by many 
other lifestyle and socio-economic determinants, like smoking, hypertension, lack of exercises, to mention 
but a few, in addition to ambient air pollution. However, they could also be due to the combined effects of 
overdispersion and multicollinearity in the data (Gomes et al., 2017).

Overdispersion issues are well handled by Global Negative Binomial models (GNB), and would as such be 
a better alternative (Alves et al., 2016; Z. Li et al., 2013). However, given the spatial nature of the data as 
evidenced by the significant lag term in the SAR-Poisson model, we reasoned that the probabilistic mech-
anisms used by global GNB to handle such overdispersion would overlook its specific local-scale causes, 
which was also mentioned by Alves et al. (2016). Moreover, our tests showed that the global GNB results 
were not very different from the GPM results. Additionally, the unobserved heterogeneity as computed from 
the density of variance of GNB random effects (Rodríguez, 2019) had the quartile ranges [0.185 (Q1), 0.581 
(Q2), and 1.373 (Q3)], meaning that CVD admissions at the lower quantile of the unobserved heterogeneity 
were 81% lower than expected, CVD admissions at the median were 8% higher and those at the upper quan-
tile were 37% higher than expected. The observed overdispersion was therefore in part due to heterogeneity, 
which is better handled by local spatial models.

While for the local model, GWNBR is known to better handle overdispersion than GWPR (da Silva & Rod-
rigues, 2014), applying GWNBR on a section of our data set resulted in banding effects, characterized by 
homogeneous regions in the resultant coefficient maps. This could be attributed to the bandwidth selection 
procedure converging at wider bandwidths for GWNBR which shows that GWNBR was not able to handle 
spatial heterogeneity. This was consistent with results obtained by Gomes et al. (2017). It was thus a split-de-
cision between better handling of either overdispersion (GWNBR) or heterogeneity (GWPR). Since spatial 
heterogeneity was our primary goal, GWPR was selected for our analysis.

Multicollinearity between air pollution variables has been highlighted by Stockfelt et al. (2017) as the lim-
itation responsible for few multi-pollution studies like our own. However, in an elaborate study of GWR, 
Fotheringham and Oshan (2016) illustrated that GWR is robust even under extreme multicollinearity and 
produces reliable results.
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Figure 3.  Model performance by akaike information criterion (AIC) for the 3 models.
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Coefficients
Minimum of 
coefficients

Lower quartile of 
coefficients

Median of 
coefficients

Upper quartile of 
coefficients

Maximum of 
coefficients

2005 Intercept 0.898 1.316 1.438 1.572 1.841

  NDI_2005 −0.750 −0.513 −0.429 −0.283 −0.093

  BC −2.565 −0.213 −0.016 0.217 1.490

  CO −1.874 −0.123 0.074 0.371 1.629

  PM10 −6.988 −0.976 −0.181 0.508 3.759

  PM2.5 −2.857 −0.339 0.152 0.784 4.847

  SOx −5.605 −0.156 −0.039 0.038 6.241

2006 Intercept 0.873 1.302 1.403 1.551 1.793

  NDI_2006 0.090 0.268 0.440 0.509 0.783

  BC −3.038 −0.313 −0.057 0.174 1.558

  CO −1.888 −0.043 0.144 0.443 1.543

  PM10 −4.268 −0.893 −0.109 0.446 4.085

  PM2.5 −1.559 −0.210 0.075 0.577 2.569

  SOx −5.365 −0.151 −0.027 0.090 6.384

2007 Intercept 0.813 1.263 1.371 1.531 1.759

  NDI_2007 0.092 0.257 0.419 0.499 0.776

  BC −2.534 −0.209 −0.001 0.231 1.870

  CO −2.005 −0.078 0.113 0.366 1.321

  PM10 −5.239 −0.895 −0.227 0.375 4.561

  PM2.5 −2.553 −0.314 0.158 0.539 4.691

  SOx −5.113 −0.126 −0.021 0.062 8.773

2008 Intercept 0.715 1.243 1.357 1.492 1.733

  NDI_2008 0.097 0.257 0.407 0.486 0.782

  BC −3.846 −0.128 0.100 0.333 1.404

  CO −0.499 −0.143 −0.032 0.023 0.228

  PM10 −5.158 −0.691 −0.185 0.509 7.446

  PM2.5 −3.548 −0.443 0.151 0.678 5.132

  SOx −5.250 −0.196 −0.048 0.031 9.307

2009 Intercept 0.654 1.131 1.250 1.414 1.738

  NDI_2009 −0.784 −0.463 −0.395 −0.272 −0.098

  BC −3.313 −0.280 −0.051 0.189 1.976

  CO −2.149 −0.002 0.188 0.408 1.575

  PM10 −5.582 −1.368 −0.351 0.391 8.087

  PM2.5 −2.951 −0.228 0.314 0.879 5.191

  SOx −5.787 −0.128 −0.018 0.128 10.021

2010 Intercept 0.520 1.036 1.185 1.338 1.764

  NDI_2010 −0.842 −0.450 −0.400 −0.288 −0.100

  BC −2.314 −0.283 −0.092 0.061 2.092

  CO −2.116 −0.006 0.228 0.544 1.563

  PM10 −7.036 −1.370 −0.480 0.392 4.762

  PM2.5 −5.386 −0.188 0.401 0.973 6.651

  SOx −4.454 −0.190 −0.034 0.122 12.116

Abbreviation: BC, Black Carbon; CO, Carbon monoxide; NDI, Neighborhood Deprivation Index; PM, particulate 
matter; SOx, Sulfur oxides.

Table 4 
Summary Statistics for Varying (Local) Coefficients From the GWPR Model
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Figure 4.  Combined spatial variations (2005–2010) in (a) BC, (b) CO, (c) SOx, (d) PM10, and (e) PM2.5. BC, Black Carbon; CO, Carbon monoxide; NDI, 
Neighborhood Deprivation Index; PM, particulate matter; SOx, Sulfur oxides.
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Finally, whereas this study achieved what it set out to do, the authors are aware that this being an ecological 
study, there is a need to acknowledge ecological bias. Given that all data (CVD and air pollution) had to 
be aggregated to SAMS level (underlying population was available at this level), the obtained associations 
cannot reflect the would-be associations at the individual level. Also, the data used is of 10 years ago. To 
this end, air quality and social characteristics may change over time. However, the biological effects of these 
air pollution exposures are likely to remain the same over time and therefore, we believe that our obtained 
results are therefore still very relevant.

6.  Conclusions
The primary contribution of this study is the global as well as local analyses of the association be-
tween several established air pollutants and CVD in Sweden, on a nationwide basis while accounting 
for socio-economic factors through an established neighborhood deprivation index. It has successfully 
demonstrated that multi-pollutant associations with CVD are not homogenous across Sweden and is, 
to the best of our knowledge, the first nationwide study that spatially analyses multi-pollutant data and 
CVD with a particular focus on spatial non-stationarity. In this 6-year study of CVD admission counts 
and ambient air pollution, we found generally weak but statistically significant global associations be-
tween main particulate matter pollutants and CVD admissions. More importantly, using GWPR, we 
found these associations to be non-homogeneous but varied across space. Generally, more dynamism 
in the observed patterns was associated with southern parts of Sweden than with the northern regions. 
These results are, despite certain limitations, useful because they indicate that health policies targeting 
air pollution and CVD preventive and management efforts in Sweden may be defined at local levels 
rather than at a global (national–in this case) level. Moreover, with areas of persistent high associations 
between air pollution and CVD identified, more focused studies could be conducted in these areas to 
learn more about the drivers of such associations to better inform future healthcare policy and inter-
vention efforts.

Appendix A
The spatial patterns for most air pollutants and NDI are visually similar for the studied years, apart from 
CO for 2008 (see Figure A1). The reason for the different patterns for CO in 2008 is not known but relates 
to the data provided.

Appendix B
In Figure  B1, the spatial patterns of the association between CVD and the selected air pollutants with 
accounting for NDI seem visually comparable to those obtained in Figure 4. Accounting for NDI works to 
accentuate the obtained associations.
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Figure A1.  Variation of air pollution and NDI variables (2006–2009).
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Figure B1.  Combined Spatial Variations (2005–2010) in (a) BC, (b) CO, (c) SOx, (d) PM10, and (e) PM2.5 – without NDI.
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