Table 2.
Isotope | Decay data | Nuclear reaction | Cross section (Max value) |
Beam energy (MeV) | Enrichment of target material | Composition/ chemical form | Cost +++ = expensive --- = not expensive |
Irradiation site / type |
---|---|---|---|---|---|---|---|---|
Sc-43 |
T1/2 = 3.89 h <Eβ+ > = 476 keV (88.1%) Eγ =372 keV (22.5%) |
43Ca(p,n)43Sc | 300 mb | 6–13 |
natural abundance 0.135% Max enrichment 90% |
natCaCO3 43CaCO3 |
++ | PSI (S) (Van der Muelen 2015) |
44Ca(p,2n)43Sc | ~ 170 mb | 18–27 |
natural abundance of only 2.09% Max enrichment 99% |
44CaCO3 | ++ | |||
46Ti(p,α)43Sc Krajewski et al., 2012 | 45 mb | 11–21 |
natural abundance of 8.25% Max enrichment 97% |
46TiO2 | + | PSI (S) University of Alabama at Birmingham (USA) | ||
42Ca(d,n)43Sc | 200 mb | 2–11 |
natural abundance of only 0.647% Max enrichment 96.8% |
42Ca 42CaCO3 |
+++ | |||
natCa(α,n)43Ti (T1/2 = 509 ms)➔43Sc (Koning, 2016; Howard, 1974) natCa(α,p)43Sc (Synowiecki et al. 2018; Domnanich et al. 2017a) |
570 mb (Howard, 1974) | 10–19 |
natural abundance 96.94% (as 40Ca) no need for enrichment |
40Ca (not so easy to handle) natCaCO3 40CaCO3 |
++ |
cyclotron with alpha beam HIL, Warsaw (PL) |
||
Sc-44 |
T1/2 = 3.97 h <Eβ+ > = 632 keV (94.27%) Eγ = 1157 keV (99.9%) |
45Sc(p,2n)44Ti (T1/2 = 60y) (generator 44Ti➔44Sc) | 45 mb | 17–31 | Natural abundance | 45Sc | +++ | LANL + BNL (USA) |
natCa(p,n)44Sc | 10 mb | 7–15 |
natural abundance 96.94% (as 40Ca) no need for enrichment |
natCa(NO3)2, 4H20 | – |
Univ. Wisconsin (USA) / cyclotron Triumf (CA) |
||
44Ca(p,n)44Sc/44mSc | 700 mb | 7–15 |
natural abundance of only 2.09% Max enrichment 99% |
44CaCO3 | ++ | PSI (S) Univ. Alabama Birmingham (USA) | ||
44Ca(p,n)44Sc/44mSc | 700 mb | 7–15 | Max enrichment 99% | 44CaO | ++ | PSI (S) (van der Meulen et al. 2020) | ||
44Ca(d,2 n) 44Sc/44mSc | 540 mb | 11–25 |
natural abundance of only 2.09% Max enrichment 99% |
44CaCO3 | ++ | Arronax (F) | ||
47Ti (p,α)44Sc | 70 mb | 12–20 |
natural abundance 7.44% Max enrichment > 95% |
47TiO2 | + | |||
47Sc |
T1/2 = 3.349 d <Eβ- > = 162 keV(100%) Eγ = 159 keV (68.3%) |
47Ti(n,p)47Sc | ~250mb | Fast neutron |
natural abundance 7.44% Max enrichment > 95% |
47TiO2 | + | nuclear reactor (Walczak et al. 2015; Szkliniarz et al. 2016; Minegishi et al. 2016; Carzaniga et al. 2019) |
46Ca(n,γ)47Ca → 47Sc | 0.74 b | Thermal neutron |
natural abundance of only 0.004% Max enrichment 24.8% |
46CaCO3 | +++ |
nuclear reactor: ILL (F) (Minegishi et al. 2016) MARIA(Pl) (Carzaniga and Braccini 2019) ETRR-2 (ET) (Sitarz et al. 2018) Dhruva (IND) (Filosofov et al. 2010) |
||
Direct reaction on Ti targets | 50Ti(p,α)47Sca | ~ 25 mb | 15–30 |
natural abundance 5.18% Max enrichment 83% |
50TiO2 | +++ | University of Alabama at Birmingham (USA) | |
48Ti(p,2p)47Sc | ~ 30 mb | 30–100 |
natural abundance 73.72% Max enrichment > 96% |
48TiO2 | – | high energy accelerators, BNL and LANL (USA) | ||
50Ti(d,αn)47Sc | > 60mb |
natural abundance 5.18% Max enrichment 83% |
50TiO2 | +++ | ||||
49Ti(d,α)47Sc | ~ 40 mb |
natural abundance 5.41% max enrichment 92.4 |
49TiO2 | ++ | ||||
47Ti(d,2p)47Sc | ~ 40 mb |
natural abundance 7.44% Max enrichment > 95% |
47TiO2 | + | ||||
Direct reaction on Ca targets | 48Ca(p,2n)47Sc, | ~ 800 mb | 12–26 |
natural abundance 0.187% Max enrichment 97.1% |
48CaCO3 | ++ | (Krajewski et al. 2013; Domnanich et al. 2017b) | |
44Ca(α,p) 47Sc | ~ 120 mb | 10–20 |
natural abundance 2.09% Max enrichment 99% |
44CaO | ++ | (Domnanich et al. 2017a) | ||
Direct reaction on V targets | 51V(p,αp)47Sc | ~ 15 mb | 30–40 | natural abundance | natV | – | (van der Meulen et al. 2015) | |
Electron Linear Accelerator | 48Ti(γ,p)47Sc | ~ 28 mb | 16–28 |
natural abundance 73.72% Max enrichment > 96% |
48TiO2 | – | LANL (USA) |
aE Gadiooli et al., Z. Phys A Atoms and Nucl D4060001, 39, 301, 289-300, 1981