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An electronic neuromorphic system for real-time
detection of high frequency oscillations (HFO) in
intracranial EEG
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The analysis of biomedical signals for clinical studies and therapeutic applications can benefit

from embedded devices that can process these signals locally and in real-time. An example is

the analysis of intracranial EEG (iEEG) from epilepsy patients for the detection of High

Frequency Oscillations (HFO), which are a biomarker for epileptogenic brain tissue. Mixed-

signal neuromorphic circuits offer the possibility of building compact and low-power neural

network processing systems that can analyze data on-line in real-time. Here we present a

neuromorphic system that combines a neural recording headstage with a spiking neural

network (SNN) processing core on the same die for processing iEEG, and show how it can

reliably detect HFO, thereby achieving state-of-the-art accuracy, sensitivity, and specificity.

This is a first feasibility study towards identifying relevant features in iEEG in real-time using

mixed-signal neuromorphic computing technologies.
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The amount and type of sensory data that can be recorded
are continuously increasing due to the recent progress in
microelectronic technology1. This data deluge calls for the

development of low-power embedded edge computing technol-
ogies that can process the signals being measured locally, without
requiring bulky computers or the need for internet connection
and cloud servers. A promising approach that has been recently
proposed to address these challenges is the one of “neuromorphic
computing”2. Several innovative neuromorphic computing devi-
ces have been developed to carry out computation “at the
edge”3–8. These are general purpose brain-inspired architectures
that support the implementation of spiking and rate-based neural
networks for solving a wide range of spatio-temporal pattern
recognition problems9,10. Their in-memory computing spike-
based processing nature offers a low-power and low-latency
solution for simulating neural networks that overcome some of
the problems that affect conventional Central Processing Unit
(CPU) and Graphical Processing Unit (GPU) “von Neumann”
architectures11,12.

In this paper we take this approach to the extreme and propose
a very “specific purpose” neuromorphic system for bio-signal
processing applications that integrates a neural recording head-
stage directly with the SNN processing cores on the same die, and
that uses mixed-signal subthreshold-analog and asynchronous-
digital circuits in the SNN cores which directly emulate the
physics of real neurons to implement faithful models of neural
dynamics13,14. Besides not being able to solve a broad range of
pattern recognition tasks by design, the use of subthreshold
analog circuits renders the design of the neural network more
challenging in terms of robustness and classification accuracy.
Nonetheless, successful examples of small-scale neuromorphic
systems have been recently proposed to process bio-signals, such
as Electrocardiogram (ECG) or Electromyography (EMG) signals,
following this approach15–18. However, these systems were sub-
optimal, as they required external biosignal recording, frontend
devices, and data conversion interfaces. Bio-signal recording
headstages typically comprise analog circuits to amplify and filter
the signals being measured and can be highly diverse in specifi-
cation depending on the application19. For example, neural
recording headstages for experimental neuroscience target high-
density recordings20–23 and minimize the circuit area require-
ments, while devices used for clinical studies and therapeutic
applications require a small number of recording channels and
the highest possible signal-to-noise ratio (SNR)24–27.

The system we propose is targeted toward the construction of a
compact and low-power long-term epilepsy monitoring device
that can be used to support the solution of a clinically relevant
problem: Epilepsy is the most common severe neurological dis-
ease. In about one-third of patients, seizures cannot be controlled
by medication. Selected patients with focal epilepsy can achieve
seizure freedom if the epileptogenic zone (EZ), which is the brain
volume generating the seizures, is correctly identified and surgi-
cally removed in its entirety. Presurgical and intraoperative
measurement of iEEG signals is often needed to identify the EZ
precisely28. High Frequency Oscillations (HFO) have been pro-
posed as a new biomarker in iEEG to delineate the EZ25–27,29–36.
While HFO have been historically divided into “ripples”
(80–250 Hz) and “fast ripples” (FR, 250–500 Hz), detection of
their co-occurrence was shown to enable the optimal prediction
of postsurgical seizure freedom31. In that study, HFO were
detected automatically by a software algorithm that matched the
morphology of the HFO to a predefined template (Morphology
Detector)31,37. An example of such an HFO is shown in Fig. 1a.
While software algorithms are used for detecting HFO
offline30,38, compact embedded neuromorphic systems that can
record iEEGs and detect HFO online in real time, would be able

to provide valuable information during surgery, and simplify the
collection of statistics in long-term epilepsy monitoring39–41.
Here we show how a simple model of a two-layer SNN that uses
biologically plausible dynamics in its neuron and synapse equa-
tions, can be mapped onto the neuromorphic hardware proposed
and applied to real-time online detection of HFO42. We first
describe the design principles of the HFO detection architecture
and its neuromorphic circuit implementation. We discuss
the characteristics of the circuit blocks proposed and present the
experimental results measured from the fabricated device. We
then show how the neuromorphic system performs in HFO
detection compared to the Morphology Detector31 on iEEG
recorded from the medial temporal lobe43.

Results
Figure 1 shows how prerecorded iEEG43 was processed by the
frontend headstage and the SNN multi-core neuromorphic
architecture. Signals were band-passed filtered into Ripple and
Fast Ripple bands (Fig. 1a, b, f). The resulting waveforms were
converted into spikes using asynchronous delta modulator
(ADM) circuits44,45 (Fig. 1c, f) and fed into the SNN architecture
(Fig. 1d, g). Neuronal spiking signals the detection of an HFO
(Fig. 1e bottom).

All stages were first simulated in software to find the optimal
parameters and then validated with the hardware components.
The HFO detection was validated by comparing the HFO rate
across recording intervals (Fig. 1i) and with postsurgical seizure
outcome31.

The neuromorphic system. An overview of the hardware neu-
romorphic system components is depicted in Fig. 2. The chip
(Fig. 2c) was fabricated using a standard 180 nm Complementary
Metal-Oxide-Semiconductor (CMOS) process. It comprises 8
input channels (headstages) responsible for the neural recording
operation, band-pass filtering and conversion to spikes46, and a
multicore neuromorphic processor with 4 neurosynaptic cores of
256 neurons each, which is a Dynamic Neuromorphic Asyn-
chronous Processor (DYNAP) based on the DYNAP-SE device47.
The total chip area is 99 mm2. The 8 headstages occupy 1.42 mm2

with a single headstage occupying an area of 0.15 mm2 (see
Fig. 2a). The area of the four SNN cores is 77.2 mm2 with a single
SNN core occupying 15 mm2. For the HFO detection task, the
total average power consumption of the chip at the standard 1.8 V
supply voltage was 614.3 μW. The total static power consumption
of a single headstage was 7.3 μW. The conversion of filtered
waveforms to spikes by the ADMs consumed on average 109.17
μW. The power required by the SNN synaptic circuits to process
the spike rates produced by the ADMs was 497.82 μW, while the
power required by the neurons in the second layer of the SNN to
produce the output spike rates was 0.2 nW. The block diagram of
the hardware system functional modules is shown in Fig. 2b. The
Field Programmable Gate Array (FPGA) block on the right of the
figure represents a prototyping device that is used only for
characterizing the system performance. Figure 2c shows the chip
photograph, and Fig. 2d represents a rendering of the prototyping
Printed Circuit Board (PCB) used to host the chip.

Figure 3 shows the details of the main circuits used in a single
channel of the input headstage. In particular, the schematic
diagram of the Low-Noise Amplifier (LNA) is shown in Fig. 3a. It
consists of an Operational Transconductance Amplifier (OTA)
with variable input Metal Insulator Metal (MIM) capacitors, Cin

that can be set to 2/8/14/20 pF and a Resistor-Capacitor (RC)
feedback in which the resistive elements are implemented using
MOS-bipolar structures48. The MOS-bipolar pseudoresistors
MPR1 and MPR2, and the capacitors Cf = 200 fF of Fig. 3a were
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chosen to implement a high-pass filter with a low cutoff
frequency of 0.9 Hz. Similarly, the input capacitors Cin, Cf, and
the transistors of the OTA were sized to produce maximum
amplifier gain of approximately 40.2 dB but can be adjusted to
smaller values by changing the capacitance of Cin.

Figure 3b shows the schematic of the OTA, which is a modified
version of a standard folded-cascode topology49. The currents of
the transistors in the folded branch (M5–M10) are scaled to
approximately 1/6th of the currents in the original branch
M1–M4. The noise generated by M5–M10 is negligible compare
to that of M1–M4 due to the low current in these transistors. As a
result, the total current and the total input-referred noise of the
OTA was minimized.

To ensure accurate bias-current scaling, the currents of Mb2
and Mb4 in Fig. 3b were set using the bias circuit formed by Mb1,
Mb3, and Mb5. The voltages Vb1 and Vb2 in the biasing circuit
can be set by a programmable 6526-level integrated parameter-
generator, integrated on chip50. The current sources formed by

Mb1 and Mb2 were cascoded to increase their output impedance
and to ensure accurate current scaling. These devices operate in
strong inversion to reduce the effect of threshold voltage
variations. The source-degenerated current mirrors formed by
M11, M12, Mb5, and resistors R1 and k × R1 assure that the
currents in M5 and M6 are a small fraction of the currents in M3
and M4. The R1 gain coefficient k was chosen at design time to be
k= 8.5. Thanks to the use of this source-degenerated current
source scheme, the 1/f noise in the OTA is limited mainly to the
effect of the input differential pair. Therefore, the transistors of
the input-differential pair were chosen to be pMOS devices and to
have a large area.

The active filters implemented in our system are depicted in
Fig. 3c. They comprise three operational amplifiers, configured to
form a Tow-Thomas resonating architecture51. This architecture
consists of a damped inverting integrator that is stabilized by R2
and cascaded with another undamped integrator, and an
inverting amplifier for adjusting the loop-gain by a factor set by

Fig. 1 Automatic HFO detection using a bio-inspired SNN. a The pre-recorded iEEG signal in wideband, Ripple band (80–250 Hz) and Fast Ripple band
(250–500 Hz). HFO stand out of the baseline in the signal. The period marked by the gray bar represents a clinically relevant HFO27,31. b–d Software
simulated spiking neural network (SNN). For preprocessing, the wideband EEG is filtered in Ripple band and Fast Ripple band. A baseline detection stage
finds the optimum threshold that is applied in an Asynchronous Delta Modulator (ADM) which converts the signal to spikes. Signal traces are encoded by
UP spikes (gray bars) and DOWN spikes (black bars), which are then fed as input into the SNN. The SNN is implemented as a two-layer spiking network of
integrate and fire neurons with dynamic synapses. Each neuron in the second layer receives four inputs: two excitatory spike trains from UP channels and
two inhibitory ones from DOWN channels. The parameters of the network were chosen to exhibit the relevant temporal dynamics and tune the neurons to
produce output spikes in response to input spike train patterns that encode clinically relevant HFO. e, top Time-frequency spectrum of the Fast Ripple iEEG
of panel a. e, bottom Firing of SNN neurons indicates the occurrence of the HFO. f Block diagram of the neuromorphic system input headstage. The
headstage comprises a low noise amplifier (LNA), two configurable bandpass filters, and two ADM circuits that convert the analog waveforms into spike
trains. g The spikes produced by the ADMs are sent to a multi-core array of silicon neurons that are configured to implement the desired SNN. h MRI with
7 implanted depth electrodes that sample the mesial temporal structures of a patient with drug-resistant temporal lobe epilepsy (Patient 1). i Rates of HFO
detected by the neuromorphic SNN for recordings made across four nights for Patient 1. The variability of the HFO rates across intervals within a night is
indicated by standard error bars. Recording channels AR1-2 and AR2-3 in the right amygdala showed the highest HFO rates which were stable over nights.
Thus, the neuromorphic system would predict that a therapeutic resection, which should include the right amygdala, would achieve seizure freedom.
Indeed, a resection including the right amygdala achieved seizure freedom for >1 year.
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the ratio R6/R5. The center frequency f0 of the bandpass filter can
be calculated as f 0 ¼ 1=2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R3R4C12
p

. By choosing R3= R4= R,
we can then simplify it to f0= 1/2πRC1. Similarly, the gain
of the filter is TBP

�

�

�

� ¼ R4=R1 and its bandwidth
BW ¼ 2πf 0

ffiffiffiffiffiffiffiffiffiffiffi

R3R4
p

=R2, but with our choice of resistors we can
show that TBP

�

�

�

� ¼ R=R1 and BW= 1/(R2C1). Therefore, this
analysis shows that R is responsible for setting f0, R1 for adjusting
the gain, and R2 for tuning the bandwidth. Moreover, due to the
resistive range of the tunable double-PMOS pseudo resistors used
in this design52, f0 was set in the sub-hundred Hertz region by
choosing C1= 10 pF.

Figure 3d shows the schematic diagram of the ADM circuit45.
There are four such circuits per headstage channel. One for
converting the wideband signal Vamp into spike trains; one for
converting the output of the low-pass filter Vout_lowpass; and two
for converting the output of the two band-pass filters Vout_bandpass.
The amplifier at the input of the ADM circuit in Fig. 3d
implements an adaptive feedback amplification stage with a gain
set by Cin/Cf that in our design is equal to 8 when Vreset is high,
and approximately zero during periods in which Vreset is low. In
these periods, defined as “reset assertion” the output of the
amplifier Ve is clamped to Vref, while in periods when Vreset is
high, the output voltage Ve represents the amplified version of the
input. The Ve signal is then sent as input to a pair of comparators
that produce either “UP” or “DN” digital pulses depending if Ve is
greater than Vtu or lower than Vtd. These parameters set the ADM
circuit sensitivity to the amplitude of the Delta-change. The
smallest values that these voltages can take is limited by the input

offset of the ADM comparators (see CmpU, CmpD in Fig. 3d),
which is approximately 500 μV.

Functionally, the ADM represents a Delta-modulator that
quantizes the difference between the current amplitude of Ve and
the amplitude of Ve at the previous reset assertion. The precise
timing of the UP/DN spikes produced in this way is deemed to
contain all the information about the original input signal, given
that the parameters of the ADM are known53. The UP and DN
spikes are used as the request signals of the asynchronous AER
communication protocol54–56 used by the spike routing network
for transmitting the spikes to the silicon neurons of the
neuromorphic cores (Fig. 2). We call this event-based computa-
tion. These signals are pipelined through asynchronous buffers
that locally generates ACKUP/DN to reset the ADM with every
occurrence of an UP or DN event. The output of the
asynchronous buffer REQUP/DN(toSNN) conveys these events to
the next asynchronous stages. The bias voltage Vrefr controls the
refractory period that keeps the amplifier reset and limits the
maximum event rate of the circuit to reduce power consumption.
The bias voltages Vtu and Vtd control the sensitivity of the ADM
and the number of spikes produced per second, with smaller
values producing spike trains with higher frequencies. Small Vtu

and Vtd settings lead to higher power consumption and allow the
faithful reconstruction of the input signal with all its frequency
components. The ADM hyper parameters Vrefr, Vtu, and Vtd can
therefore be optimized to achieve high reconstruction accuracy of
the input signal and suppress background noise (e.g., due to high-
frequency signal components), depending on the nature of the
signal being processed (see Methods). All of the 32 ADM output

Fig. 2 Neuromorphic electronic system overview. a Physical layout of a single channel of the analog headstage array, including the LNA, three low-pass/
band-pass filters, and four ADM signal to spike encoders. b Reduced block diagram of the neuromorphic platform. Analog signals from electrodes are fed
into the input headstage that converts them into spike trains and sends them to the SNN implemented on the multi-neuron cores, via a spike routing
network. The spike routing network routes the spikes within on-chip SNN and to an external FPGA device used for data logging and prototyping. The FPGA
is also used for setting circuit parameters. c Chip photograph showing the 11 mm x 9mm silicon die. d Prototyping Printed Circuit Board (PCB) used to host
the chip and the infrastructure to implement the test setup. The setup is composed of a prototyping FPGA board mounted on the same PCB that hosts the
chip, and of probe points to evaluate the characteristics of both input headstage and SNN multi-core network.
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channels are then connected to a common AER encoder which
includes an AER arbiter57 used to manage the asynchronous
traffic of events and convey them to the on-chip spike routing
network.

Analog headstage circuit measurements. Figure 4 shows
experimental results measured from the different circuits present
in the input headstage. Figure 4a shows the transient response of
the LNA to a prerecorded iEEG signal used as input. The signal
was provided to the headstage directly via an arbitrary waveform
generator programmed with unity gain and loaded with a
sequence of the prerecorded iEEG data with amplitude in the mV
range. We also tested the LNA with an input sine wave of 100 Hz
with a 1 mV peak-to-peak swing, revealing <1% of total harmonic
distortion at maximum gain, and an output swing ranging
between 0.7 V and 1.4 V. To characterize the input referred noise
of the LNA, we shorted input terminals of the LNA, Vin+, Vin−,
captured LNA output, Vamp, on a dynamic signal analyzer and
divided it by the gain of the LNA, set to 100, and plotted output
power spectral density (see Fig. 4b). The LNA generates a ≤100
nV/

ffiffiffiffiffiffi

Hz
p

noise throughout the spectrum. As the 1/f noise dis-
sipates with the increase in frequency, the LNA noise only scales

down to the thermal component. Thus, the noise for the Ripple
band is < 10 nV/

ffiffiffiffiffiffi

Hz
p

and < 5 nV/
ffiffiffiffiffiffi

Hz
p

for the Fast Ripple band.
Figure 4b shows how the noise generated by the LNA is well
below the pre-recorded iEEG power, throughout the full fre-
quency spectrum.

The LNA features a programmable gain that can be set to
20 dB, 32 dB, 36 dB, or 40 dB. It has a > 40 dB common mode
rejection ratio;

it consumes 3 μW of power per channel; and it has a total
bandwidth, defined as Gm/(AM ⋅ CL), approximately equal to 11.1
KHz, when the capacitive load is set to CL=20 fF, the OTA
transconductance to Gm=20 nS and the amplifier gain to 40 dB
(see Fig. 4c).

The on-chip parameter generator can be used to set the filter
frequency bands. For HFO detection, we biased the tunable
pseudoresistors of the filters to achieve a cutoff frequency of 80
Hz for the low-pass filter, a range between 80 Hz and 250 Hz for
the first bandpass filter, appropriate for Ripple detection, and
between 250 Hz and 500 Hz for the second bandpass filter, to
detect Fast Ripples (see Fig. 4c).

As we set the tail current of each single-stage OpAmp of Fig. 3c
to 150 nA, each filter consumed 0.9 μW of power.

Fig. 3 Schematic diagrams of the input headstage circuits. a Variable-gain LNA using variable input capacitor array and pseudo-resistors. The gain of this
stage is calculated by Cin/Cf; the use of the pseudo-resistors allows to reach small low cut-off frequencies. b Folded cascode OTA using resistive
degeneration to reduce the noise influence of nMOS devices. Note that the current flowing through the biasing branch, Mb1-Mb3-Mb5-k × R1, is k times
smaller than the tail branch of the amplifier. c band-pass (Tow-Thomas) filters for performing second-order filtering in both ripple and fast-ripple bands as
well as the low-frequency component of the iEEG. Tunable pseudo resistors are used to adjust the filter gain, center-frequency, and band-width. The same
basic structure can be used to provide both low-pass and band-pass outputs, thus is desirable in terms of design flexibility. d Asynchronous Delta
Modulator (ADM) circuit to convert the analog filter outputs into spike trains. The ADM input amplifier has a gain of Cin/Cf in normal operation when Vreset

is low and the feedback PMOS switch is off. As the amplified signal crosses one of the two thresholds, Vtu or Vtd, a UP or DN spike is produced by asserting
the corresponding REQ signal. A 4-phase handshaking mechanism produces the corresponding ACK signal in response to the spike. Upon receiving the
ACK signal, the ADM resets the amplifier input and goes back to normal operation after a refractory period determined by the value of Vrefr. The
asynchronous buffers act as 4-phase handshaking interfaces that propagate the UP/DN signals to the on-chip AER spike routing network of Fig. 2.
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Figure 4d plots the spikes produced by the AMD circuit in
response to Ripple-band data obtained from the pre-recorded
iEEG measurements. We set the ADM refractory period to 300
μs, making it the longest delay, compared to those introduced by
the comparator and handshaking circuits, that are typically < 100
μs. The spike-rate of the ADM can range from few hundreds of
Hz to hundreds of kHz depending on the values of Vtu, Vtd, and
Vrefr. Each ADM consumed 1.5 nJ of energy per spike, and had a
static power dissipation of 96 nW.

System performance. The system-level performance is assessed
by measuring the ability of the proposed device to correctly
measure the iEEG signals, to properly encode them with spike
trains, and to detect clinically relevant HFO31 via the SNN
architecture.

The SNN architecture is a two-layer feed-forward network of
integrate and fire neurons with dynamic synapses, i.e., synapses
that produce post-synaptic currents that decay over time with
first-order dynamics. The first layer of the network comprises
four input neurons: the first neuron conveys the UP spikes that
encode the iEEG signal filtered in Ripple band; the second neuron
conveys the DN spikes derived from the same signal; the third
neuron conveys the UP spikes derived from the Fast-ripple band
signal, while the forth neuron conveys the DN spikes. The second
layer of the network contains 256 neurons which receive spikes
from all neurons of the input layer (see Fig. 5b). The current
produced by the dynamic synapses of the second layer neurons
decay exponentially over time at a rate set by a synapse-specific
time-constant parameter. The amplitude of these currents in
response to the input spikes depends on a separate weight
parameter, and their polarity (positive or negative) depends on

the synapse type (excitatory or inhibitory). In the network
proposed, UP spikes are always sent to excitatory synapses and
DN spikes to inhibitory ones. All neurons in the second layer
have the same connectivity pattern as depicted in Fig. 5b with
homogeneous weight values. An important aspect of the SNN
network lies in the way it was configured to recognize the desired
input spatio-temporal patterns: rather than following the classical
Artificial Neural Network (ANN) approach of training the
network by modifying the synaptic weights with a learning
algorithm and using identical settings for all other parameters of
synapses and neurons, we fixed the weights to constant values and
chose appropriate sets of parameter distributions for the synaptic
time constants and neuron leak variables. Because of the different
time-constants for synapses and neurons, the neurons of the
second layer produce different outputs, even though they all
receive the same input spike trains.

The set of parameter distributions that maximized the
network’s HFO detection abilities was found heuristically by
analyzing the temporal characteristics of the input spike trains
and choosing the relevant range of excitatory and inhibitory
synapse time constants that produced spikes in the second layer
only for the input signals that contained HFO as marked by the
Morphology Detector31 (see Figs. 1a, 5a). This procedure was first
done using software simulations with random number generators
and then validated in the neuromorphic analog circuits,
exploiting their device mismatch properties.

The software simulations were carried out using a behavioral-
level simulation toolbox based on the neuromorphic circuit
equations, that accounts for the properties of the mixed-signal
circuits in the hardware SNN58.

The hardware validation of the network was done using a single
core of the DYNAP-SE neuromorphic processor47, which is a

Fig. 4 Measurements from the analog headstage. a An iEEG sample43 and the LNA amplified output. b Noise floor of the headstage LNA and iEEG power
spectral density. In the HFO range (80-250 Hz) the noise level of the LNA is below the iEEG noise floor by an order of magnitude. c Frequency response of
the implemented filters in the headstage. The band-pass filters are tuned to highlight HFO frequency bands. d ADM circuit simulation response to the
ripple-filtered signal. The top plot shows the analog filter output, the middle plot shows the UP spikes generated by the ADM and the bottom plot shows
the DN spikes.
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previous generation chip functionally equivalent to the one
proposed, implemented using the same CMOS 180 nm technology
node. The 256 neurons in this core received spikes produced by the
ADM circuits of the analog headstage, as described in Fig. 5c. The
ADM UP spikes were sent to the excitatory synapses, implemented
using a DPI circuit13,59 that produce positive currents, and DN
spikes were sent to complementary versions of the circuit that
produce inhibitory synaptic currents. Both excitatory and inhibitory
currents were summed into the input nodes of their afferent leaky
integrate-and-fire silicon neuron circuit, which produced output
spikes only if both the frequency and the timing of the input spikes
was appropriate (see Fig. 5c). The bias values of the excitatory and
inhibitory DPI circuits and of the neuron leak circuits were set in a
way to match the mean values of the software simulation
parameters. All neuron and synapse circuits in the same core of
the chip share global bias parameters, so nominally all excitatory

synapses would have the same time-constant, all inhibitory ones
would share a common inhibitory time-constant value and all
neurons would share the same leak parameter value. However, as
the mixed-signal analog-digital circuits that implement them are
affected by device mismatch, they exhibit naturally a diversity of
behaviors that implements the desired variability of responses.
Therefore, in the hardware implementation of the SNN, the
distribution of parameters that produce the desired different
behaviors in the second layer neurons emerges naturally, by
harnessing the device mismatch effects of the analog circuits used
and without having to use dedicated random number
generators60,61. Analysis of the data presented in Fig. 5 shows that
an average number of 64 neurons were sufficient for detecting an
HFO from a single channel input.

Figure 1e (bottom panel) shows an example of the activity of
the hardware SNN in response to an HFO that was labeled as

Fig. 5 Network spiking characteristics. a Examples of HFO that the hardware SNN detected in the iEEG of Patient 1. The periods marked by the gray bar
represent clinically relevant HFO31,43. The signals in Ripple and Fast-ripple band were transformed to UP and DN spikes. These spike trains were sent to the
neurons in the hardware through the RUP, RDN, FRUP and FRDN channels. The bottom panel of each example shows the raster plot of the silicon neurons. Each
neuron responds to different HFO depending on the characteristics of the pattern. b The SNN architecture consist of a two-layer network of 256 integrate
and fire neurons with dynamic synapses. Each neuron in the second layer receives excitatory connections from the RUP and FRUP channels, and inhibitory
connections from the RDN and FRDN channels. The synaptic parameters time constants and weights are distributed randomly within a predetermined
optimal range. c Hardware building blocks used for the implementations of the SNN: the DPI synapse is a "Differential-Pair Integrator'' circuit59, and the
silicon neuron is an Adaptive Exponential Integrate and Fire (AdExp IF) circuit81. d HFO rates computed for Patient 1. The neurons are sorted according to
their average firing rate. Only a small number of neurons fire across all the recordings, even for channels with high HFO rates (e.g., AR1-2).
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clinically relevant by the Morphology Detector31. The iEEG traces
in the Ripple band and Fast ripple band (Fig. 1a) and the time
frequency spectrum (top panel of Fig. 1e) show the HFO shortly
before the SNN neurons spike in response to it (bottom panel of
Fig. 1e). The delay between the beginning of the HFO and the
spiking response of the silicon neurons is due to the integration
time of both excitatory and inhibitory synapse circuits, which
need to accumulate enough evidence for producing enough
positive current to trigger the neuron to spike.

To improve classification accuracy and robustness, we adopted
an ensemble technique62 by considering the response of all the
256 neurons in the network: the system is said to detect an HFO if
at least one neuron in the second layer spikes in a 15 ms interval.
We counted the number of HFO detected per electrode channel
and computed the corresponding HFO rate (Section 4). Examples
of HFO recorded from Patient 1 and detected by the hardware
SNN are shown in Fig. 5a; several neurons respond within a few
milliseconds after initiation of the HFO. Different HFO produce
different UP and DN spike trains, which in turn lead to different
sets of second layer neurons spiking. Figure 5d shows the HFO
rates calculated for each electrode from the recordings of this
patient. Observe that not all the neurons in the second layer
respond to the HFO. Even for electrode channels with high HFO
rates, a very small number of neurons fire at high rates.

The robustness of the HFO rate measured with our system can
be observed in Fig. 1i, where the relative differences of HFO rates
across channels in Patient 1 persisted over multiple nights. To
quantify this result we performed a test-retest reliability analysis
by computing the scalar product of the HFO rates across all
recording intervals (0.95 in Patient 1), where the scalar product is
~1̃ for highly overlapping spatial distributions, indicating that the
HFO distribution persists over intervals.

Predicting seizure outcome. In Patient 1, the electrodes were
implanted in right frontal cortex (IAR, IPR), the left medial
temporal lobe (AL, HL) and the right medial temporal lobe (AR,
AHR, PHR). The recording channels AR1-2 and AR2-3 in the
right amygdala produced the highest HFO rates persistently. We
included all channels with persistently high HFO rate in the 95%
percentile to define the “HFO area”. If the HFO area is included
in the resection volume (RV), we would retrospectively “predict”
for the patient to achieve seizure freedom. Indeed, right selective
amygdalohippocampectomy in this patient achieved seizure
freedom for >1 year.

We validated the system performance across the whole patient
group by performing the test-retest reliability analysis of all the
data. The test-retest reliability score ranges from 0.59 to 0.97 with

a median value of 0.91. We compared the HFO area detected by
our system with the RA. For each individual, we then retro-
spectively determined whether resection of the HFO area would
have correctly “predicted” the postsurgical seizure outcome
(Table 1). Seizure freedom (ILAE 1) was achieved in 6 of the 9
patients. To estimate the quality of our “prediction”, we classified
each patient as follows: we defined as “True Negative” (TN) a
patient where the HFO area was fully located inside the RV and
who became seizure free; “True Positive” (TP) a patient where the
HFO area was not fully located within the RV and the patient
suffered from recurrent seizures; “False Negative” (FN) a patient
where the HFO area was fully located within the RV but who
suffered from recurrent seizures; “False Positive” (FP) a patient
where the HFO area was not fully located inside the RV but who
nevertheless achieved seizure freedom.

The HFO area defined by our system was fully included in the
RV in patients 1 to 6. These patients achieved seizure freedom
and were therefore classified as TN. In Patients 7 and 9, the HFO
area was also included in the RV but these were classified as FN
since these patients did not achieve seizure freedom. The false
prediction may stem either from HFO being insufficiently
detected or from the epileptogenic zone being insufficiently
covered by iEEG electrode contacts. In Patient 8, the HFO area
was not included in the RV and the patient did not achieve
seizure freedom (TP).

We finally compared the predictive power of our detector to that
of the Morphology Detector31 for the individual patients (Table 1)
and over the group of patients (Table 2). The overall prediction
accuracy of our system across the 9 patients is comparable to that
obtained by the Morphology Detector. The 100% specificity
achieved by both detectors indicates that HFO analysis provides
results consistent with the current surgical planning.

Discussion
The results presented here demonstrate the potential of neuro-
morphic computing for “extreme-edge” use cases; i.e., computing
applications for compact embedded systems that cannot rely on
internet or “cloud computing” solutions. It should be clear
however, that this approach does not address general purpose
neuromorphic computing classes of problems nor does it propose
novel methodologies for artificial intelligence applications. It is an
approach that needs to be optimized to every individual “specific
purpose” use case, by reducing to the minimum necessary the
amount of compute resources, to minimize power consumption.
As such, this approach can not be directly compared with large-
scale neuromorphic computing approaches, or state-of-the-art or
deep-learning methods.

Table 1 Patient characteristics and postsurgical seizure outcome. We “predict” seizure outcome for each patient based on
resection of the HFO area that was delineated by the Morphology Detector31 and the hardware SNN of our system. The
hardware SNN prediction was correct in 7/9 patients.

Patient Histology/
Pathology

Intervals
of 5 min

Test-retest
intervals

Outcome (ILAE) Follow-up
(months)

Morphology Detector
prediction

Hardware SNN
prediction

1 HS 28 0.95 1 12 TN TN
2 Glioma 13 0.97 1 29 TN TN
3 HS 39 0.83 1 13 TN TN
4 HS 34 0.96 1 41 TN TN
5 HS 35 0.91 1 14 TN TN
6 HS 35 0.59 1 11 TN TN
7 HS 1 — 3 42 FN FN
8 HS 16 0.74 3 15 FN TP
9 HS 12 0.90 5 46 FN FN

HS hippocampal sclerosis; ILAE seizure outcome classification of the International League Against Epilepsy.
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Other embedded systems and VLSI devices designed for the
specific case of processing and/or classifying EEG signals have
been proposed in recent years63–66. Table 3 highlights the dif-
ferences between these systems and the one presented in this
work. Interestingly, only two of these other designs have opted for
integrating analog acquisition headstages with the computing
stages for standalone operation65,66. Both of these designs have a
comparable number of channels to our system; however they
comprise conventional analog to digital converter designs (ADCs)
that are not optimal for processing bio-signals67. Indeed analog to
digital data conversion for bio-signal processing has been an
active area of investigation in biomedical processing field, with
increasing evidence in favor of delta encoding schemes (such as
the one used in this work)68–70. The only design listed in Table 3
that utilizes a symbolic encoding scheme and that has been
applied to iEEG is the work of Burello et al.’1963. However, this
design is missing a co-integrated analog headstage and, by
extension, an integrated local binary pattern encoder. Separating
the signal encoding stage from the processing stage allows the
implementation of sophisticated signal processing techniques and
machine learning algorithms, as is evident from the works of
Burello et al.63 and Feng et al.64. But using off-the shelf platforms
for signal encoding, processing, or both, leads to much higher
power consumption and bulky platforms that make the design of
compact and portable embedded systems more challenging.

Other full custom and low-power neural recording headstages
developed in the past were optimized for very large scale arrays20–23,
or for intracranial recordings49,71–76. To our knowledge, we present
here the first instance of a headstage design that has the capability of
adapting to numerous use cases requiring different gain factors and
band selections, on the same input channel.

When comparing our neuromorphic SNN with other HFO
detectors proposed in the literature35,36, several differences and
commonalities become evident. As a conceptual difference, the
SNN proposed here models many of the features found in bio-
logical neural processing systems, such as the temporal dynamics
of the neuron and synapse elements, or the variability in their
time constants, refractory periods, and synaptic weights. Our
system does not store the raw input signals by design so that off-
line post-hoc examination of HFO is not possible. In addition, the
approach followed to determine the right set of the model
parameters is radically different from the deep-learning one:
rather than using arrays of identical neurons with homogeneous
parameters and a learning algorithm to determine the weights of
static synapses, we tuned the parameters governing the dynamics
of the synapses and exploited the variability in their outputs,
using ranges that are compatible with the distributions measured
from the analog circuits, to create an ensemble of weak classifiers
that can reliably and robustly detect HFO. The event-based nat-
ure of the hardware implementation of such model and the
matched filter properties of the SNN circuits with the time con-
stants of the signals being processed, translates into an extremely

low-power (sub mW) device. These results demonstrate the fea-
sibility of compact low-power implantable devices for long-term
monitoring of the epilepsy severity. As a commonality to other
non-neuromorphic off-line HFO detectors25,30–33,43 (Table 1),
our system uses the detection of HFO to “predict” seizure free-
dom after resective epilepsy surgery in individual patients.

The simulations of the SNN not only allowed us to define the
optimal architecture for HFO detection, but also gave us solutions
for setting the hyperparameters of the analog headstage, such as
the refractory period Vref and the threshold (Vtu and Vtd) for the
signal-to-spike conversion of the ADM. The robustness of the
software simulation has now been confirmed in an independent
dataset of intraoperative ECoG recordings, where the exact same
simulated SNN presented here was highly successful in detecting
HFO - without fine tuning of parameters at all38. While mismatch
effect is generally a concern in modeling hardware designs based
on software simulations, we show here that the mismatch among
the silicon neurons resulted in a key feature for the implementa-
tion of our SNN architecture. This advantage allowed us to gen-
erate the normal distribution of parameters without manually
defining the distribution of neuronal time-constants found in
simulations or requiring extra memory to allocate these values. By
averaging over both time and the number of neurons recruited by
the ensemble technique, the SNN network was able to achieve
robust results: the accuracy obtained by the SNN is compatible
with that obtained by a state-of-the-art software algorithm
implemented using complex algorithms on a powerful computer31.

In the “prediction” across the patient group (Table 2), the
sensitivity stands out to be very low, i.e. even after the HFO area
was resected, Patients 7 and 9 suffered from recurrent seizures
(FN prediction). On one hand, a FN may be due to insufficient
HFO detection. On the other hand, the spatial sampling of iEEG
recordings may be insufficient for localizing the EZ, i.e. seizures
may originate from brain volumes where they remain undetected
by the iEEG recordings. This spatial sampling restriction affects
the two HFO detectors and current clinical practice all alike.
Indeed, current clinical practice advised resection of brain tissue
in Patients 7, 8, and 9, which nevertheless suffered from recurrent
seizures postoperatively, i.e. the EZ was not removed in its
entirety. Interestingly, the HFO area of the Hardware SNN might
have included the correct EZ in Patient 8 (TP) while this was not
the case for the Morphology detector (FN). Still, the NPV in
Table 2 is the most relevant quantity for clinical purpose and it is
sufficiently high for both the Morphology Detector and the
Hardware SNN. Overall, the high specificity (100%) achieved
with our system not only generalizes the value of the detected
HFO by the SNN across different patients, but still holds true at
the level of the individual patients, which is a prerequisite to guide
epilepsy surgery that aims for seizure freedom.

This is a first feasibility study towards identifying relevant
features in intracranial human data in real-time, on-chip, using
event-based processors and spiking neural networks. By

Table 2 Comparison of postsurgical outcome prediction between the Morphology Detector and our system. TP True Positive; TN
True Negative; FP False Positive; FN False Negative; N = TP + TN + FP + FN = number of patients.

Morphology detector prediction [%] Hardware SNN prediction [%]

Specificity = TN/(TN + FP) 100 100
Sensitivity = TP/(TP + FN) 0 33
Negative Predictive Value = TN/(TN + FN) 67 75
Positive Predictive Value = TP/(TP + FP) — 100
Accuracy = (TP + TN)/N [%] 67 78

The Morphology Detector did not classify a TP so that sensitivity and PPV can not be calculated.
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integrating on the same chip both the signal acquisition headstage
and the neuromorphic multi-core processor, we developed an
integrated system that can demonstrate the advantages of neu-
romorphic computing in clinically relevant applications. The
general approach of building sensors that can convert their out-
puts to spikes and of interfacing spiking neural network circuits
and systems on the same chip can lead to the development of a
new type of “neuromorphic intelligence” sensory-processing
devices for tasks that require closed-loop interaction with the
environment in real-time, with low latency and low power bud-
get. By providing “neuromorphic intelligence” to neural recording
circuits the approach proposed will lead to the development of
systems that can detect HFO areas directly in the operation room
and improve the seizure outcome of epilepsy surgery.

Methods
Design and setup of the hardware device. The CMOS circuit simulations were
carried-out using the Cadence® Virtuoso ADE XL design tools. All circuits including
the headstage, the parameter generator, and the silicon neurons were designed,
simulated and analyzed in analog domain. The asynchronous buffers, spike routing
network and chip configuration blocks were simulated and implemented in the
asynchronous digital domain. The layout of the chip was designed using the Cadence®
Layout XL tool. The design rule check, layout versus schematic and post-layout
extraction of the analog headstages were performed using the Calibre tool. We pack-
aged our device using a ceramic 240-pin quadratic flat package. The package was then
mounted on an in-house designed six-layer printed circuit board. The programming
and debugging of the System-on-Chip (SoC) was performed using low-level software
and firmware developed in collaboration with SynSense Switzerland, and implemented
using the XEM7360 FPGA (Opal Kelley, USA). The pre-recorded iEEG was fed to the
chip using a Picoscope 2205A MSO (Picotech, UK). All frequency-domain measure-
ments were performed using a Hewlett-Pacard 35670A dynamic signal analyzer.

Characteristics of the SNN model. The SNN model is composed of a layer of
input units, that provide the input spikes derived from the recorded and filtered
input waveforms, and a layer of Integrate-and-Fire (I&F) neurons that reproduce
the dynamics of neuromorphic circuits present in the chip13. The silicon neurons
present in the chip reproduce the properties of Adaptive-Exponential Integrate and
Fire (AdExp-I&F) neuron models77, while the synapse circuits that connect the
input nodes to the AdExp-I&F neurons exhibit first-order temporal dynamics59.
Unlike classical Artificial Neural Networks (ANNs) this model does not rely only
on the synaptic weights to carry out it’s task: each neuron in the network can be
interpreted as a non-linear temporal filter that is tuned to the specific shape of the
waveform it is trying to recognize. The tuning hyper-parameters that are relevant
for this operation, besides the weights, are the neuron and synapse time constants.
The equations that describe the behavior or AdExp-I&F neurons are the following:

τmem
d
dt

VmemðtÞ ¼ �VmemðtÞ þ IsynðtÞ � vahpðtÞ þ f ðVmemÞ

τahp
d
dt

vahpðtÞ ¼ �vahpðtÞ þ wahpδspkðtÞ
ð1Þ

where Vmem represents the neuron’s membrane potential, f(⋅) is an exponential
function of Vmem with a positive exponent77, vahp represents a after-hypolarizing
term that is increased with every output spike, and which has a negative feedback
onto the membrane potential, typical of spike-frequency adaptation mechanisms78.
Indeed, the term δspk(t) is 1 when the neuron spikes, and zero otherwise. The terms
τmem and τahp represent the time constants of the membrane potential and after-
hypolarizing potential respectively (see Table 4 for the values used in the simula-
tions of the neural architecture). The term Isyn(t) represents the total weighted sum
of the synaptic input, which in our network is composed of one excitatory and one
inhibitory synaptic input that are subtracted from each other (Isyn(t)= Iexc(t)−
Iinh(t)). The equations that govern the dynamics of the synaptic excitatory and
inhibitory circuits are, to first order approximation:

τexc
d
dt

IexcðtÞ þ IexcðtÞ ¼ wexcδUPðtÞ

τinh
d
dt

IinhðtÞ þ IinhðtÞ ¼ winhδDN ðtÞ
ð2Þ

where τexc and τinh represent the time constants of the synapses, wexc and winh their
weights (see also Table 4 for the values used in the simulations). The terms δUP(t)
and δDN(t) are one during UP and DN input spikes respectively, and zero otherwise.

SNN model signal processing features. The software simulations made in the
prototyping stage to model the hardware implementation of the Spiking Neural
Network (SNN) used equations derived from the Differential Pair Integrator (DPI)
synapse circuit analysis13,59, by taking into account circuit constraints, such as 20%
variability in all state variables due to device mismatch, or the fact that all variablesT
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encoded by currents were clipped at zero (currents in the neuron and synapse
circuits can only flow in one direction). Figure. 6a shows the behavioral simulation
results for the normalized steady-state response of the DPI to spike trains encoding
an input sine wave, as a function of sine wave frequency. As expected, the DPI
reproduces a standard low-pass filter behavior, also for spiking inputs. By com-
bining the response of the excitatory DPI synapse with the one of the inhibitory
synapse and appropriately choosing their time constants, we effectively designed a
band-pass filter coarsely tuned to the spectral properties of High Frequency
Oscillations (HFOs) (see Fig. 6b). Then, by exploiting the device mismatch effects
in the synapse and neuron circuits (also simulated in software) and combining the
output of multiple, slightly different neurons, we created an ensemble of “weak
classifiers” that can, collectively, detect the occurrence of an HFOs in the data and
to generalize to the slight variations present in the HFO signals.

Software simulation and hardware validation of the neural architecture. For
the software simulation of the network we used the Spiking Neural Network
simulator Brian279 and a custom made toolbox58 that makes use of equations
which describe the behavior of the neuromorphic circuits. To find the optimal
parameters of the SNN, we were guided by the clinically relevant HFO marked by
the Morphology Detector31: Around the HFO marked in the iEEG31 we created
snippets of data ± 25 ms. These snippets were used to select the parameters for the
ADM and the SNN network (see Methods). The SNN architecture was validated
using the previous generation of the neuromorphic processor DYNAP-SE47, for
which a working prototyping framework is available. The high-level software-
hardware interface used to send signals to the SNN, configure its parameters, and
measure its output was designed in collaboration with SynSense AG, Switzerland.

Patient data. We analyzed long-term iEEG recordings from the medial temporal
lobe of 9 patients. Patients had drug-resistant focal epilepsy as detailed in Table 1.
Presurgical diagnostic workup at Schweizerische Epilepsie-Klinik included

recording of iEEG from the medial temporal lobe. The independent ethics com-
mittee approved the use of the recorded data for research and patients signed
informed consent. The surgical planning was independent of HFO. Patients
underwent resective epilepsy surgery at UniversitätsSpital Zürich. After surgery, the
patients were followed-up for >1 year. Postsurgical outcome was classified
according to the International League Against Epilepsy (ILAE)80.

The data set is publicly available43 and is considered a standard dataset for HFO
benchmarking36 as it fulfills the following requirements29.

● iEEG sampling rate of 2000 Hz
● low thermal noise level of the iEEG (<30 nV/

ffiffiffiffiffiffi

Hz
p

)
● iEEG recorded during periods of slow-wave sleep, which promotes low

muscle activity and high HFO rates
● several intervals from the same patient recorded during the same night and

subsequent nights for test-retest analysis
● intervals are at least three hours apart from epileptic seizures to eliminate

the influence of seizure activity
● after iEEG recording, patients underwent epilepsy surgery where a volume

of the brain was resected
● documentation of the electrode contacts that were localized in the resected

brain volume
● documentation of post-operative seizures, i.e. whether seizure freedom was

achieved for >1 year

The amount of nights and intervals varied across patients with up to six
intervals (≈5 min each) that were recorded in the same night (Table 1). We focused
on the 3 most medial bipolar channels from recordings in the medial temporal lobe
because HFO in these channels are known to have higher signal-to-noise ratio31. In
total, we analyzed 18 hours of data recorded from 206 electrode contacts. In a
previous publication with this data set, we had detected 34,479 HFO with the
Morphology detector31,37 and compared the HFO area to the resected brain
volume to predict seizure outcome in order to validate the HFO detection31.

Table 4 Synapse parameters of the SNN model depicted in (Fig. 1d).

Parameter Value Description

τmem 15.2 ms Time constant of the neuron’s membrane potential. A value of 3.5 pA is set to the bias Iτ to achieve this time
constant.

τahp 35.7 ms Time constant of the neuron’s after-hyperpolarizing potential. A value of 1 pA is set to the bias Iτahp to achieve this

time constant.
τexc min: 3 ms max: 6 ms Time constant of the excitatory synapses. This time constant determines the cutoff frequency of the DPIs receiving

the UP spikes. To get this these values we set the bias Iτexc in the range 8.9-17.8 pA

τinh min: 2 ms max: 5.7
ms

Time constant of the inhibitory synapses. This time constant determines the cutoff frequency of the DPI receiving
the DN spikes. To get this these values we set the bias Iτ inh in the range 9.4-26.8 pA

wexc 1 or 2 nA With these weight values and the parameters mentioned above, the silicon neurons need a
winh −1 or −2 nA minimum of 14 input excitatory spikes at a rate of 3kHz to generate a single spike.

a b

Fig. 6 DPI low- and band-pass filter characteristics for spiking inputs. a Behavioral simulation results for the normalized steady-state response of the
Differential Pair Integrator (DPI) to spike trains encoding an input sine wave, as a function of sine wave frequency. The DPI is able to reproduce a standard
low-pass filter behavior for spiking inputs. b Band-pass filters resulting from the combination of DPIs with different time constants. A first-order band-pass
filter results from subtracting the time responses to sine waves of varying frequencies of a single excitatory DPI synapse with a given time constant with
the time responses of an inhibitory DPI synapse with a different time constant. The band-pass filters depicted here were obtained by using an excitatory
DPI with a time constant of 6 ms and subtracting the activity of inhibitory DPIs with time constants ranging from 0.5–4.5ms.
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HFO detection. HFO detection was performed independently for each channel in
each 5-min interval of iEEG. The signal pre-processing steps consisted of bandpass
filtering, baseline detection and transforming the continuous signal into spikes using
the ADM block. The ADM principle of operation is as follows: whenever the
amplitude variation of the input waveform exceeds an upper threshold Vtu a positive
spike on the UP channel is generated; if the change in the amplitude is lower than a
threshold Vtd, a negative spike in the DN channel is produced.

As the amplitude of the recordings changed dramatically with electrode, patient
data and recording session, we introduced a baseline detection mechanisms that was
used to adapt the values of the Vtu and Vtd thresholds in order to produce the optimal
number of spikes required for detecting HFO signals while suppressing the
background noise and outliers in the recordings. This baseline was calculated for each
iEEG channel in software: during the first second of recording, the maximum signal
amplitude was computed over non-overlapping windows of 50ms. These values were
then sorted and the baseline value was set to the average of the lowest quartile. This
procedure excluded outliers on one hand, and suppressed the noise floor on the other
hand. This procedure was optimal for converting the recorded signals into spikes.

Spikes entered the SNN architecture as depicted in Fig. 5b, c. The SNN
parameters used to maximize HFO detection were selected by analyzing the Inter-
Spike-Intervals (ISIs) of the spike trains produced by the ADM and comparing
their characteristics in response to inputs that included an HFO event versus inputs
that had no HFO events. This analysis was then used to tune the time constants of
the SNN output layer neurons and synapses. Specifically, the approach used was to
rely on an ensemble of neurons in the output layer and to tune them with
parameters sampled from a uniform distribution. The average time constant for the
neurons was chosen to be 15 ms, with a coefficient of variation set by the analog
circuit devise mismatch characteristics, to approximately 20%. Similarly, the
excitatory synapse time constants were set in the range (3–6) ms and the inhibitory
synapse time constants in the range (0.1–1) ms.

After sending the spikes produced by the ADMs to the SNN configured in this
way, we evaluated snippets of 15 milliseconds output data produced by the SNN
and signaled the detection of an HFO every time spikes were present in consecutive
snippets of data. Outlier neurons in the hardware SNN that spiked continuously
were considered uninformative and were switched off for the whole study. The
activity of the rest of the neurons faithfully signaled the detection of HFO (see
Table 2). For the HFO count, spikes with inter-spike-intervals <15 ms were
aggregated to mark a single HFO.

Post-surgical outcome prediction. To retrospectively “predict” the postsurgical
outcome of each patient in this data set, we first detected the HFO in each 5-min
interval by measuring the activity of the silicon neurons in the hardware SNN. We
calculated the rate of HFO per recording channel by dividing the number of HFO
in the specific channel by the duration of the interval. The distribution of HFO
rates over the list of channel defines the HFO vector. In this way we calculated an
HFO vector for each interval in each night. We quantified the test-retest reliability
of the distribution of HFO rates over intervals by computing the scalar product of
all pairs of HFO vectors across intervals (Table 1). We then delineated the “HFO
area” by comparing the average HFO rate over all recordings and choosing the area
at the electrodes with HFO rates exceeding the 95 percentile of the rate distribu-
tion. Finally, to assess the accuracy of the patient outcome prediction, we compared
the HFO area identified by our procedure with the area that was resected in
surgery, and compared it with the postsurgical seizure outcome (Table 1).

Ethics statement. The study was approved by the institutional review board
(Kantonale Ethikkommission Zurich PB-2016-02055). All patients signed written
informed consent. The study was performed in accordance with all relevant ethical
guidelines and regulations.

Data availability
The iEEG data analyzed here are freely available at OpenNeuro in BIDS format under
https://openneuro.org/datasets/ds003498.

Code availability
The code used in this study is available at https://github.com/kburel/SNN_HFO_iEEG
(https://zenodo.org/badge/latestdoi/359535894).
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