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A combined approach for single-cell mRNA and
intracellular protein expression analysis
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Styliani Panagiotou5, Niklas Dahl 5, Marc R. Friedländer4 & Caroline J. Gallant 5,6✉

Combined measurements of mRNA and protein expression in single cells enable in-depth

analysis of cellular states. We present SPARC, an approach that combines single-cell RNA-

sequencing with proximity extension essays to simultaneously measure global mRNA and 89

intracellular proteins in individual cells. We show that mRNA expression fails to accurately

reflect protein abundance at the time of measurement, although the direction of changes is in

agreement during neuronal differentiation. Moreover, protein levels of transcription factors

better predict their downstream effects than do their corresponding transcripts. Finally, we

highlight that protein expression variation is overall lower than mRNA variation, but relative

protein variation does not reflect the mRNA level. Our results demonstrate that mRNA and

protein measurements in single cells provide different and complementary information

regarding cell states. SPARC presents a state-of-the-art co-profiling method that overcomes

current limitations in throughput and protein localization, including removing the need for cell

fixation.
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Advances in single cell analysis are impacting the scale and
resolution at which we investigate biological systems. The
majority of these advances are focused on the application

of single cell RNA sequencing (scRNAseq). However, tran-
scriptomes may not fully reflect cell states. scRNAseq provides
comprehensive snapshots of gene expression, but gene tran-
scription is stochastic and characterized by transcriptional bursts
of varying rates and sizes1, and half-lives of mRNA molecules
vary significantly between genes2. Sampling from low number of
molecules, variable efficiency to convert mRNA to cDNA and
PCR amplification bias during sequencing library preparation
also contribute to noisy expression data3.

In contrast to mRNA, proteins are more stable, and typically
present in orders of magnitude higher amounts within the cell2,
reducing chance fluctuations of their levels. Moreover, proteins
have more direct roles in maintaining cellular functions com-
pared to transcripts. Therefore, we argue that combined mRNA
and protein single cell measurement approaches are necessary to
better understand cellular states and to decipher regulatory cir-
cuits and pathways.

A number of approaches are emerging to simultaneously
measure both mRNA and protein at single cell resolution. These
include several methods for targeted mRNA and protein
detection4–7. In contrast, measuring global mRNA enables
entirely new studies, such as the impact of regulatory proteins on
targets transcriptome-wide. A number of methods including
CITE-seq allow for the measurement of global mRNA and a large
number of proteins, but are limited to surface proteins8,9. One
published method has profiled global mRNA and intracellular
proteins, but this study was limited to six proteins and required
invasive cell fixation10. We describe an approach, herein called
Single-Cell Protein And RNA Co-profiling (SPARC), which
enables measurement of global mRNA and high multiplex, tar-
geted intracellular proteins in single cells (Fig. 1a). mRNA levels
were recorded using a modified Smart-seq2 protocol11 enabling
sensitive expression measurements of the full-length transcripts.

The use of Smart-seq2 replaces a targeted, multiplexed qPCR
approach described previously7. Proteins were measured using
multiplex, homogeneous protein extension assays (PEA)7,12, an
affinity-based protein detection method that allows scalable
protein detection in fresh cell or tissue lysates without a need for
prior fixation.

PEA is a member of a class of proximity-based assays that
require two binding events in order to generate a DNA reporter
molecule. In turn, the reporter can be detected and quantified
using various DNA detection technologies, including quantitative
PCR and sequencing. Here, proteins are detected using pairs of
antibodies conjugated with oligonucleotides whose free 3′ ends
are pairwise complementary. When cognate antibody pairs bind
their target protein, the attached oligonucleotides are brought in
proximity and can be extended by polymerization to create
amplifiable DNA reporter molecules. A multiplex readout is
achieved by decoding extension-generated DNA reporters by
real-time PCR using primer pairs specific for cognate pairs of
antibody conjugates. The requirement for pairwise protein
detection ensures high assay quality, similar to i.e., sandwich
immunoassays, while allowing for simultaneous measurement of
many proteins in each reaction. Moreover, PEA assays do not
require fixation of the cell, capture of target proteins on solid
supports or wash steps following the addition of the
oligonucleotide-conjugated antibody probes to the cell lysate.

With SPARC, we present a powerful approach to quantitatively
measure mRNA and protein in single cells and show how protein
measurements greatly aid the analysis of gene expression varia-
tion, cell states, and cellular regulatory mechanisms. We applied
the method to investigate to what extent the amounts of a tran-
script are predictive of the levels of the corresponding protein in
cells at steady-state or undergoing a state-transition. Specifically,
we measure mRNA and protein in human embryonic stem cells
(hESCs) unperturbed or at fixed time points after induction of
directed neuronal differentiation (Fig. 1b). We also investigate the
effects of biological inferences, including transcription factor
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Fig. 1 SPARC profiles RNA and intra-cellular protein from the same single cells. a The SPARC procedure. Single cells are isolated and lysed in the
presence of oligo-dT conjugated magnetic beads. Following oligo-dT mRNA hybridization, the protein-containing supernatant is removed for subsequent
multiplex proximity extension analysis (PEA) and the mRNA is processed using a modified Smart-seq2 approach. (Protein clip art from Servier Medical Art
is used under CC BY 3.0 France.) b Overview of the cellular model analyzed using SPARC. Human embryonic stem cells were analyzed in culture (0 h) and
following directed neural induction (24 h and 48 h). c Example mRNA (blue) and protein (red) expression in single cells (violin plots) or replicate 100 cell
population control (black dots) measured at 0, 24, and 48 h post neural induction.
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regulation, by analyzing scRNAseq data alone or integrated with
the targeted protein expression data, and measure the agreement
between mRNA and protein expression variation.

Results
Single cell mRNA expression data. The Smart-seq2 scRNAseq
method adapted for the SPARC protocol includes a number of
steps that differ from the published protocol11. The key differ-
ences include additional detergents in the cell lysis buffer in order
to ensure access to nuclear proteins, the use of oligo-dT con-
jugated T1 Dynabeads in order to immobilize the poly(A) mRNA
fraction, and exclusion of the 72 °C heat step before the reverse
transcription reaction to avoid denaturing cellular proteins
(Methods). We compared the expression data prepared with the
reference Smart-seq2 method (0 h, n= 67 cells) and SPARC (0 h,
n= 85 cells). The cells were sorted and processed for analysis in
parallel and the sequencing was done in the same lane of the
sequencing flow cell. Only SPARC data was collected for cells
during early differentiation (24 h, n= 76 cells and 48 h, n= 86
cells).

Overall, the scRNA-seq data using SPARC was of high quality
and highly comparable to Smart-seq2 (Pearson correlation
coefficient rho= 0.90, N= 51157) (Supplementary Fig. 1). Some
minor differences were observed for numbers of profiled genes (n
= 3308 for SPARC vs. 3746 for Smart-seq2) or pseudogenes (n=
113 vs. 62), the fraction of reads in introns (n= 0.43 vs. 0.13) and
average length of detected genes (Supplementary Fig. 1). We
attribute the greater intron capture with SPARC to lysis
conditions providing greater access to nuclear content and the
omission of a heating step before the oligo-dT primed reverse
transcription. Specifically, we may preferentially access and
capture unspliced, nascent mRNA before they mature and are
fully coated with RNA binding proteins13. Nonetheless, quality
control analysis showed that the SPARC mRNA data was of high
quality and highly reproducible, allowing us to proceed with the
combined mRNA and protein analysis.

Single cell protein expression data. We developed an explora-
tory multiplex PEA panel for single cell analysis in collaboration
with Olink Proteomics, involving 96 proteins and focused on
intracellular proteins of interest for our investigation. The panel
includes proteins across different functional groups related to, for
example, pluripotency, neurogenesis, cell cycle phase, and meta-
bolic functions (Supplementary Table 1). The PEA protein panel
was developed for application across different cellular models,
and therefore not all proteins were expected to be detectable at
the single cell level in hESCs. Of the 96 proteins in the panel, 87
proteins had detectable levels in the 100 cell control, and 89
proteins in single cells (Fig. 1c, Supplementary Table 1, Supple-
mentary Fig. 2).

We proceeded to investigate the major sources of variation
using PCA for the mRNA and protein expression data sets. Using
RNA expression data, the three factors most strongly contributing
to variation between the sampled cells were the numbers of
detected genes, developmental state, and cell cycle phase. We
hypothesize that these significant factors reflect the relationship
between the amount of RNA or protein and cell size, with larger
cells containing more absolute numbers of molecules14 (Supple-
mentary Fig. 3a, b). Indeed, we observed higher protein levels as
measured by protein sum in G2 versus S or G1 cells for cells
FACS sorted by cell cycle phase (Supplementary Fig. 3c). In order
to minimize the effects of cell cycle phase, cell size, and mRNA
capture efficiency on the mRNA expression variation, the data
was normalized for variation related to the cell cycle and the

number of genes detected. Protein data was only normalized per
plate and according to background measures (Methods).

To reduce the dimensionality of the data and align the cells
along a trajectory based on similarities in their expression
patterns, we next performed tSNE and pseudotime analysis. We
applied SCORPIUS15, a single trajectory inference method, to
order the dynamic cells along a progression from undifferentiated
to a more differentiated state. The analysis was performed
separately on normalized mRNA and protein expression data.
The cells were largely ordered and grouped according to the
sampled time points (0, 24, and 48 h) (Fig. 2a, b) and the cell
order was very similar whether the trajectory was determined
based on mRNA or protein expression data (Spearman’s rho=
0.82, N= 242) (Fig. 2c). The results highlight that both the
mRNA and protein data generated with SPARC recapitulate the
expected dynamic changes of the model cell system.

Relation of RNA and protein data in single cells in a steady-
state condition. We next investigated the co-expression of
mRNA and protein in cells measured at the 0 h time point,
purportedly at steady-state. We define cells as being in steady-
state when the mean protein or mRNA levels remain relatively
constant over several hours16. For investigation of correlation, we
focused on within gene correlations i.e., the variation of a gene’s
mRNA and protein concentrations across single cells17. We
focused on genes where we detected the protein at a level of >3 Cq
over background in the 100 cell population control in at least one
time point. We found that level of mRNA expression is generally
a poor predictor of protein expression in single cells (Pearson
correlation coefficient between −0.12 and 0.40, N= 83), and that
the scaling and the extent of the relationship between mRNA and
protein is gene-specific4 (Fig. 2e and Supplementary Fig. 4).

For genes where we detect both the mRNA and protein in the
majority of the cells, the molecules exist in very different dynamic
expression ranges—with the mRNA consistently spanning a
much broader range of expression levels compared to protein
(e.g., EPCAM, CASP3) (Supplementary Fig. 4). We also observed
that protein level measurements provide a more stable repre-
sentation of a gene’s expression state with protein expression
detected in the majority of cells measured, whereas mRNA
expression detection was more variable, with a fraction of cells
showing no detectable expression. The latter may reflect temporal
variations in RNA abundance or low capture efficiency, a
common technical problem in scRNAseq protocols (Supplemen-
tary Fig. 4).

We observed a number of genes where mRNA and protein
expression are discordant. Specifically, we observed a very low
fraction of cells expressing mRNA but a high fraction of cells
expressing the cognate protein. A parsimonious explanation for
these observations is that we failed to reliably capture, amplify,
and sequence the specific mRNAs, an outcome that is common in
scRNAseq experiments. To explore this possibility, we isolated
total RNA from the same hESC cell line used in the study and
performed bulk cell gene expression analysis using TaqMan Gene
Expression assays. We targeted three genes showing discordant
gene expression (IKBKG, HMOX1, METAP1D) and included
EIF4B as a positive control. We clearly detect RNA expression for
all analyzed genes, suggesting that mRNA for IKBKG, HMOX1,
METAP1D is expressed but was not reliably detected in the single
cell experiments.

However, we cannot rule out that the observed discordant
mRNA and protein co-expression at the single cell level is due to
very short-half lives of the mRNAs in question and therefore
absence in many cells, whereas the cognate proteins are relatively
stable. Alternatively, but less likely, the protein expression signal
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Fig. 2 mRNA abundance only partially reflects and protein abundance in single cells. tSNE plot and pseudotime analysis of the a normalized mRNA and b
protein expression data. c Comparison of the cell pseudotime-ordering if calculated based on either mRNA or protein expression data. d Example mRNA
and protein expression data plotted for SOX2, EPCAM, and POU5F1. The data is shown either as RNA expression vs. protein expression scatter plot with
respective density plots included on each axis, or as cells ordered along RNA pseudotime with either RNA and protein expression plotted on the y-axis.
Both the RNA and protein data are plotted as log2. Color corresponds to time point in all plots 0 h (green), 24 h (orange), and 48 h (blue).
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originates from antibody cross-reactivity to homologous gene
products. PEA probes employed in this study were confirmed to
detect the expected target, and no signal was obtained when
tested against a large pool of recombinant proteins.

For some genes measured, the PEA assay was not sensitive
enough to detect the protein despite high RNA expression (e.g.,
PARP1), or the level of detection of the PEA probe was at the
limit of detection and therefore qualitative (Table S1). Examples
of the latter include the detection of the G2 phase cell cycle
markers CCNA2 and AURKA where we only detect expression in
predicted G2 cells, the cell cycle phase where they are expected to
show peak expression (Supplementary Fig. 2).

Relation of RNA and protein levels in single cells during
dynamic change. Next, we investigated the agreement of mRNA
and protein expression during early time-points of directed
neuronal differentiation (Fig. 1b). As with the cells at steady-state,
mRNA expression is generally a poor predictor of protein
expression. Despite the poor relationship, we were interested to
see whether the directional changes of mRNA and protein
abundances are in agreement in cells ordered along pseudotime as
defined by the mRNA expression data (pseudotimeRNA) (Fig. 2,
Supplementary Fig. 5). To test whether the expression levels for
both mRNA and protein level show the same directional changes,
we applied a linear model for expression over time for both the
RNA log-transformed RPKM values and for protein Cq values.
The resulting linear model had a positive slope with a low but
significant coefficient of determination (R2) of 0.20 (p-value=
5,1 × 10−4, N= 64) (Supplementary Fig. 6). The Pearson corre-
lation coefficient was 0.47. These findings indicate that there is a
general agreement between gene expression changes at the RNA
and the protein level when dynamic processes, such as develop-
ment, are observed over extended periods of time.

In our data, we observed clear examples of temporal delay of
gene expression at the level of mRNA and protein expression.
This is well demonstrated by POU5F1, a transcription factor that
is rapidly turned off in hESCs upon directed neuroectodermal
differentiation18. When we order the single cells along pseudo-
timeRNA and plot POU5F1 gene expression, we observed that
both POU5F1 mRNA and protein show concordant downward
trends in expression (Fig. 2e). However, we note that the protein,
but not the mRNA, is detectable in many cells assigned to late
pseudotimeRNA (corresponding primarily to the cells measured at
48 h). We attribute the time-dependent increase in
mRNA–protein expression variability as an effect of gene
downregulation and the differential stabilities of mRNA versus
protein19,20. Long protein half-lives will enable proteins to be
present in a cell long after repression of gene transcription.

Overall, the results highlight that while mRNA expression
abundances are not predictive of protein abundances at the time
of measurement, the differences can be reconciled when we
resolve mRNA and protein expression over a (pseudo)temporal
scale, and therefore take into account the temporal elements of
gene regulation, including the lag times between transcription
and translation, and the different half-lives of mRNA and protein
molecules. Accordingly, these results also suggest that mRNA and
protein measurements in single cells are not redundant but
provide different information regarding the cell state at the time
of measurement.

Protein vs. mRNA expression levels correlate better with their
trans-regulatory targets. To date, a major limitation of reg-
ulatory network inference analysis is the requirement for very
high numbers of replicate observations21. Single cell analysis
experiments produce hundreds or thousands of independent

measurements and provide an opportunity to use single cell data
to power the analysis of causal gene regulatory network analysis.
Despite the increase in power, the use of scRNAseq remains a
challenge, in part due to the stochastic nature of RNA tran-
scription and the technical limitations of the sequencing
protocols.

We were interested in determining whether integrating
protein-level expression data with mRNA expression would help
decipher gene regulatory networks. We expected an added value
of protein measurements due to the observation that single cell
mRNA and protein sets are concordant but not redundant.
Furthermore, the circumstance that protein expression measure-
ments show lower biological and technical cell-to-cell variation
than mRNA measurements, and the expectation that protein
expression levels of gene regulatory effectors such as transcription
factors should be a closer representation of their functional
activity at time of measurement.

To specifically address the question of how protein measure-
ment can complement transcriptomics in analyses of gene
regulatory networks, we investigated whether transcription
factors can predict expression of their target genes, when
measured at the RNA or protein level. We analyzed four
important and reliably detected TFs (NOTCH1, POU5F1,
SOX2, and TP53) and their predicted targets from three
databases, corresponding to 10 sets of TF-target relations, and
~1900 individual TF-target relations. For each set of relations, we
tested if the TF correlates better with its target genes than with
non-target background genes (Methods, Supplementary Fig. 7).
When using the TF protein expression for the comparisons, we
found that 100% (10/10 sets) correlated significantly better with
its targets than with non-target genes. When the same
comparison was made using TF measurements at the RNA level,
only 60% correlated better with the targets. When considering
only cells in steady-state conditions, the corresponding percen-
tages were 50% when transcription factors were measured at the
protein level and 10% when they were measured at the RNA level
(Supplementary Table 2). In conclusion, we find that transcrip-
tion factors predict expression of their target genes significantly
better when measured at the protein level than at the RNA level,
even when thousands of individual TF-target relations are
considered.

We then decided to focus our analysis on POU5F1 as it is an
essential stem cell factor that has both positive and negative
regulatory functions and is turned off upon differentiation. We
first investigated the relationship between either POU5F1RNA or
POU5F1protein expression levels and the mRNA expression levels
of a subset (n= 8) of downstream POU5F1 trans-regulatory
target candidates in ESCs (Methods) (Supplementary Table 3).
We analyzed both cells at steady-state (0 h) and cells at the onset
of differentiation, including all time points analyzed (0 h, 24 h, 48
h). Overall, the Pearson correlation and the regulatory link
weights of POU5F1protein expression to POU5F target genes are
stronger than those for POU5F1RNA expression (Fig. 3a,
Supplementary Table 3).

Given the strong correlation between POU5F1protein and
candidate targetRNA, we then investigated the possibility to use
regulatory link weights between other TFprotein and candidate
targetRNA expression as evidence that this transcription factor
directly regulates the expression of the corresponding genes. To
test this, we ranked all TF-target link weights (Methods) of either
POU5F1protein or POU5F1RNA as TF to all expressed genes in a set
of samples. Next, we assigned all eight initial POU5F1-target pairs
described above as positive targets and all the other genes as
negative targets (n= 8602). We used this classified ranked list to
create a receiver operating characteristic (ROC) curve to identify
the cost of identifying negative targets, i.e., the false positive rate
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(FPR), based on the number of positive targets, i.e., true positive
rate (TPR), identified. We did this using four different analysis
groups where we calculated the correlation between POU5F1pro-
tein or POU5F1RNA and targetRNA, and included either only steady-
state (0 h) cells or all cells (0, 24, 48 h) (Fig. 3d, e).

To estimate the power of the different correlation analysis
groups, we calculated the area under the curve (AUC) of the ROC
curves, resulting in the following correlations: POU5F1protein and
targetRNA with steady-state (AUC= 0.80) or all cells (AUC=
0.97), correlation of POU5F1RNA and targetRNA with steady-state
(AUC= 0.23) or all cells (AUC= 0.29) (Fig. 3e). To test what
values of AUC we would expect by chance, we performed a

permutation test (n= 200) with randomization of which genes
that are the true targets (AUC= 0.50 ± 0.092) (Fig. 3e). As
expected, the AUC results show that using data from cells
undergoing a dynamic change gives better power to detect
positive POU5F1 targets than only using data from steady-state,
and that this is true for correlation to either POU5F1protein
or POU5F1RNA. Importantly, the results also show that
POU5F1protein expression levels better predict regulatory targets
than POU5F1RNA levels.

We next asked if we could identify POU5F1 regulatory targets
that were not in our known candidate list. We did this by
selecting the top five percent correlated POU5F1 target pairs in
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indicates in which of the analysis groups the correlation was considered to be significant (FDR < 0.05). c Heatmap with expression levels of POU5F1 at the
protein and RNA level and the RNA expression of POU5F1 regulatory target candidate genes. The color scale relates to high (red) and low (blue)
expression. The columns in the heatmap are ordered based on the protein expression of POU5F1. d Red lines represent POU5F1 (protein)—target (RNA)
ROC curves and blue lines represent POU5F1 (RNA)—target (RNA) ROC curves based on regulatory link weights. Solid line represents dynamic conditions,
dotted lines indicate steady-state conditions. Filled squares represent the Youden index of the different ROC curves. e Quantification of total area under the
curve for ROC (see Fig. 3d) including a permuted control of 200 permutations each AUC represented as a dot.
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data from cells at steady-state (0 h) or cells from all time points
analyzed (0 h, 24 h, 48 h). We further filtered the list of gene-pairs
by requiring, first, evidence that POU5F1 binds in the vicinity of
the transcription start site of the identified target gene and,
second, that the gene-pair correlates significantly in at least two
analysis groups (Fig. 3b). Gene enrichment analysis using the
Reactome pathway database of the resulting 18 predicted
POU5F1 targets identified pathways that are directly related to
the regulation of human pluripotent stem cells, specifically
Transcriptional regulation of pluripotent stem cells (p-value=
0.0006), and POU5F1, SOX2, NANOG activate genes related to
proliferation (p-value= 0.0006). Also, POU5F1 was identified as
the most significant transcription factor candidate in a query of
the TRRUST Transcription Factors 2019 data set (p-value=
0.002)22. In summary, our analysis highlights the power of using
protein level measurements to identify transcription factor
regulatory targets in single cell expression data, and also
introduces an approach that provides orthogonal evidence to
that from ChIP-seq for identifying target genes for transcription
factors.

Gene expression variation. A major strength of single-cell gene
expression profiling is the possibility to study how gene expres-
sion varies between cells. Importantly, the factors that impact
variation of expression at the mRNA or protein level differ. To
date, little is known about the extent to which RNA expression
variation translates into protein expression variation. To analyze
differences in expression variation at the RNA and protein level,
we focused on cells harvested at the 0 h time point that were
computationally assigned to S-phase thereby excluding con-
founding effects of differentiation and cell cycle. Similar results
were obtained for the cells in G2/M-phase and—to a lesser extent
—the entire cell population (Supplementary Fig. 8) highlighting
that these patterns are not S-phase specific.

We calculated the coefficient of variation of each gene at the
mRNA and protein level, respectively. For mRNA, it is well
understood that gene expression variation depends on the mean
expression23 (Fig. 4a). We demonstrate a similar dependence for
proteins (Fig. 4b). This dependence reflects not only biological
variability but also technical components such as sampling noise.
We subsequently normalized the mRNA and protein expression
variation data to their respective mean expression to obtain
independent measurements of mRNA and protein expression
variation (see Methods). We find that there is generally a weak
correlation between the variation of expression at the mRNA and
protein level expression (Spearman’s rho= 0.28, N= 55, Fig. 4c).

For some genes, there is good agreement, such as the pluripotent
factor POU5F1 which is stably expressed both at the levels of
RNA and protein, or FAS which shows both substantial RNA and
protein expression variability. Other subsets of genes, however,
are more variable at the mRNA level (e.g., FGF19), or at the
protein level (e.g., TP53). These results highlight that variation at
the mRNA level is not generally propagated to protein, and
therefore RNA and protein levels should both be considered
independently when assessing the impact of expression variation
on gene function. This finding has important implications for
single-cell gene expression studies where gene sets for further
analysis are often selected based on expression variability.

RNA and protein expression variation are complex, co-
dependent processes. In order to investigate factors that
determine differences between mRNA and protein expression
variation, we considered the translation of mRNA to protein. On
the basis of reporter assays, it has been suggested that highly
translated genes show a higher variability of protein levels24.
Here, we estimated translation rates (see Methods) and present
additional evidence supporting this hypothesis for dozens of
genes under physiological conditions as we observe a positive
correlation between the estimated translation rates and protein
expression variabilities (Spearman’s rho= 0.49, N= 18). Inter-
estingly, a simple addition of RNA expression variability and
estimated translation rate yields an even better estimate of protein
expression variability (Spearman’s rho= 0.50, Fig. 4d). This
finding supports the notion that protein variability in single cells
can be decomposed into RNA variability and noise originating
from translation, and for the first time provides evidence for it to
be physiological and generalizable.

Discussion
The more direct roles of proteins in maintaining cellular func-
tions compared to transcripts, together with the recognized
importance of post-translational regulation, render single cell
protein analysis an important complement of comprehensive
RNA analyses of cell state and to decipher gene regulation
circuitry.

Overall, we observe that the observed patterns of mRNA and
protein co-expression reflect the snap-shot dynamics of single cell
gene expression measurements with an inherent temporal ele-
ment of delay between transcription and translation16, as well as
known characteristics of mRNA and protein molecules, including
their respective expression kinetics25, half-lives, and copy
numbers2. Results from single-cell mass spectrometry26 support
these results. We note that our measurements are not corrected
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Fig. 4 RNA variation is not predictive for protein variation. Patterns of gene expression variation at steady-state in S-phase cells. a Relation between
mean RNA expression mean (RPKM) and RNA expression variation (CV2). Colors indicate variably (red) or stably (blue) expressed genes. b Similar to a,
but for protein. c Normalized gene expression variation (residuals) at the RNA and protein levels correlate moderately (Spearman’s rho= 0.28). Genes of
interest are indicated. d A simple additive model of RNA variation and estimated translation rate effectively predicts protein expression variation
(Spearman’s rho= 0.50). A subset of genes from Fig. 3c are included here, as public data were not available to estimate translation rate for all genes of
interest.
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for technical measurement noise, and that incorporating relia-
bility estimates for RNA and protein measurements may provide
more acute view of mRNA–protein relationships27.

We observed relationships between mRNA and protein varia-
bility that are consistent with earlier observations where cells
employ mechanisms to either reduce or amplify intra- and inter-
cell protein expression variability introduced by burst-like/noisy
mRNA transcription25. While protein globally exhibits lower
variation than RNA, intrinsic RNA variability of individual genes
is not predictive of their protein variability. As shown before,
translation efficiency explains part of this discrepency24. Addi-
tionally, protein stability can play a role in the relationship
between extrinsic mRNA and protein variability28. Short-lived
proteins can track fluctuating mRNA levels closely, while levels of
protein that degrade slowly fail to follow the rapid fluctuations
of mRNA.

The SPARC procedure described herein can help resolve reg-
ulatory networks or monitor developmental processes and cel-
lular responses to e.g., genetic or chemical perturbations. In this
work, we showed that transcription factors, when measured at the
protein level, correlate well with the RNA expression of their
targets, but there is little correlation when the transcription fac-
tors are measured at the RNA level. We propose that the
approach can be used for the analysis of transcript isoform usage
and protein expression as explored in Genshaft et al.31, and will
be valuable for analyses of the relationship between mRNA and
protein expression variation in general. The proximity-based
protein assays are well suited to detect post-translational
modifications32, add detection specificity, and can be scaled up
via a sequencing readout33, allowing measurement of even greater
numbers of proteins and protein modifications in individual cells.

Since SPARC employs the Smart-seq2 protocol, future studies
could utilize the sizeable fraction of intronic reads to further
dissect gene regulation and expression dynamics. For example, we
hypothesize that RNA and protein co-profiling can be used to
predict future cell states similar to RNA velocity that employs
spliced and un-spliced transcripts29,30. Updated versions of the
Smart-seq2 protocol, such as Smart-seq 2.5 and Smart-seq3,
furthermore allow for greater sensitivity and better quantification
through the use of UMIs. Finally, random hexamers or specific
sequences of interest can be conjugated to magnetic beads in
order to extend capture beyond non-polyadenylated transcripts.

SPARC provides sensitive and precise transcript quantification
while enabling highly specific and scalable detection of intracel-
lular proteins without the need for invasive cell fixation, in single
cells. The approach is built upon two well established methods
whose performance have repeatedly been demonstrated. At pre-
sent, no comparative, orthogonal approaches exist but we foresee
great value in the development of complimentary, combined
mRNA–intracellular protein high-throughput methods in order
to further study the roles of transcripts and proteins in main-
taining cellular states and functions.

Methods
Cell culture and neural induction of human embryonic stem cells. Human
embryonic stem cell line HS181 (hPSCreg Kle001-A; with consent from donor and
with ethical permission from Karolinksa Institutet) was maintained on vitronectin
(VTN-XL; Stem Cell Technologies, 07180) in Essential-E8 Medium (ThermoFisher
Scientific, A1517001). Cells were passaged as clumps with gentle cell dissociation
reagent (GCDR; Stem Cell Technologies, 07174) when necessary. Two days before
neural induction, cells were harvested with GCDR and plated in Essential-E8
supplemented with 10 uM Rho-kinase inhibitor Y27632 (Stem Cell Technologies,
72304) on VTN coated 6-well culture dish to yield approximately 80% confluence
the next day. When cells reached 100% confluence, neural differentiation was
induced (Day 0/0 h) using dual smad inhibition (Maroof et al., 2013). Briefly, cells
were washed with 1x DPBS and neural induction medium (NIM) was added,
consisting of KnockoutTM DMEM (10829018), 15% KnockOutTM Serum
Replacement (A3181501), 1x GlutaMax (35050038), 1x non-essential amino acids

(11140035), 1% penicillin/streptomycin (1514022) (all ThermoFisher Scientific),
supplemented with 2 uM tankyrase inhibitor XAV939 (Sigma-Aldrich, X3004),
100 nM ALK2/3 inhibitor LDN193189 (Miltenyi Biotech, 130-106-540), and 10 uM
ALK4/5/7 inhibitor SB431542 (Millipore, 616464). Medium was replaced on days
1 and 2.

To follow early neural differentiation, cells were harvested at indicated time
points (0 h; 24 h; 48 h). Cells were washed twice with DPBS to remove floating dead
cells, and subsequently treated with Accutase (Sigma-Aldrich) for 5–15 min until a
single cell suspension was obtained. Cells were collected in 13 ml DPBS and then
centrifuged at 300 × g for 5 min, washed with DPBS, centrifuged again, and re-
suspended in DPBS. Cells were kept on ice until single cell sorting.

Single cell isolation. The single cells were incubated on ice with a viability dye
(LIVE/DEAD Viability Kit, Molecular Probes, L3224) for approximately 15 min
and then passed through a 40 μM filter before sorting. Cells were sorted on a BD
FACS ARIAIII into a 96-well plate. We used a gating strategy to exclude off debris,
doublets, and cells positive for EthD-1, a nucleic acid dye that enters cells with
damaged membranes. After cell sorting, the plate was centrifuged at 700 g and 4 °C
for 1 min and then quickly transferred to dry ice. The plates were stored at −80 °C
until processed.

For the SPARC protocol, cells were sorted into 1.5 μl TE buffer (pH 8.0
Invitrogen, AM9858) with the following components: 1% NP-40 (Thermo Fisher,
28324), 0.1% Triton X-100 (Thermo Fisher, 28314), 0.1% Sulfobetaine (Sigma-
Aldrich, 82804-50 G), 150 mM NaCl (Ambion, AM9760G), 10 mg/ml BSA
(Ambion, AM2616), 2 U SUPERase In RNase Inhibitor (Ambion, AM2696), 1X
HALT protease inhibitor (Thermo Fisher, 78430), and 1:1,250,000 ERCC
(Invitrogen, 4456740).

For the Smart-seq2 protocol, cells were sorted into 4 μl TE buffer (pH 8.0) with
the following components: 0.1% Triton X-100 (Thermo Fisher, 28314), 1 U
SUPERase In RNase Inhibitor (Ambion, AM2696), 1:4000000 ERCC spike-in
(Ambion, 4456740), 2.5 mM dNTPs (Thermo Fisher, R0191), and 2.5 μM oligo-dT
(Integrated DNA Technologies IDT, 5′-/5BiotinTEG/AAGCAGTGGTATCAACG
CAGAGTA CT30VN-3′, where V is either A, C or G, and N is any base). For
multiplex protein detection only, cells were sorted into 1.5 μl TE buffer pH 8.0 with
the following components: 1% NP-40 (Thermo Fisher), 0.1% Triton X-100
(Thermo Fisher), 0.1% Sulfobetaine (Sigma- Aldrich, KEYH14DECD93-25G), 150
mM NaCl, 10 mg/ml BSA (Ambion, 4456740), and 1X HALT Protease Inhibitor
(Thermo Fisher).

On each 96-well sorting plate, we included: (i) population controls of 100 sorted
cells/well in duplicate; (ii) buffer, no-cell control in triplicate; (iii) 100 cell
equivalent lysate prepared from the SK-MEL-30 cell line. The SK-MEL-30 cell
lysate was prepared in bulk, aliquoted, and added to every plate in triplicate as an
inter-plate control.

Oligo-dT bead preparation. For every reaction, 5 µl Dynabeads MyOne Strepta-
vidin T1 (Invitrogen, 65602) were washed twice with 1.45 µl washing solution
containing 100 mM NaOH (Sigma-Aldrich, S8045-500G), 50 mM NaCl (Ambion,
AM9760G), and UltraPure DNase/RNase-Free Distilled Water (Invitrogen,
10977035). The beads were then washed with 1.45 µl RNAse-free bind and wash
solution containing 0.01 mM Tris (Invitrogen, AM9855G), 1 mM EDTA
(AM9260G), 2 M NaCl (Ambion, AM9760G), and UltraPure DNase/RNase-Free
Distilled Water (Invitrogen, 10977035). The beads were then mixed with 2 µl
RNAse-free bind and wash solution and 0.1 µl oligo-dT (IDT, 5′-/5BiotinTEG/
AAGCAGTGGTATCAACGCAGAGTA CT30VN-3′) and incubated in ambient
temperature for 15 min. The beads were finally stored in 1 µl 1% BSA (Ambion,
AM2616) in TE buffer (Invitrogen, AM9858) and incubated on a rotator overnight
at 8 °C. Before use, the buffer was exchanged with RNA and Protein lysis buffer.

mRNA capture, reverse transcription, and pre-amplification. Lysis plates with
FACS sorted cells were centrifuged at 700 × g for 10 s and thawed on ice. Smart-
seq2 reference samples were incubated at 72 °C for 3 min and directly placed back
on ice. SPARC samples were pipette-mixed while 1 µl of prepared beads was added
to each reaction. The SPARC plate was then incubated for 10 min with orbital
shaking at 1000 rpm. Plates were then centrifuged at 700 × g for 10 s and placed on
a magnetic rack (Alpaqua Magnum FLX) where 1.7 µl from each well was trans-
ferred for protein analysis. The Smart-seq2 and SPARC samples were supplied with
6 µl and 10 µl reverse transcription mix, respectively. The mixes contained: 100 U
SuperScript II reverse transcriptase, 1x First Strand Buffer, 5 mM DTT (all Invi-
trogen, 18064014), 10 U SUPERase In RNase Inhibitor (Invitrogen, AM2696), 1 M
Betaine (Sigma-Aldrich, 61962-250 G), 6 mM MgCl2 (Invitrogen, AM9530G), 1
mM of each dNTP’s (ThermoScientific, R0192), 1 µM TSO (5′-AAGCAGTGG-
TATCAACGCAGAGTACATrGrG+G-3′, Exiqon as described in Picelli et al.,
2014 and UltraPure DNase/RNase-Free Distilled Water (Invitrogen, 10977035).
The Smart-seq2 samples were centrifuged for 700 g for 10 s and then placed in a
thermal cycler. The SPARC samples were pipette-mixed prior to incubation in a
thermal cycler. Both samples sets were processed using the following program: 42 °
C for 90 min, 10 cycles with 50 °C for 2 min and 42 °C for 2 min and finally 70 °C
for 15 min before holding at 4 °C.
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Each first strand cDNA reaction was supplied with 15 µl of PCR mix containing
1x KAPA HiFi HotStart Ready Mix (Kapa Biosystems, KK2601), 1 µM IS PCR
primer (5′-AAGCAGTGGTATCAACGCAGAGT-3′, IDT, as described in Picelli
et al., 2014 and UltraPure DNase/RNase-Free Distilled Water (Invitrogen,
10977035). The RNA samples were vortexed and centrifuged (700 × g for 10 s)
while the combined RNA/Protein samples were pipette-mixed, prior to incubation
in PCR program: 98 °C for 3 min, cycling of 98 °C for 20 s, 67 °C for 15 s and 72 °C
for 6 min. Lastly, the final extension was at 72 °C for 30 s prior to holding at 4 °C.
Single cells were subjected to 20 PCR cycles while bulk samples (100 cells) were
subjected to 14 PCR cycles. Samples were finally purified with AMPure XP beads
(Beckman Coulter, A63880) using 0.8X bead to sample ratio.

scProtein expression analysis. Cell lysate containing the protein supernatant
were transferred to a new 96-well PCR-plate and were processed immediately. To
each sample, we added 2.1 µl Incubation Solution (Olink Proteomics), 0.3 µl
Incubation Stabilizer (Olink Proteomics), 0.3 µl of each PEA A- and B-probe mix
(final concentration 100 pM; Olink Proteomics). The probes targeted 92 cellular
proteins and 4 controls. The controls included spiked-in GFP, PE, an extension
control, and a detection control15. Each 96-well plate included a lysis buffer only
negative control in triplicate. PCR-plates were briefly vortexed, centrifuged, sealed,
and incubated overnight at 8 °C. Following overnight incubation, plates were
brought to room temperature, briefly spun down, and 96 µl Extension mix was
added to each well. The extension mix contained 10 µl PEA Solution (Olink Pro-
teomics), 0.5 µl PEA Enzyme (Olink Proteomics), 0.2 µl PCR Polymerase (Olink
Proteomics), and 85.3 µl UltraPure DNase/RNase-Free Distilled Water (Invitrogen,
10977035). Plates were sealed, gently vortexed, centrifuged and within 5 min of
adding the Extension mix, placed in a thermal cycler for the extended reaction (50 °
C, 20 min), and pre-amplification of extended PEA probes via universal primers
(95 °C, 5 min, (95 °C, 30 s; 54 °C, 1 min; and 60 °C, 1 min) x 17).

The pre-amplified extended PEA products were decoded and quantified using a
Fluidigm 96.96 Dynamic Array Integrated Fluidic Circuit on a Biomark HD
system. 96 primers pairs (5 µl of each) targeting each PEA probe pair were loaded
in the left inlets of the array. A Detection mix containing 5 µl Detection Solution,
0.071 µl Detection Enzyme, 0.028 µl PCR Polymerase (all Olink Proteomics), and
2.1 µl UltraPure DNase/RNase-Free Distilled Water (Invitrogen, 10977035) was
added in the right inlets of the array. The 96.96 IFC chip was primed in Fluidigm’s
IFC HX according to manufacturer’s instructions and then run on the Biomark HD
system with the following settings: Gene Expression application, ROX passive
reference, single-probe assay with FAM-MGB probe. The thermal protocol
included thermal mix (50 °C, 120 s; 70 °C, 1,800 s; 25 °C, 600 s), hot start (95 °C,
300 s), and PCR cycling for 40 cycles (95 °C, 15 s; 60 °C, 60 s).

Library preparation and sequencing. Purified cDNA (75 ng) was used as input to
the Nextera XT DNA library preparation kit (Illumina, FC-131-1096), following
the manufacturers protocol with the modification of using 1:5 of reagent volumes.
Indexing primers (Illumina, FC-131-2001; FC-131-2002; FC-131-2003; FC-131-
2004) were diluted 1:2 in UltraPure DNase/RNase-Free Distilled Water (Invitro-
gen, 10977035) prior to use. Samples were finally pooled and purified with AMPure
XP beads (Beckman Coulter, A63880) using 0.6x bead to sample ratio and con-
centrated by eluting in 60% of the corresponding input sample volume using
Elution buffer (Qiagen, 19086). The final sequencing library was quantified using
BioAnalyzer High Sensitivity DNA kit (Agilent, 5067-4626) using a region table
spanning 100 bp to 1000 bp. The pooled library was sequenced on two lanes of
Illumina HiSeq2500 using single read 50 bp read length, v4 chemistry. The
sequencing was performed at the SNP&SEQ Technology Platform, Science for Life
Laboratory, Uppsala, Sweden.

scRNAseq dataset processing. Reads were mapped to the human genome
(GRCh38) including the sequence of the spike-in RNAs. FeatureCount summar-
ized over annotated genes from the GRCh38.77 version of the human genome
including the spike-ins were used to get counts for all exons of annotated genes in
the human genome. Samples with less than 10,000 reads mapping to the exons or
the fraction of spike-in RNAs were greater than 20% were removed from further
analysis. RPM values and RPKM values were calculated for all genes in all samples.

scProtein dataset processing. Following the completion of the qPCR run on the
Fluidigm Biomark HD system, we visually inspected the amplification curves.
Samples showing evidence of failed or poor amplification reactions were excluded
from further analysis. Next, the raw Cq data (log 2 scale) from the Fluidigm
Biomark HD system was exported and processed. First, samples were excluded if
no signal was detected in any of control assays (extension control, incubation
control, or detection control), or if the signal in any of the controls was greater or
less than 2 standard deviations (SD) of the mean value across all samples measured
on a 96.96 IFC Biomark chip. Next, the remaining Cq values were normalized for
intra-plate variation with the extension control (Cqassay—CqExtCtl) yielding dCq
values. Then, for each assay, the dCq values were subtracted from the negative
control computed as the lysis buffer mean+ 2 × SD. This ensures that observed
signals for each assay in the presence of a cell are at least 2 SDs away from any
signals observed in the absence of any antigen. Resulting values below zero were set

to zero and the signal was deemed undetected. The cumulative protein sum was
calculated by summing across all proteins measured (n= 92) per cell.

Method comparison for RNA analysis. Samples from both the SPARC protocol
and standard Smart-seq2 protocol at 0 h were used to compare similarities and
differences between the two protocols. Only genes with log RPKM greater than 1
were used for further analysis. Genes were separated into different biotypes
according to GRCh38.77 annotation and number of detected genes per biotype
were compared between the two protocols. Read counts for all exons and introns in
all genes were counted and the distribution across the genes were compared
between the two protocols. Logarithmic mean expression (LME) for each gene was
calculated for all samples irrespective of protocol, and for each protocol by itself
LMESPARC-seq and LMESmart-seq2. Differential expression between the proto-
cols (DE-prot) per gene were calculated by dividing the LMESPARC-seq with the
LMESmart-seq2 value per gene. Both the LME and the DE-prot were taken into
account by multiplying the two values to identify the differences between the two
protocols. Genes where the product of the two was greater than 8 was considered to
be different and analyzed for differences in lengths and gene biotype.

Cell cycle assignment. RNA samples were normalized using the Seurat 224

package and the samples were scaled by the number of detected genes per sample.
Scores for each sample being in either S phase or G2/M phase were calculated using
the Seurat 2 package and at the same time predicted to belong to either the G1, S,
or G2/M phase.

To further explore the relationship between cell cycle phase and protein
expression, hESCs were labeled with the Live cell DNA dye Vybrant DyeCycle
Violet (Invitrogen, V35003) and sorted by cell cycle phase (G1, S or G2/M) in
triplicate at 100 cells per well. Cells were sorted in the following lysis buffer: 2 μl TE
buffer (pH 8.0) with the following components: 1% NP-40 (Thermo Fisher, 28324),
0.1% Triton X-100 (Thermo Fisher, 28314), 0.1% Sulfobetaine (Sigma-Aldrich),
150 mM NaCl (Thermo Fisher, AM9760G), 10 mg/ml BSA (Thermo Fisher,
AM2618), and 1X HALT Protease Inhibitor (Thermo Fisher, 78430). Cells were
then processed for multiplex PEA analysis as described above.

PCA analysis and pseudotime analysis. The normalized and scaled data from the
cell cycle prediction were further scaled by the scores for the S phase and the G2M
scores to remove the cell cycle dependency of the samples using the Seurat package.
Dimensional reduction analysis using tSNE were used to reduce the dimensionality
of the sample data. The three dimensions from the tSNE analysis was then used by
SCORPIUS19 to predict a linear pseudo time through all the samples with a score
between 0 and 1. Average pseudotime scores for the 0 h samples and 48 h samples
were calculated. If the average pseudotime score for the 0 h samples was higher
than the average 48 h samples the pseudotime was re-calculated by subtracting the
pseudotime with 1 and then multiplying by −1 to change the order of the samples
and maintaining the pseudotime distances between samples. Pseudotime scores
were then multiplied with 48 to reflect a pseudotime over 48 h. Genes that change
over time were identified by SCORPIUS (adjusted p-value <0.05) and separated
into different modules dependent on expression pattern over time.

Comparison of RNA and protein changes over time. To test whether the
expression levels for both RNA and protein level show the same directional
changes, we applied a linear model for expression over time for both the RNA
logged RPKM values (lRPKM(pt)= klRPKM × pt+ IlRPKM) and for protein Cq
values (Cq(pt)= kCq × pt+ ICq). We then tested if the slope of the RNA levels for
a gene could predict the slope of the protein for the same gene with the linear
modelkCq (klRPKM)= x klRPKM+ z. We fitted it and got the linear model kCq
(klRPKM)= 0.49 klRPKM+ 0.01.

Gene regulatory network analysis—selection of POU5F1 targets. Initial sets of
potential target for TFs were downloaded from enrichr databases. The three TF
target enrichment databases used were
ENCODE_and_ChEA_Consensus_TFs_from_ChIP-X library as a mean to identify
genes where the TF bind in vicinity, Enrichr_Submissions_TF-Gene_Coocurrence
library to identify genes that are co-expressed with TFs, and TRRUST_Tran-
scription_Factors_for known TF targets according to literature. In our analysis we
considered TRRUST targets identified in mouse also as true targets.

To reduce the number of false-positive targets based on the approaches above
and identify genes that are trans-regulated by POU5F1, an initial set of potential
POU5F1 targets were selected based on two criteria: (1) identified as one of the
genes that changed over pseudotime using SCORPIUS (adj p-value <0.05); and (2)
reported as bound by POU5F1 in vicinity of the TSS by the curated set of ChIP-seq
data described in the section below. The intersection of the two assumptions gave a
subset of 8 high confidence target genes (AK4, DHRS3, DUSP6, KLHL4, OTX2,
PRR14L, TDGF1, WLS).

A set of genes where POU5F1 binds in the vicinity of the TSS in primed hESCs
were identified using ChIP-seq data35. An initial set of 11 hESC ChIP-seq
experiment data (SRX017276, SRX021069, SRX021071, SRX1053369, SRX1053370,
SRX1053378, SRX1053379, SRX266859, SRX702065, SRX702066, SRX702069)
were collected from CHiP-Atlas34 by filtering with POU5F1 as TF and a distance
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from TSS of 1 kb. For the remaining samples, hierarchical clustering of the
Euclidean distance of binding scores across all genes and experiments was
performed. A final set of seven experiments (SRX017276, SRX021069, SRX021071,
SRX1053378, SRX1053379, SRX702065, SRX702066) that clustered as primed
hESC in the hierarchical cluster were kept for further analysis. Genes with a
reported binding score in ChIP-Atlas in at least two samples were considered as the
curated set of POU5F1 target genes.

Regulatory link weights for TF-target pairs were calculated using GEne Network
Inference with Ensemble of trees (GENIE3)35 between the TF expression pattern
and the expression pattern of expressed annotated coding genes in the cell. To
remove noise, only genes with a mean RPKM of 2 were considered. To evaluate
whether the targets were upregulated or downregulated, i.e., positive or negative
correlation, calculation of the Pearson correlation was done.

Gene expression variation. Gene expression variation was estimated using the
squared coefficient of variation (CV2). As variation and mean expression are
inherently linked due to sampling properties, we perform a polynomial fit of
variation to mean expression in log-space. We then considered the residuals of the
individual gene measurements with regard to this fit as mean-independent gene
expression variation measurements (termed “normalized variation”). To avoid in-
silico biases, data was not computationally de-noised using batch-effect removal
tools. Instead, cells were strictly filtered and quality controlled. Specifically, outliers
were removed using pseudo-time estimations from SCORPIUS, and only S-phase
cells were considered, using the cyclone package of SCRAN. Mass-spectrometry
data for the estimation of the translation rate for hESCs (E14 cells36) was retrieved
from FunCoup PaxDB37 statistics. Translation rates are approximated by the log2
ratio of protein abundances vs. RNA RPKM measurements. Due to the different
dynamic ranges of the RNA variability and translation measures, the “combined
normalized variation and translation rate” reflects the sum of normalized RNA
expression variation and 0.75 times the estimated translation rate. Lines in Fig. 4c,
d show linear least total square fits.

TaqMan gene expression analysis. Total RNA was isolated from the HS181 cell
line using the miRNeasy Micro Kit (Qiagen, 217084). We used the One-Step RT-
PCR System (Thermo Fisher Scientific, 12574026) with the Taqman Assays IKBKG
(Hs00415849_m1, 4453320), METAP1D (Hs00994998_m1, 4448892), HMOX1
(Hs01110250_m1, 4453320), and EIF4B (Hs00973573_m1, 4331182) (all Thermo
Fisher). Gene expression was quantified from the isolated RNA at 100 ng/reaction
using the Quantstudio real-time qPCR instrument.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The SPARC single-cell sequencing data have been deposited at ENA with the project
number PRJEB33157. The SPARC single-cell protein data have been deposited at
SciLifeLab Data Repository with https://doi.org/10.17044/scilifelab.14207462. The data is
reported as described in methods under scProtein dataset processing but are not
normalized for cumulative protein sum. Assays are filtered for those where we detected
the protein at a level of >3 Cq over background in the 100 cell population control in at
least one time point. The processed data to generate all figures, and all supplementary
figures and tables are available at GitHub (b97jre/SPARC) and also been deposited at
SciLifeLab Data Repository with https://doi.org/10.17044/scilifelab.14207909

Code availability
All analysis post mapping and counting has been carried out in R. Package dependencies
and code to generate all figures, supplementary figures and tables are available at GitHub
(https://github.com/b97jre/SPARC) and also been deposited at SciLifeLab Data
Repository with https://doi.org/10.17044/scilifelab.14207909.

Received: 6 July 2020; Accepted: 30 March 2021;

References
1. Larsson, A. J. M. et al. Genomic encoding of transcriptional burst kinetics.

Nature 565, 251–254 (2019).
2. Schwanhäusser, B. et al. Global quantification of mammalian gene expression

control. Nature 473, 337–342 (2011).
3. Natarajan, K. N. et al. Comparative analysis of sequencing technologies for

single-cell transcriptomics. Genome Biol. 20, 70 (2019).
4. Popovic, D., Koch, B., Kueblbeck, M., Ellenberg, J. & Pelkmans, L. Multivariate

control of transcript to protein variability in single mammalian cells. Cell Syst.
7, 398–411 e396 (2018).

5. Frei, A. P. et al. Highly multiplexed simultaneous detection of RNAs and
proteins in single cells. Nat. Methods 13, 269–275 (2016).

6. Schulz, D. et al. Simultaneous multiplexed imaging of mRNA and proteins
with subcellular resolution in breast cancer tissue samples by mass cytometry.
Cell Syst. 6, 531 (2018).

7. Darmanis, S. et al. Simultaneous multiplexed measurement of RNA and
proteins in single cells. Cell Rep. 14, 380–389 (2016).

8. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in
single cells. Nat. Methods 14, 865–868 (2017).

9. Peterson, V. M. et al. Multiplexed quantification of proteins and transcripts in
single cells. Nat. Biotechnol. 35, 936–939 (2017).

10. Gerlach, J. P. et al. Combined quantification of intracellular (phospho-)
proteins and transcriptomics from fixed single cells. Sci. Rep. 9, 1469
(2019).

11. Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in
single cells. Nat. Methods 10, 1096–1098 (2013).

12. Assarsson, E. et al. Homogenous 96-plex PEA immunoassay exhibiting
high sensitivity, specificity, and excellent scalability. PLoS One 9, e95192
(2014).

13. Schmid, M. & Jensen, T. H. Controlling nuclear RNA levels. Nat. Rev. Genet.
19, 518–529 (2018).

14. Padovan-Merhar, O. et al. Single mammalian cells compensate for differences
in cellular volume and DNA copy number through independent global
transcriptional mechanisms. Mol. Cell 58, 339–352 (2015).

15. Cannoodt, R. et al. SCORPIUS improves trajectory inference and identifies
novel modules in dendritic cell development. Preprint at bioRxiv https://doi.
org/10.1101/079509 (2016).

16. Liu, Y., Beyer, A. & Aebersold, R. On the dependency of cellular protein levels
on mRNA abundance. Cell 165, 535–550 (2016).

17. Liu, Y. & Aebersold, R. The interdependence of transcript and protein
abundance: new data—new complexities. Mol. Syst. Biol. 12, 856 (2016).

18. Ziller, M. J. et al. Dissecting neural differentiation regulatory networks
through epigenetic footprinting. Nature 518, 355–359 (2015).

19. Lee, M. V. et al. A dynamic model of proteome changes reveals new roles for
transcript alteration in yeast. Mol. Syst. Biol. 7, 514 (2011).

20. Gedeon, T. & Bokes, P. Delayed protein synthesis reduces the correlation
between mRNA and protein fluctuations. Biophys. J. 103, 377–385 (2012).

21. Qiu, X. et al. Towards inferring causal gene regulatory networks from single
cell expression Measurements. Cell Syst. 10, 265–274.e11 https://doi.org/
10.1016/j.cels.2020.02.003 (2020).

22. Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis
web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016).

23. Grun, D. & van Oudenaarden, A. Design and analysis of single-cell sequencing
experiments. Cell 163, 799–810 (2015).

24. Ozbudak, E. M., Thattai, M., Kurtser, I., Grossman, A. D. & van Oudenaarden,
A. Regulation of noise in the expression of a single gene. Nat. Genet. 31, 69–73
(2002).

25. Raj, A., Peskin, C. S., Tranchina, D., Vargas, D. Y. & Tyagi, S. Stochastic
mRNA synthesis in mammalian cells. PLoS Biol. 4, e309 (2006).

26. Specht, H. et al. Single-cell proteomic and transcriptomic analysis of
macrophage heterogeneity. Genome Biol 22, 50 https://doi.org/10.1186/
s13059-021-02267-5 (2021).

27. Franks, A., Airoldi, E. & Slavov, N. Post-transcriptional regulation across
human tissues. PLOS Comput. Biol. 13, e1005535 (2017).

28. Raj, A. & van Oudenaarden, A. Nature, nurture, or chance: stochastic gene
expression and its consequences. Cell 135, 216–226 (2008).

29. La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).
30. Gorin, G., Svensson, V. & Pachter, L. Protein velocity and acceleration from

single-cell multiomics experiments. Genome Biol. 21, 39 (2020).
31. Genshaft, A. S. et al. Multiplexed, targeted profiling of single-cell proteomes

and transcriptomes in a single reaction. Genome Biol. 17, 188 (2016).
32. Weibrecht, I. et al. In situ detection of individual mRNA molecules and

protein complexes or post-translational modifications using padlock probes
combined with the in situ proximity ligation assay. Nat. Protoc. 8, 355–372
(2013).

33. Darmanis, S. et al. ProteinSeq: high-performance proteomic analyses by
proximity ligation and next generation sequencing. PloS One 6, e25583
(2011).

34. Oki, S. et al. ChIP-Atlas: a data-mining suite powered by full integration
of public ChIP-seq data. EMBO Rep. 19, e46255 https://doi.org/10.15252/
embr.201846255 (2018).

35. Aibar, S. et al. SCENIC: single-cell regulatory network inference and
clustering. Nat. Methods 14, 1083–1086 (2017).

36. Phanstiel, D. H. et al. Proteomic and phosphoproteomic comparison of
human ES and iPS cells. Nat. Methods 8, 821–827 (2011).

37. Ogris, C., Guala, D., Helleday, T. & Sonnhammer, E. L. A novel method for
crosstalk analysis of biological networks: improving accuracy of pathway
annotation. Nucleic Acids Res. 45, e8 (2017).

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02142-w

10 COMMUNICATIONS BIOLOGY |           (2021) 4:624 | https://doi.org/10.1038/s42003-021-02142-w |www.nature.com/commsbio

https://doi.org/10.17044/scilifelab.14207462
https://doi.org/10.17044/scilifelab.14207909
https://github.com/b97jre/SPARC
https://doi.org/10.17044/scilifelab.14207909
https://doi.org/10.1101/079509
https://doi.org/10.1101/079509
https://doi.org/10.1016/j.cels.2020.02.003
https://doi.org/10.1016/j.cels.2020.02.003
https://doi.org/10.1186/s13059-021-02267-5
https://doi.org/10.1186/s13059-021-02267-5
https://doi.org/10.15252/embr.201846255
https://doi.org/10.15252/embr.201846255
www.nature.com/commsbio


Acknowledgements
We thank Ulf Landegren and Lars Feuk for helpful feedback on the manuscript.
Sequencing was performed by the SNP&SEQ Technology Platform in Uppsala, Sweden.
The facility is part of the National Genomics Infrastructure (NGI) Sweden and Science
for Life Laboratory. The SNP&SEQ Platform is also supported by the Swedish Research
Council and the Knut and Alice Wallenberg Foundation. C.G. acknowledges funding
from the Swedish Research Council (VR) Grant 2017-05229 and support from the Single
Cell Proteomics Facility, Science for Life Laboratory, Sweden. M.T. and M.R.F.
acknowledge funding from ERC Starting Grant 758397 “miRCell”, VR Research Grant
2019-05320 “MioPec”, and from the Strategic Research Area (SFO) program of the
Swedish Research Council (VR) through Stockholm University. N.D. acknowledges
funding from the Swedish Research Council 2015-02424.

Author contributions
C.J.G., M.D., and M.R.F conceived the concept and analysis framework. M.D., S.B., and
S.P. ran the experiments with cell models from J.S. and N.D. J.R. and M.T. designed and
performed the data analysis. J.R., M.T., M.R.F., and C.J.G wrote the manuscript. All
authors commented on the manuscript.

Funding
Open access funding provided by Uppsala University.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42003-021-02142-w.

Correspondence and requests for materials should be addressed to C.J.G.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02142-w ARTICLE

COMMUNICATIONS BIOLOGY |           (2021) 4:624 | https://doi.org/10.1038/s42003-021-02142-w |www.nature.com/commsbio 11

https://doi.org/10.1038/s42003-021-02142-w
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsbio
www.nature.com/commsbio

	A combined approach for single-cell mRNA and intracellular protein expression analysis
	Results
	Single cell mRNA expression data
	Single cell protein expression data
	Relation of RNA and protein data in single cells in a steady-state condition
	Relation of RNA and protein levels in single cells during dynamic change
	Protein vs. mRNA expression levels correlate better with their trans-regulatory targets
	Gene expression variation

	Discussion
	Methods
	Cell culture and neural induction of human embryonic stem cells
	Single cell isolation
	Oligo-dT bead preparation
	mRNA capture, reverse transcription, and pre-amplification
	scProtein expression analysis
	Library preparation and sequencing
	scRNAseq dataset processing
	scProtein dataset processing
	Method comparison for RNA analysis
	Cell cycle assignment
	PCA analysis and pseudotime analysis
	Comparison of RNA and protein changes over time
	Gene regulatory network analysis—selection of POU5F1 targets
	Gene expression variation
	TaqMan gene expression analysis

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




