Skip to main content
. 2021 May 25;11:10839. doi: 10.1038/s41598-021-90345-w

Table 3.

Performance table of training models.

Transferred models Accuracy GPU time (s) Parameters Processing time (s)
MoblieNet-V2 93.455 27,240 2,235,200 0.0374
MoblieNet-V3 93.884 24,758 2,946,622 0.0357
Inception-V4 93.000 98,270 42,681,353 0.1309
ResNet50 93.581 51,098 25,557,032 0.0668
ResNet101 93.632 78,844 42,516,552 0.1099
Inception-ResNet-V2 94.617 111,849 54,318,760 0.1604
DensNet-BC121 94.188 54,192 6,962,056 0.0859
DensNet-BC161 94.564 78,453 26,489,672 0.1707
DensNet-BC169 94.541 56,477 12,497,800 0.1090
DensenetBC1215 94.364 56,079 7,548,920 0.0809
DensenetBC1615 95.099 80,895 27,893,456 0.4512
DensenetBC1695 94.339 58,209 13,122,040 0.1318
Ensemble 0.5708

GPU time is the processing power needed for training and validation the model. Processing time means the time of each model to identify the same input image.