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Reticulocalbin 3 is involved 
in postnatal tendon development 
by regulating collagen 
fibrillogenesis and cellular 
maturation
Na Rae Park1, Snehal S. Shetye1, Igor Bogush1, Douglas R. Keene2, Sara Tufa2, 
David M. Hudson3, Marilyn Archer3, Ling Qin1, Louis J. Soslowsky1, Nathaniel A. Dyment1 & 
Kyu Sang Joeng1*

Tendon plays a critical role in the joint movement by transmitting force from muscle to bone. This 
transmission of force is facilitated by its specialized structure, which consists of highly aligned 
extracellular matrix consisting predominantly of type I collagen. Tenocytes, fibroblast-like tendon 
cells residing between the parallel collagen fibers, regulate this specialized tendon matrix. Despite 
the importance of collagen structure and tenocyte function, the biological mechanisms regulating 
fibrillogenesis and tenocyte maturation are not well understood. Here we examine the function 
of Reticulocalbin 3 (Rcn3) in collagen fibrillogenesis and tenocyte maturation during postnatal 
tendon development using a genetic mouse model. Loss of Rcn3 in tendon caused decreased tendon 
thickness, abnormal tendon cell maturation, and decreased mechanical properties. Interestingly, Rcn3 
deficient mice exhibited a smaller collagen fibril distribution and over-hydroxylation in C-telopeptide 
cross-linking lysine from α1(1) chain. Additionally, the proline 3-hydroxylation sites in type I collagen 
were also over-hydroxylated in Rcn3 deficient mice. Our data collectively suggest that Rcn3 is a pivotal 
regulator of collagen fibrillogenesis and tenocyte maturation during postnatal tendon development.

Tendons are critical for native function of the musculoskeletal system. They are primarily composed of type 
I collagen and individual collagen fibrils arrange themselves into the highly organized bundles that can resist 
high tensile forces1. Tendons undergo significant changes in tissue and cell morphology throughout postnatal 
development. Tendon structure becomes denser and more organized via matrix production and collagen fibrillo-
genesis. Cell density becomes lower as matrix production increases and cell proliferation decreases2. The shape 
of tendon cell nuclei transform from round to a short spindles, and eventually to a long, flat spindles3. Previous 
studies have shown that several signaling pathways and transcription factors are critical regulators of embryonic 
and postnatal tendon development, but the precise regulatory mechanisms for cellular maturation and collagen 
fibrillogenesis during postnatal tendon development are still not clear4–11.

Developmental stage of tendons is marked by an increase in the number of collagen fibrils deposited in the 
matrix12. However, postnatal stages are shown to increase the diameter of existing collagen fibrils rather than 
an increase in collagen fibril number12. This transition occurs in the rough endoplasmic reticulum and involves 
a complex process wherein small collagen fibrils undergo lateral fusion to form thicker fibrils13. Mutations in 
several genes that regulate this process, including Decorin, Fibromodulin, and Lumican can cause defects in 
tendon maturation14–19.

Collagens consist of repeating Gly-X-Y triplets. Procollagen biosynthesis occurs in the ER and has char-
acteristic post-translational modifications, including hydroxylation and glycosylation. Two modifications of 
proline residues are known, prolyl 4-hydroxylation and prolyl 3-hydroxylation13. Almost all proline residues 
found in the Y position undergo prolyl 4-hydroxylation. Prolyl 4-hydroxylation residues are believed to provide 
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stability to the collagen triple helix through hydrogen bonds and water bridges20,21. Several tissue-specific prolyl 
3-hydroxylation modification sites have been identified in tendon type I collagen, including α1(I) Pro986, α1(I) 
Pro707, α2(I) Pro707, and a C-terminal (GPP)n motif that are mainly modified by P3H2 and α1(I) Pro986 that 
is modified by P3H122. The total prolyl 3-hydroxylation content in the adult Achilles tendon collagen was higher 
than that in fetal Achilles tendon collagen23. Several studies suggested that prolyl 3-hydroxylation is involved in 
collagen fibril assembly22,24,25.

Reticulocalbin 3 (Rcn3), a 45 kDa ER lumen protein, is a member of the CREC (Cab45/reticulocalbin/ERC45/
calumenin) family of multiple EF-hand Ca2+-binding proteins, including Rcn1, ERC-55 (Rcn2), Rcn3, Cab45, 
and calumenin26. Proteomic studies have suggested that Rcn3 functions as a chaperone protein in the secretory 
pathway and has emerged as a new potential regulator of collagen production27,28. Recent mouse genetic stud-
ies have demonstrated that Rcn3 plays a critical role in perinatal lung maturation by regulating synthesis and 
secretion of surfactant and is involved in pulmonary injury remodeling via regulation of alveolar epithelial cell 
(AEC) apoptosis and ER stress29,30. Despite this emerging role of Rcn3 in the secretory pathway, the physiological 
function of Rcn3 in various tissues producing a large amount of extracellular matrix is not yet fully established.

In this study, we investigated the physiological function of Rcn3 in tendon by conditionally deleting Rcn3 in 
mouse tendon cells. Loss of Rcn3 caused impaired postnatal tendon maturation with markedly decreased tendon 
thickness. Consistently, structural properties were reduced in Rcn3 deficient mice, but material properties were 
mostly unchanged. We further found that Rcn3 deficiency resulted in impaired collagen fibrillogenesis with 
over-modification of type 1 collagen and reduced fibril diameter distribution. Collectively, these findings, for 
the first time, establish the biological function of Rcn3 in postnatal tendon development and provide an exciting 
mouse genetic model for studying collagen fibrillogenesis and modification in tendon.

Results
Loss of Rcn3 caused decreased tendon thickness.  The endogenous Scleraxis (Scx) begins to be 
expressed in the lateral plate mesoderm and the body wall from E9.5, and its expression is restricted to the 
developing tendons at E14.531. Besides, Scx is expressed in tenocytes and directly regulates the expression of type 
I collagen (Col1a1) that is highly expressed in differentiated tenocytes32–34. Therefore, to understand the function 
of Rcn3 in tendons, we generated Scx-Cre; Rcn3fl/fl mice in which Rcn3 was specifically deleted in Scx-expressing 
cells that are abundant in tendons35,36. The growth of Scx-Cre; Rcn3fl/fl mice was normal compared with wild-
type mice, which was evident with normal body weight (Fig. 1A). To access the knockout efficiency of Rcn3 in 
tendons, we performed immunohistochemistry analysis against Rcn3 (Fig. 1B). Rcn3 was highly expressed in 
patellar and Achilles tendons in wild-type mice at the early postnatal stage, including P5, P21, and P30, but its 
expression was decreased at a later stage, P60 (Fig. 1B). Immunohistochemistry analysis demonstrated that the 
deletion of Rcn3 in Scx-Cre; Rcn3fl/fl tendons were efficient in both patellar and Achilles tendons throughout the 
postnatal maturation (Fig. 1B). In the patellar tendon, we observed residual Rcn3 expression at P5 and P21, but 
the expression was not detected at P30 and P60. In the Achilles tendon, we found residual expression till P30, 

Figure 1.   The weight of wild-type mice and Scx-Cre; Rcn3fl/fl mice at P30 (A). Immunohistochemical analysis 
of Rcn3 on patellar and Achilles tendons from wild-type mice and Scx-Cre; Rcn3fl/fl littermates during postnatal 
tendon maturation (B). (Brown color indicates Rcn3, Scale bar indicates 20 µm (B) and n = 5 (A)).
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but the expression was not detected at P60. These data suggest that the deletion of Rcn3 is efficient in the patellar 
and Achilles tendons.

We performed histological analyses on patellar and Achilles tendons to assess the tendon phenotypes in 
Scx-Cre; Rcn3fl/fl mice. Although Scx-Cre; Rcn3fl/fl mice had no difference in body weight compared to wild-type 
mice (Fig. 1A), Scx-Cre; Rcn3fl/f mice clearly displayed decreased tendon thickness at P30 compared to wild-type 
littermate in both patellar (Fig. 2A) and Achilles tendon (Fig. 2C). Our quantification results confirmed the 40% 
reduced thickness in the patellar tendon and 20% reduced thickness in the Achilles tendon (Fig. 2B,D). We also 
found that the cellularity of tendons in Scx-Cre; Rcn3fl/fl mice was higher than wild-type mice, with threefold and 
1.5-fold increases in the patellar and Achilles tendons, respectively (Fig. 2B,D). The increased cell density without 
the change in total cell number (Fig. 2B,D) prompted us to investigate cellular proliferation in Scx-Cre; Rcn3fl/fl 
mice. We found no differences in cell proliferation of Scx-Cre; Rcn3fl/fl mice (Fig. 2E,F), suggesting that reduced 
matrix formation likely caused increased cell density. These results collectively suggest that Rcn3 is critical for 
postnatal tendon development for both patellar and Achilles tendons.

Loss of Rcn3 reduced collagen fibril diameter.  The decreased tendon thickness prompted us to exam-
ine collagen fibril ultrastructure because collagen fibrillogenesis is critical for tendon growth. We performed 
transmission electron microscopy (TEM) using patellar and Achilles tendons at 2 months of age to measure 
collagen fibril diameter. Scx-Cre; Rcn3fl/fl mice exhibited decreased fibril diameter in both patellar (Fig. 3A) and 
Achilles tendons (Fig. 3C) compared with wild-type mice. Specifically, quantification results showed that the 
distribution of collagen fibril diameter in patellar tendon ranged from 20 to 210 nm in wild-type mice, whereas 
Scx-Cre; Rcn3fl/fl mice showed a narrower collagen fibril distribution (10–170 nm) in the patellar tendon lacking 
the larger fibrils found in WT mice (Fig. 3B). In the patella tendon, control mice had the peak number of col-
lagen fibril diameter at 170 nm, and Scx-Cre; Rcn3fl/fl mice had the peak number at 90 nm. Consistent with the 
patellar tendon, the Achilles tendon also showed the same trend with a shifted distribution in the mutants lack-
ing the larger fibrils (i.e., 190–260 nm) found in WT mice (Fig. 3D). In the Achilles tendon, control mice had the 

Figure 2.   Histology of patellar and Achilles tendons from wild-type mice and Scx-Cre; Rcn3fl/fl littermates 
during postnatal tendon development (A,C). The thickness, cell density and total cell number of patellar tendon 
and Achilles tendon at P30 (B,D). The BrdU staining and quantification of BrdU positive cell ratio in patellar 
and Achilles tendon at P10 (E,F) (Yellow scale bar indicates 500 µm (A) and black scale bar 20 µm (A,C,E,F), * 
indicates P < 0.05, ** indicates P < 0.01 and # indicates P < 0.001 between genotypes, n = 3).
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peak number of collagen fibril diameter at 170 nm, and Scx-Cre; Rcn3fl/fl mice had the peak number at 140 nm. 
These results suggest that Rcn3 is required for proper collagen fibrillogenesis, and decreased tendon thickness 
could be due to the smaller diameter of collagen fibril in Scx-Cre; Rcn3fl/fl mice.

Loss of Rcn3 increased collagen modification.  Collagen post-translational modifications and cross-
linking analysis were investigated in Scx-Cre; Rcn3fl/fl mice at 1 month of age. The modification state of several 
key residues was examined using peptide mass spectrometry. Notable findings include the C-telopeptide cross-
linking lysine from α1(I) chain, which was slightly over-hydroxylated in Scx-Cre; Rcn3fl/fl patellar (20% more 
hydroxylated) and Achilles (9% more hydroxylated) tendons compared to wild-type mice (Table  1A). These 
data support that partial telopeptide lysine hydroxylation in tendon is being shifted to fuller hydroxylation in 
Scx-Cre; Rcn3fl/fl mice. This is a useful mark of altered collagen cross-linking and is consistent with an increase 
in pyridinoline cross-links. Indeed, the cross-linking analysis revealed an increase in hydroxylysylpyridinoline 
in both tendons of the Scx-Cre; Rcn3fl/fl mice. It should be noted that while hydroxylysylpyridinoline provides 
a useful measure of stable (irreversible) cross-links, it is not a measure of the total cross-links (Table 1B). The 
pattern of collagen over-modification was also observed across the sites of proline 3-hydroxylation in type I col-
lagen in Scx-Cre; Rcn3fl/fl Achilles and patellar tendons (Table 1). A function has yet to be discovered for this rare 
modification, but it has been suggested that 3-hydrxyproline can regulate the postnatal lateral fusion of smaller 
fibrils in developing tendons23.

Loss of Rcn3 caused abnormal tendon cell morphology.  To investigate the cellular phenotype 
caused by the deletion of Rcn3, we analyzed tendon cell morphology using confocal microscopy after Zo1 and 
phalloidin double staining (Fig. 4A). Tendon cell areas became largest at P30 and dramatically decreased at P60 
in wild-type mice (Fig. 4C, white bar). Interestingly, tendon cells in Scx-Cre; Rcn3fl/fl mice exhibited increased 
cell area at P10 and P21 but significantly decreased cell areas at P30 compared to wild-type mice (Fig. 4C). We 
also found changes in protrusion number in tendon cells of Scx-Cre; Rcn3fl/fl mice. These protrusions from the 
cell body are critical for tendon cell interaction with adjacent cells and the ECM. The protrusion number, in 
these transverse sections, decreased during postnatal tendon maturation in wild-type mice (Fig. 4D, white bar). 
The Scx-Cre; Rcn3fl/fl mice showed a significantly increased protrusion number compared with wild-type mice at 
all stages of postnatal tendon development (Fig. 4D). Collectively, these results suggest that the function of Rcn3 
is indispensable for the morphological maturation of tendon cells.

Loss of Rcn3 increased the gene expression related to tenocyte differentiation.  To further 
understand the cellular phenotype at the molecular level, we performed qRT-PCR using Achilles tendon from 
wild-type mice and Scx-Cre; Rcn3fl/fl mice. First, we confirmed the efficient deletion of Rcn3 in the Achilles ten-
don of Scx-Cre; Rcn3fl/fl mice (Fig. 5). The expression of tenogenic markers, such as Scx, Mkx, Col1a1, and Tnmd, 
were significantly increased in Scx-Cre; Rcn3fl/fl mice compared with wild-type mice (Fig. 5). These results sug-
gest that the loss of Rcn3 enhanced tendon cell differentiation or delayed full tenocyte maturation.

Figure 3.   EM image of patellar (A) and Achilles (C) tendons and frequency graph of patellar (B) and Achilles 
(D) tendons of wild-type mice and Scx-Cre; Rcn3fl/fl littermates at P60. (Scale bar indicates 500 nm (A, C), n = 3 
animals).
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Loss of Rcn3 decreased mechanical properties.  To measure the functional outcome of Rcn3 loss in 
tendons, we performed uniaxial biomechanical testing of the Achilles tendon at 2 months of age. Consistent 
with our histological analysis, cross-sectional area (CSA) was significantly reduced in Scx-Cre; Rcn3fl/fl tendons 
(Fig. 6A). Concomitantly, stiffness and failure load were also significantly lower, suggesting a loss of structural 
capability in the Scx-Cre; Rcn3fl/fl mice (Fig.  6B,C). No difference was observed in percent stress relaxation 
between the two groups, suggesting that Rcn3 does not perturb the viscoelastic response of the Achilles tendon 
(Fig. 6D). In addition, no differences were observed in failure stress or tissue elastic modulus, which indicates 
that loss of Rcn3 did not cause an inherent material change in the tendon tissue (Fig. 6E,F). These data demon-
strate that reduced mechanical properties caused by loss of Rcn3 are due to decreased structural properties but 
not material properties.

Discussion
We investigated the function of Rcn3 in postnatal tendon development by characterizing a tendon-specific Rcn3 
knockout mouse (Scx-Cre; Rcn3fl/fl) model. The Scx-Cre; Rcn3fl/fl mice exhibited impaired postnatal tendon devel-
opment, including decreased tendon thickness, increased cellularity, impaired tenocyte maturation, and reduced 
collagen fibril diameter with altered collagen modification. Our study identified the novel function of Rcn3 in 
tendon and provides genetic approaches that can be used to investigate the underlying mechanisms regulating 
cellular and matrix maturation in tendon.

Rcn3 is known as an ER protein regulating the secretion of proteins, but its critical molecular function is not 
clear. Our study showed that Rcn3 deficiency caused impaired collagen fibrillogenesis with over-modification 
of collagen. These results suggest that Rcn3 is a critical regulator of collagen fibrillogenesis via regulation of col-
lagen modification. However, the precise molecular mechanism by which Rcn3 regulates collagen modification 
is still not clear. One possibility is that Rcn3, as a chaperon protein, stabilizes collagen for proper modification. 
Previous studies also suggested that Rcn3 functions as a chaperon protein27,28. The other possibility is that Rcn3 
mediates the binding of collagen modification enzymes to collagen molecules. Further molecular analyses will 
be required to elucidate the precise function of Rcn3 in collagen modification in tendon.

To measure morphological changes of tendon cells at a single-cell level, we developed a novel confocal 
imaging method (Fig. 4). We found that the protrusion number was decreased throughout the postnatal tendon 
development in wild-type mice. Interestingly, this result is different from the current finding using serial block 
face-scanning electron microscopy (SBF-SEM)12. Kalson et al. showed that a similar number of protrusions 
contacting adjacent cells between the tendons of newborn and 6-week-old mice. There are several variations 
between our and Kalson’s study. First, we have analyzed the patellar tendon, but they analyzed the tail tendon. 

Table 1.   Collagen cross-link and mass spectral analysis to investigate the hydroxylation levels (A) of lysine 
and proline in type 1 collagen (n = 1 for patellar and n = 2 for Achilles tendon) and the collagen cross-linking 
levels (B) (* indicates P < 0.05 between genotypes, n = 1 for patellar and n = 3 for Achilles tendon) from wild-
type mice and Scx-Cre; Rcn3fl/fl (tendon-specific Rcn3 loss-of-function model) littermates at P30.

A

Hydroxylation analysis
Patellar tendon (n = 1) 
(%)

Achilles tendon (n = 2) 
(%)

Site WT Scx-Cre; Rcn3fl/fl WT Scx-Cre; Rcn3fl/fl

Hydroxylysine

α1(I)K87 100 100
100 100

100 100

α2(I)K87 100 100
100 100

100 100

α1(I) C-telo Hyl 45 65
33 53

44 42

3-Hydroxyproline

α1(I)P986 92 96
93 93

91 95

α1(I)P707 60 80
50 76

50 65

α2(I)P707 45 65
79 85

74 88

B

Cross-linking analysis Patellar tendon (n = 1) Achilles tendon (n = 3)

Site WT Scx-Cre; Rcn3fl/fl WT Scx-Cre; Rcn3fl/fl

Hydroxylysylpyridinoline (mol/mol) 0.25 0.56

0.07 0.11 *

0.07 0.21

0.075 0.19
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Second, the age is different. We have analyzed age from P10 to P60. They analyzed newborn and 6-week-old 
mice. These age and tendon types could cause different results of tendon phenotype in each study. Further studies 
analyzing various tendon types and ages using our confocal imaging technique and SBF-SEM will be necessary 
to fully understand the morphological maturation of tenocytes.

During normal tendon development, the average cross-sectional cell area became largest at P30 in wildtype 
(Fig. 4). However, Scx-Cre; Rcn3fl/fl mice showed a prematurely increased cell area with increased cell area at 
P10 and P21, while significantly decreased cell area at P30 compared to wildtype. Interestingly, the protrusion 
numbers in mutant mice are significantly increased at all stages, suggesting the delay of tenocyte maturation. 
These cellular changes correspond with the molecular analysis (Fig. 5) that shows increased expression of early 
tenogenic markers in Rcn3 deficient mice. It is also consistent with the immature growth of collagen fibril. Based 
on these data, we carefully suggest that Rcn3 positively regulates the maturation of differentiated tenocytes. 

Figure 4.   Immunofluorescence staining of ZO1 and phalloidin double staining on cross-sectional patellar 
tendon from wild-type mice and Scx-Cre; Rcn3fl/fl (tendon-specific Rcn3 loss-of-function model) littermates 
during postnatal tendon maturation (A). H&E staining of the cross-sectional patellar tendon (B). Cell area (C) 
and protrusion number (D) of the patellar tendon. (Scale bar indicates 5 µm (A) and 20 µm (B), * indicates 
P < 0.05, and ** indicates P < 0.01 between genotypes, n = 3).

Figure 5.   Quantitative real-time PCR of Achilles tendons from wild-type mice and Scx-Cre; Rcn3fl/fl (tendon-
specific Rcn3 loss-of-function model) littermates at P28 (C). (* indicates P < 0.05, ** indicates P < 0.01 and # 
indicates P < 0.001 between genotypes, wild-type mice n = 6, Scx-Cre; Rcn3fl/fl mice n = 5).
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Therefore, deletion of Rcn3 caused the delay of full maturation of tenocytes which cause increased protrusion 
number, increase expression of differentiated tenocyte genes, and immature growth of collagen fibril diameter. 
Investigating the mechanism by which Rcn3 regulates tenocyte maturation will be an interesting future direc-
tion of this study.

Scx-Cre; Rcn3fl/fl mice displayed an increase in post-translational modifications and cross-linking in type I 
collagen. Specifically, Scx-Cre; Rcn3fl/fl mice showed an increase in telopeptide lysine hydroxylation as well as 
hydroxylysylpyridinoline in both patellar and Achilles tendons. Hydroxylysylpyridinoline is a stable collagen 
cross-link, typically found in adult bone and tendon, that is known to increase in concentration as these tissues 
mature. Besides, Scx-Cre; Rcn3fl/fl mice exhibited over-hydroxylated proline 3-hydroxylation in type I collagen. 
The function of this rare modification is not clear, but it has been suggested that 3-hydrxyproline can regulate 
the postnatal lateral fusion of smaller fibrils in developing tendons23. Based on these collagen modification data, 
we carefully suggest that the reduced collagen fibril diameter in Scx-Cre; Rcn3fl/fl mice is due to the inhibition of 
lateral fusion caused by over-modification on type I collagen.

In conclusion, our results uncover the novel function of Rcn3 in postnatal tendon development. This study 
will be the basis of future mechanistic studies for tenocyte maturation, collagen modification, and fibrillogenesis 
by providing useful mouse genetic models.

Methods
Animals.  All studies were approved by the Institutional Animal Care and Use Committee (IACUC) and 
University Laboratory Animal Resource (ULAR) at the University of Pennsylvania (Philadelphia, Pennsylvania, 
USA) and we confirm that all the methods in current studies were performed in accordance with the relevant 
guidelines and regulations following the IACUC approved protocol. The study was carried out in compliance 
with the ARRIVE guidelines37. The Scx-Cre mouse line was previously described38. Mouse sperms carry-
ing Knockout-first Rcn3 allele (Rcn3 tm1a(EUCOMM)Hmgu) were obtained from the Knockout Mouse Programme 
(KOMP), and mouse carrying Rcn3 tm1a(EUCOMM)Hmgu was generated by in vitro fertilization at BaylorCollege of 
Medicine. Rcn3 tm1a(EUCOMM)Hmgu mice were crossed with Rosa26-Flippase (Flp) mice to delete β-gal and the neo 
cassette in order to generate the Rcn3 conditional knockout allele (Rcn3fl/fl).

Immunohistochemistry.  For immunohistochemisty, mouse hindlimbs were collected during postnatal 
tendon maturation from P10 to P60 and fixed in 10% neutral buffered formalin overnight at 4 °C. Samples were 
paraffin-embedded and sectioned at 6 μm, following decalcification in 10% (w/v) EDTA (pH 7.4) for 2 weeks 
with daily solution changes. The paraffin sections of the patellar and Achilles tendon incubated with antibodies 
against Rcn3 (Abcam, ab204178) at 4 °C overnight. The sections were then incubated in anti-rabbit-biotin anti-
body (Jackson Immuno, 711-065-152) for 30 min at RT, rinsed with PBS, and incubated with streptavidin-HRP 
(Jackson Immuno, 016-030-084) for 30 min at RT. Bounded antibodies were detected using NovaRed substrate 
(Vector Laboratories, SK-4800).

Histological analyses.  Mouse hindlimbs were collected from specific stages and fixed in 10% neutral buff-
ered formalin overnight at 4 °C. Samples were paraffin-embedded and sectioned at 6 μm, following decalcifica-
tion in 10% (w/v) EDTA (pH 7.4) for 2 weeks with daily solution changes. The paraffin sections of the patellar 
and Achilles tendons were used for Hematoxylin and Eosin (H&E). Histological evaluation was blindly per-
formed by 2 independent individuals.

BrdU assay.  For BrdU labeling in tendon, a single stock solution of 10 mg/mL BrdU (Sigma, B5002) and 
1.2  mg/mL FdU (Sigma, F0503) was prepared in 1X PBS. BrdU/FdU stock (0.01  ml/g of body weight) was 
injected into the intraperitoneal space of mice at P8 and P9. And then, mouse hindlimbs were collected at P10 
and fixed in 10% neutral buffered formalin overnight at 4 °C. Samples were paraffin-embedded and sectioned 
at 6 μm, following decalcification in 10% (w/v) EDTA (pH 7.4) for 1 week with daily solution changes. BrdU 
Immunohistochemistry Kit (Abcam, ab125306) was used to detect BrdU incorporation into the cells according 
to the manufacturer’s instructions.

Figure 6.   Mechanical property, cross-sectional area (A), stiffness (B), failure load (C), stress relaxation 
(D), failure stress (E), and elastic modulus (F) of Achilles tendons from wild-type mice and Scx-Cre; Rcn3fl/fl 
(tendon-specific Rcn3 loss-of-function model) littermates at P60. (* indicates P < 0.05, ** indicates P < 0.01, and # 
indicates P < 0.001 between genotypes, n = 7).
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Collagen EM analysis.  Mouse hindlimbs were fixed in freshly prepared 1.5% glutaraldehyde/1.5% para-
formaldehyde (Tousimis) with 0.05% tannic acid (Sigma) in DPBS at 4 °C with agitation overnight. The follow-
ing day, dissect the relevant tendons out of the limb in PBS as follows: for the Achilles, take the mid-tendons that 
lies below the myotendinous junction and above the enthesis (~ 1–1.5 mm in length); and for the patellar tendon, 
take the complete mid-tendon between the patella and tibial enthesis. Following dissection, samples were post-
fixed in 1% OsO4, rinsed in DMEM and dehydrated in a graded series of ethanol to 100%. Samples were then 
rinsed in propylene oxide, infiltrated in Spurrs epoxy, and polymerized at 70 °C overnight. TEM images were 
acquired using a FEI G20 TEM at multiple magnifications to visualize transverse sections of collagen fibrils. Col-
lagen fibril diameter was measured using ImageJ. TEM images of tendons from 3 mice per group were analyzed. 
Total 545 control fibrils and 905 Rcn3 mutant fibrils from patellar tendons were counted. Total 1568 control 
fibrils and 1871 Rcn3 mutant fibrils from Achilles tendons were counted.

Collagen extraction.  Intact type I collagen was solubilized from mouse patellar and Achilles tendons by 
acid extraction in 3% acetic acid for 24 h at 4 °C. Acid-extracted collagen α-chains were resolved by 6% SDS-
PAGE under non-reducing conditions and stained with Coomassie Blue R-250.

Collagen cross‑linking analysis.  Collagen pyridinoline cross-link content was determined by fluores-
cence monitoring with reverse-phase HPLC. Pyridinoline cross-links were analyzed in mouse tendons by HPLC 
after acid hydrolysis in 6 M HCl for 24 h at 108 °C. Dried samples were dissolved in 1% (v/v) n-heptafluorobu-
tyric acid for quantitation of hydroxylysyl pyridinoline (HP) by reverse-phase HPLC and fluorescence monitor-
ing as previously described39.

Mass spectrometry.  Collagen α-chains were cut from SDS-PAGE gels and subjected to in-gel trypsin 
digestion as previously described24. Electrospray mass spectrometry was carried out on the trypsin-digested 
peptides using an LTQ XL linear quadrupole ion-trap mass spectrometer equipped with in-line Accela 1250 liq-
uid chromatography and automated sample injection (ThermoFisher Scientific). Proteome Discoverer software 
(ThermoFisher Scientific) was used for peptide identification. Tryptic peptides were also identified manually by 
calculating the possible MS/MS ions and matching these to the actual MS/MS spectrum using Thermo Xcali-
bur software. Differences in post-translational modifications were determined manually by averaging the full 
scan MS over several LCMS minutes to include all the post-translational variations of a given peptide. Protein 
sequences used for MS analysis were obtained from the Ensembl genome database.

Immunofluorescent staining.  For immunofluorescent staining, mouse hindlimbs were collected during 
postnatal tendon maturation from P10 to P60 and fixed in 4% PFA overnight at 4 °C. Samples were OCT com-
pound embedded and sectioned at 10 μm, following decalcification in 10% (w/v) EDTA (pH 7.4) for 10 days 
with daily solution changes. The frozen sections of the patellar tendon blocked with blocking solution (Thermo, 
8120) for 1 h RT, followed by incubation at 4 °C overnight with antibodies against ZO1 (Fisher, 61-7300) and 
then incubated for 1 h at RT with Phalloidin Alexa Fluor 488 conjugate. Finally, sections were mounted in anti-
fade solution with DAPI (Invitrogen, P36935).

qRT‑PCR.  RNA was extracted with Trizol and Direct-zol kit (Zymo Research, R2060) from primary tendon 
cells. And cDNA was synthesized from 1 μg RNA using iScript Reverse Transcription (Bio-rad, 1708841). qRT-
PCR was performed by QuantStudio 6 Flex real-time PCR system (ThermoFisher Scientific) using Fast SYBR 
Green Master Mix (Pec, 4385612). The sequences of primers are listed in Table 2.

Uniaxial biomechanical test.  All mice assigned for mechanical testing were frozen at − 20 °C untill the 
day of testing. Mice were thawed at room temperature, and calcaneal bone—Achilles tendon—muscle com-
plexes were grossly dissected. Under microscope guidance, all extraneous soft tissues and muscles were finely 

Table 2.   Primer sequences for the quantitative real-time PCR.

Gene Primer sequences (5′–3′)

mRcn3
F: CTA CTC GGG AAG AGC TGA CG

R: ACC TGC ACG TAG CCA TCT TT

mScx
F: AAG ACG GCG ATT CGA AGT TAG AAG​

R: TCT CTC TGT TCA TAG GCC CTG CTC ATA G

mMkx
F: GAT GGC GAC TCC TGC TCT GA

R: CGG TCT GCC GCC AGC TTT TA

mCol1a1
F: TTG GGG CAA GAC AGT CAT CGA AT

R: TTG GGG TGG AGG GAG TTT ACA CGA A

mTnmd
F: CTT TAC TAG GCT ACT ACC CAT ACC CCT ACT​

R: ATA TAT TGG CTA ACA GAA GGT TAA GCG TTT​
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dissected with care to ensure no damage to the tendinous tissue. Following dissection, a custom laser device was 
used to measure the cross-sectional area (CSA) of the Achilles tendon. The myotendinous junction was sand-
wiched between two sandpaper tabs with cyanoacrylate glue to prevent slippage. The calcaneal bone was gripped 
with a custom fixture, and the construct was mounted onto a material testing machine (Instron 5542, Instron 
Inc., Norwood, MA). All testing was conducted in phosphate buffered saline bath at room temperature. Each 
sample was preloaded to 0.02 N followed by 10 cycles of preconditioning between 0.02 and 0.04 N. After a resting 
period of 300 s at 0 N, the sample underwent stress relaxation after a ramp to 5% strain (assuming a gauge length 
of 5 mm) for 600 s. This was followed by a rest of 60 s at zero load. Finally, the sample was quasi-statically ramped 
to failure at a strain rate of 0.03%/s. All data were collected at 100 Hz. Ensuing force–displacement curves were 
analyzed to obtain failure load (N) and tissue stiffness (N/mm, defined as the slope of the linear region). Cross-
sectional areas (mm2) and gauge length (mm) values were used to obtain stress–strain curves for each sample. 
Elastic modulus (N/mm2) was calculated as the slope of the linear region of the stress–strain curve and failure 
stress (N/mm2) as the maximum stress value observed. Stress relaxation (%) was defined as the percent change 
in stress between the peak and equilibrium stress during the stress relaxation period of 600 s.

Statistical analysis.  Results are expressed as mean ± SD. At least three mice per group were analyzed. Dif-
ferences between values were analyzed by Student’s t test. P < 0.05, 0.01 and 0.001 are considered significant.
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