
royalsocietypublishing.org/journal/rsif
Research
Cite this article: Thomas P, Shahrezaei V.
2021 Coordination of gene expression noise

with cell size: analytical results for agent-

based models of growing cell populations.

J. R. Soc. Interface 18: 20210274.
https://doi.org/10.1098/rsif.2021.0274
Received: 31 March 2021

Accepted: 4 May 2021
Subject Category:
Life Sciences–Mathematics interface

Subject Areas:
biomathematics, systems biology

Keywords:
stochastic gene expression, single-cell analysis,

chemical master equation, agent-based

modelling
Author for correspondence:
Philipp Thomas

e-mail: p.thomas@imperial.ac.uk
© 2021 The Author(s) Published by the Royal Society. All rights reserved.
Coordination of gene expression noise
with cell size: analytical results for agent-
based models of growing cell populations

Philipp Thomas and Vahid Shahrezaei

Department of Mathematics, Imperial College London, London, UK

PT, 0000-0003-4919-8452; VS, 0000-0002-4013-5458

The chemical master equation and the Gillespie algorithm are widely used to
model the reaction kinetics inside living cells. It is thereby assumed that cell
growth and division can be modelled through effective dilution reactions
and extrinsic noise sources. We here re-examine these paradigms through
developing an analytical agent-based framework of growing and dividing
cells accompanied by an exact simulation algorithm, which allows us to
quantify the dynamics of virtually any intracellular reaction network
affected by stochastic cell size control and division noise. We find that the
solution of the chemical master equation—including static extrinsic
noise—exactly agrees with the agent-based formulation when the network
under study exhibits stochastic concentration homeostasis, a novel condition
that generalizes concentration homeostasis in deterministic systems to
higher order moments and distributions. We illustrate stochastic concen-
tration homeostasis for a range of common gene expression networks.
When this condition is not met, we demonstrate by extending the linear
noise approximation to agent-based models that the dependence of gene
expression noise on cell size can qualitatively deviate from the chemical
master equation. Surprisingly, the total noise of the agent-based approach
can still be well approximated by extrinsic noise models.
1. Introduction
Cells must continuously synthesize molecules to grow and divide. At a single-
cell level, gene expression and cell size are coordinated but heterogeneous
which can drive phenotypic variability and decision making in cell populations
[1–5]. The interplay between these sources of cell-to-cell variability is not well
understood since they have traditionally been studied separately. A general
stochastic theory integrating size-dependent biochemical reactions with the
dynamics of growing and dividing cells is hence still missing.

Many models of noisy gene expression and its regulation are based on the
chemical master equation that describes the stochastic dynamics of biochemical
reactions in a fixed reaction volume [6–8]. The small scale of compartmental
sizes of cells implies that a small number of molecules is present at any time
leading to large variability of reaction rates from cell to cell, commonly referred
to as gene expression noise [9–11]. Another factor contributing to gene
expression noise is that cells are continuously growing and dividing causing
molecule numbers to (approximately) double over the course of a growth-div-
ision cycle. A common approach to account for cell growth is to include extra
degradation reactions that describe dilution of gene expression levels due to
cell growth [9–13] akin to what is done in deterministic rate equation models
[14,15]. We will refer to this approach as the effective dilution model (EDM,
figure 1a). However, little is known of how well this approach represents the
dependence of gene expression noise on cell size observed in a growing
population.

Cells achieve concentration homeostasis through coupling reaction rates to
cell size via highly abundant upstream factors like cell cycle regulators,
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Figure 1. Modelling approaches for cell size dependence of gene expression. (a) The effective dilution model describes cells at constant size with intracellular
reactions coupled to effective dilution reactions. (b) The extrinsic noise model incorporates static cell size variability as a source of extrinsic noise coupled with
effective dilution models. (c) The agent-based approach models intracellular reactions occurring across a growing and dividing cell population without the need
for effective dilution reactions.
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polymerases or ribosomes that approximately double over the
division cycle [3,16,17]. Cell size fluctuates in single cells, how-
ever, providing a source of extrinsic noise in reaction rates that
can be identified via noise decompositions [18,19]. A few
studies combined EDMs with static cell size variations as an
explanatory source of extrinsic noise [20–22]. In brief, the
total noise in these models amounts to intrinsic fluctuations
due to gene expression and dilution, and extrinsic variation
across cell sizes in the population. We refer to this class of
models as extrinsic noise models (ENMs, figure 1b). Yet it
remains unclear how reliably these effective models describe
cells that continuously synthesize molecules, grow and divide.

An increasing number of studies are investing efforts
towards quantifying the dependence of gene expression
noise on cell cycle progression and growth, either experimen-
tally via ergodic principles or pseudo-time [23,24] and time-
lapse imaging [22,25,26] or theoretically through noise
decomposition [27–29], master equations including cell cycle
dynamics [4,17,30–35] and agent-based approaches including
age-structure of growing populations [35–40]. The essence of
agent-based models (ABMs) is that each cell in a population is rep-
resented by an agent whose physiological state is tracked along
with their molecular reaction networks. In principle, these
models are able to predict gene expression distributions of
cells progressing through well-defined cell cycle states as
measured by time-lapse microscopy and snapshots of hetero-
geneous populations. The unprecedented detail of these
models must cast doubt on the predictions of master equation
models (EDMs and ENMs) in which growth and division are
modelled by effective dilution reactions. Yet it is presently
unclear why these effective models have fared reasonably well
in predicting gene expression noise reported by single-cell
experiments [10,17,41].

Nevertheless, most ABMs still ignore cell size, a major
physiological factor affecting both intracellular reactions
and cell division dynamics alike. Since cell size varies at
least twofold as required by size homeostasis in a growing
population, and it scales some reaction rates as required by
concentration homeostasis, it is expected that cell size must
significantly contribute to gene expression variation across
a population. In this article, we bridge the gap between the
chemical master equation and agent-based approaches by
integrating cell size dynamics with the stochastic kinetics of
molecular reaction networks.

The outline of the paper is as follows. First, we explain
the analytical framework for EDMs, ENMs and ABMs (§2).
Then we introduce the concept of stochastic concentration
homeostasis (SCH), a rigorous condition under which the
chemical master equations of the EDM and ENM agree
exactly with the ABM (§3.1). This new condition is met by
some but not all common models of gene expression. We
show that when these conditions are not met, the effective
models agree with the ABM only on average (§3.2). To
address this problem, we propose a comprehensive theoreti-
cal framework extending the linear noise approximation to
agent-based dynamics with which we quantify cell size scal-
ing of gene expression in growing cells (§3.3). Our findings
indicate that the EDM can qualitatively fail to predict this
dependence but our novel approximation method accurately
describes gene expression noise in the presence of cell size
control variations and division errors. We further show that
ENMs present surprisingly accurate approximations for the
total noise statistics (§3.4).
2. Methods
We consider a biochemical reaction network of N molecular
species S = (S1, S2,…, SN)

T embedded in a cell of size s. The
network then has the general form:

XN
i¼1

n�ir Si �!
kr XN

i¼1

nþir Si, r ¼ 1, . . . , R, (2:1)
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where n+r ¼ (n+1r , n
+
2r , . . . , n

+
Nr)

T are the stoichiometric coefficients
and kr is the reaction rate constant of the rth reaction. In the follow-
ing, we outline deterministic, effective dilution and extrinsic noise
models and develop a new agent-based approach coupling sto-
chastic reaction dynamics to cell size in growing and dividing
cells (figure 1).

2.1. Effective dilution models, extrinsic noise models
and the chemical master equation

2.1.1. Rate equation models and concentration homeostasis
Deterministically, the vector of molecular concentrations
�X ¼ (�X1, �X2, . . . , �XN)

T is governed by rate equation models in
balanced growth conditions. The balanced growth condition states
that there exists a steady state between reaction and dilution rates

a�X ¼
XR
r¼1

(nþr � n�r )fr(�X): (2:2)

Here, fr(�X) are macroscopic reaction-rate functions and α is the
exponential growth rate of cells determining the dilution rate due
to growth. Since these quantities are independent of cell size, the
balanced growth condition (2.2) implies concentration homeostasis
in rate equation models.
 4
2.1.2. Effective dilution model
The chemical master equation [6] and equivalently the stochastic
simulation algorithm [7] are state-of-the-art stochastic models of
reaction kinetics inside cells. Although well-established, they are
strictly valid only when describing cellular fluctuations at con-
stant cell size s. A straightforward approach to circumvent this
limitation is to supplement (2.1) by additional degradation reac-
tions of rate α that model dilution of molecules due to cell
growth:

Si �!a �, i ¼ 1, 2, . . . , N, (2:3)

akin to what is traditionally for reaction rate equations (2.2). The
chemical master equation of this EDM then takes the familiar
form

0 ¼ @PEDM(xjs)
@t

¼ [Q(s)þ aD]PEDM(xjs), (2:4)

governing the conditional probability of molecule numbers
x = (x1, x2,…, xN)

T of the species S in a cell of size s and where

Qx,x0 (s) ¼
XR
r¼1

wr(x0, s)(dx,x0þnþr �n�r � dx,x0 ), (2:5)

are the elements of the transition matrix of the molecular reac-
tions (2.1) and we included the extra dilution reactions (2.3) via
Dx,x0 (s) ¼

PN
i¼1 x

0
i(dxi ,x0i�1 � dxi ,x0i ). We are here interested in the

stationary solution and hence set the time-derivative in equation
(2.4) to zero. Such effective models are motivated through the
fact [6,42] that when the microscopic propensities wr are linked
to the macroscopic rate functions fr of the rate equation models
via mass-action kinetics

wr(x, s) � sfr(X), (2:6)

where X = x/s is the concentration, the mean concentrations
of EDMs follow the concentrations �X of the rate equations (2.2)
(see §2.1.4).

2.1.3. Extrinsic noise model
A common way to incorporate static size variability between
cells in the model is to consider cell size s to be distributed
across cells according to a cell size distribution P(s). We will
refer to this approach as the ENM, which leads to a mixture
model of concentrations X = x/s,

PENM(X) ¼
ð1
0
dsPEDM(x ¼ Xsjs)P(s), (2:7)

and analogous expressions for the molecule number distributions.
2.1.4. Analytical solutions and noise decomposition
The advantage of the EDM and ENM is that its noise statistics
can be approximated in closed-form using the linear noise
approximation [6,43,44]. In this approximation, the mean concen-
trations are approximated by the solution �X of the rate equations
(2.2) and the probability distribution PEDM(xjs) is approximated
by a Gaussian. In the same limit, the covariance matrix SY can
be decomposed into intrinsic and extrinsic components, Sint

Y
and Sext

Y , using the law of total variance [18,19]

SY ¼ Sint
Y|{z}

gene expression

þ Sext
Y|{z}

cell size variation

, (2:8)

which correspond to molecular fluctuations due to gene expression
and cell size variation, respectively, for Y∈ {EDM, ENM}. Specifi-
cally, for molecule numbers x, we have Sint

Y ¼ EP[CovPY [xjs]] and
Sext
Y ¼ CovP[EPY [xjs]], where EP denotes the expectation value

with respect to the distribution P, and analogously for concen-
trations. The intrinsic components Sint

Y satisfy a Lyapunov
equation called the linear noise approximation:

0 ¼ J dS
int
Y þ Sint

Y J T
d þV�1

Y Dd(�X), (2:9)

where VY has to be chosen depending on whether concentration
or number covariances are of interest:

(2.10)
The matrix J d is the Jacobian of the rate equations (2.2) and Dd

denotes the diffusion matrix obeying

J d(�X) ¼ J (�X)� a1, Dd(�X) ¼ D(�X)þ adiag(�X), (2:11)

where J (�X) ¼PR
r¼1 (n

þ
r � n�r )rT

�Xfr(
�X) and D(�X) ¼PR

r¼1 fr(�X)
(nþr � n�r )(n

þ
r � n�r )

T . The extrinsic components Sext
Y follow from

the dependence of the mean on cell size, which features only
in the molecule number variance of the ENM:

(2.12)
where the last cell follows from Sext
ENM ¼ CovP[EP[xjs]] with

EP[xjs] ¼ s�X.
As a concrete example, we consider transcription of mRNAs

with a size-dependent transcription rate that are translated into
stable proteins:

��!k0s M�!kdm �, M�!ktl Mþ P: (2:13)

We then account for dilution through the additional reactions

M�!a �, P�!a �: (2:14)

The mean protein concentration is given by �P ¼ k0b=a and the



Box 1. First-Division Algorithm for agent-based simulations of size-dependent gene regulatory networks.

Exact simulation algorithm of general stochastic reaction networks within growing cells (agents) undergoing binary cell div-
ision according to cell size control rules [45–47]. The algorithm combines the Extrande method [48] for simulating reaction
networks embedded in a growing cell and the First-Division algorithm [38] for the population dynamics. The state of each
cell is given by birth time t0, birth size s0, present cell size s and the vector of molecule numbers x.
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coefficient of variation predicted by the EDM and ENM follow
the familiar expression [10]

CV2
Y ¼ 1

VY�P
1þ b

d

1þ d

� �
þ Sext

Y

�P2 , (2:15)

where we account for size variability via VY and Sext
Y given by

equations (2.10) and (2.12), respectively, and the parameters

d ¼ 1þ kdm
a

and b ¼ ktl
kdm þ a

, (2:16)

correspond to the ratio of mRNA and protein degradation/
dilution rates and the translational burst size, respectively.
From equations (2.15) with (2.10) and (2.12), it is clear that size
variation acts on the intrinsic noise component of molecule con-
centrations (via EP[s�1] � EP[s]

�1(1þ CV2
P[s])) but the extrinsic

noise component of molecule numbers (via Sext
Y (2.12)).
2.2. Agent-based modelling
Little is known about the accuracy of EDMs and ENMs in pre-
dicting cellular noise in growing populations. In the following,
we introduce an agent-based modelling approach that serves as
a gold standard to assess the validity of these effective models.
The ABM represents cells as agents that progressively synthesize
molecules via intracellular reactions (2.1), grow in size and
undergo cell division. Every division gives rise to two daughter
cells of varying birth sizes, each of which inherits a proportion of
molecules from the mother cell via stochastic size-dependent
partitioning at division.

The ABM simulation algorithm is given in box 1, which com-
bines the First-Division algorithm, previously introduced for
agent-based cell populations [38], with the Extrande method
adapted to simulate reaction networks embedded in a growing
cell [48]. In the following, we describe the exact analytical frame-
work with which we characterize the snapshot distributions that
underlie such a population of agents.

2.2.1. Master equation for agent-based populations
We consider the number of cells n(τ, s, x, t) with age τ (time since
the last division), cell size s and molecule counts x in a snapshot
at time t, which evolves as

@

@t
þ @

@t
þ @

@s
asþ �g(s, t)

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

growth

n(t, s, x, t) ¼ Q(s)n(t, s, x, t)|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
stochastic reactions

,

n(0, s, x, t)|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
no: newborn cells

¼ 2
ð1
0
dt0
ð1
0
ds0 B(sjs0)|fflffl{zfflffl}

division error

�
X
x0

B(xjx0, s=s0)|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
partitioning of molecules

�g(s0, t0)n(t0, s0, x0, t)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
no: dividing cells

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

(2:17)

and describes cell growth, stochastic reaction kinetics and a
boundary condition for cell division that ensures that the
number of newborn cells is twice the number of dividing cells
after partitioning their size and molecular contents. These evol-
ution equations have been derived in [38,39] for age-dependent
snapshots but here we extend such ABMs to include also cell
size dynamics and size-dependent reaction dynamics. We
allow for the following generalizations: (i) size increases expo-
nentially in single cells, (ii) cells divide with rate �g(s, t) that is
both size- and age-dependent, (iii) the transition matrix Q(s) of
the molecular reactions depends on cell size s via the propensities
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(see definition after equation (2.4)), and (iv) the molecular parti-
tioning kernel B(x|x0, s/s0) depends on the inherited size fraction
s/s0 of a daughter cell. We now describe in detail how we model
the individual noise sources associated with cell size control, div-
ision errors, and molecule partitioning.

Cell size control fluctuations. Recent studies [45,49] have shown
that the distribution of sizes with which cells divide does not
explicitly depend on cell age but on the birth size s0. Assuming
that �g(s, t) ¼ asg(s, s�at), where γ(s, s0) is the division rate per
unit size (see also [50,51]), the division-size distribution is
given by

w(sdjs0) ¼ g(sd, s0) e
�
Ð sd
s0

dsg(s,s0)
: (2:18)

As a concrete example of (2.18), we consider a model where the
division size is linearly related to birth size [46,51,52]

sd ¼ as0 þ D: (2:19)

The division rate can be calculated from the distribution ~w(D) of
the noise term Δ in (2.19) via ~g(D) ¼ ~w(D)=(

Ð1
D du~w(u)) and setting

g(s, s0) ¼ ~g(s� as0), which gives the correct division-size distri-
bution w(sdjs0) ¼ ~w(sd � as0) as expected. The model generalizes
the sizer (a = 0) to concerted cell size controls such as the adder
(a = 1) and timer-like (2 > a > 1) models [45,47,49]. In the follow-
ing, we will refer to CVw[Δ] as the size-control noise.

Division errors. After division, size is partitioned between
cells and the birth size of the two daughter cells is obtained
from s00 = θsd and s000 = (1 − θ)sd where θ is the inherited size
fraction, a random variable between 0 and 1 with distribution
�p(u) (see box 1). This can be modelled using the division
kernel

B(s0js0) ¼
ð1
0
dup(u)d u� s0

s0
� �

,

where p(u) ¼ (1=2)�p(u)þ (1=2)�p(1� u) including the case of
asymmetric division. We will refer to CVp[u] as the division
error about the centre Ep[u] ¼ 1=2.

Molecule partitioning at cell division. The partitioning kernel
B(x|x0, θ) denotes the probability that a cell inherits x molecules
from a total of x0 molecules from its mother and this probability
depends on the daughter’s inherited size fraction θ. We assume
that cells are sufficiently well mixed and each molecule is parti-
tioned independently with probability θ such that the division
kernel is binomial

B(xjx0, u) ¼
YN
i¼1

x0i
xi

 !
uxi (1� u)x

0
i�xi : (2:20)

To make analytical progress, we assume that the population
establishes a long-term stationary distribution P(s, s0, x)
characterizing the fraction of cells with molecule numbers x,
cell size s and birth size s0 that is invariant in time. To
this end, we let n(t, s, x, t)/ eatP(s, t, x) and change
variables from cell age τ to birth size s0 such that
P(s, s0, x) ¼ (as)�1P(s, t ¼ ln (s=s0)=a, x). We find that this
transformation reduces the PDE (2.17) to an integro-ODE:

aþ @

@s
asþ asg(s, s0)

� �
P(s, s0, x) ¼ Q(s)P(s, s0, x) (2:21a)

and

s0P(s0, s0, x)

¼ 2
X
x0

ð1
0
ds0
ðs0
0
ds00 B(xjx0, s0=s0)B(s0js0)s0g(s0, s00)P(s0, s00, x

0):

(2:21b)
We finally characterize the marginal cell size distribution

P(s, s0) and the conditional molecule number distribution
P(xjs, s0) via Bayes’ formula

P(s, s0) ¼
X
x
P(s, s0, x), P(xjs, s0) ¼ P(s, s0, x)

P(s, s0)
, (2:22)

which together provide the full information about the
population snapshot.
2.2.2. Cell size distribution
The evolution of the size distribution P(s, s0) is obtained by
summing equations (2.21) over all possible x, which yields:

aþ @

@s
asþ asg(s, s0)

� �
P(s, s0) ¼ 0 (2:23a)

and

s0P(s0, s0) ¼ 2
ð1
0
ds0
ðs0
0
ds00 B(s0js0)s0g(s0, s00)P(s0, s00): (2:23b)

Equations (2.23) can be solved analytically

P(s, s0) ¼ 2
Z
cbw(s0)F(sjs0) 1s2 , (2:24)

where ψbw(s0) is the birth size distribution in a backward lineage
(see [50] for details), F(sjs0) ¼ exp (� Ð ss0 ds0g(s0, s0)) is the prob-
ability that a cell born at size s0 has not divided before
reaching size s, and Z ¼ Ecbw

[s�1
0 ] is a normalizing constant.
2.2.3. Molecule number distributions for cells of a certain size
The conditional molecule number distribution P(xjs, s0) gives the
probability to find the molecule numbers x in a cell of size s that
was born at size s0 and satisfies

as
@

@s
P(xjs, s0) ¼ Q(s)P(xjs, s0) (2:25a)

and

P(xjs0, s0) ¼
X
x0

ð1
0
ds0
ðs0
0
ds00 B xjx0, s0

s0
� �

r(s0, s00js0)P(x0js0, s00):

(2:25b)

Equations (2.25) follow directly from substituting equation (2.22)
into (2.21) and using (2.18) and (2.23). The solution of these
equations depends implicitly on the ancestral cell size distri-
bution ρ,

r(s0, s00js0) ¼
1

cbw(s0)
s0
s0

B(s0js0)w(s0js00)cbw(s
0
0), (2:25c)

that gives the probability of a cell born at size s0 having an
ancestor with division size s0 and birth size s00. The main differ-
ence between the molecule number distributions of the ABM and
the EDM/ENM is the boundary condition at cell division, which
as we shall see can have a significant effect on the reaction
dynamics.
3. Results
We here introduce the concept of SCH as a generalization of
concentration homeostasis in deterministic systems (see
§2.1.1) to higher moments and distributions in stochastic
reaction networks. SCH is a homeostatic condition for the
distribution p(x|s) of a size-dependent stochastic process to
be expressed as a mixture of Poisson random variables
drawn from an underlying continuous stochastic concen-
tration vector κ = (κ1, κ2,…, κN)

T that is statistically
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independent of s:

p(xjs) ¼
ð
K
dk x(k)

YN
i¼1

(kis)
xi

xi!
e�ski : (3:1)

The fact that κ and its density χ(κ) are independent of s
ensures concentration homeostasis in the stochastic sense.

3.1. The effective dilution model is valid for reaction
networks with stochastic concentration
homeostasis

Theorem A.2 (appendix A) is a central result of our analysis
and it states that if the EDM (2.4) satisfies SCH, i.e. equation
(3.1) holds for PEDM(xjs), then its stationary solution is also a
solution of the ABM (2.25):

P(xjs, s0) ¼ PEDM(xjs), (3:2)

and the solution is independent of the birth size s0. Equiva-
lently (appendix A), we can say that the EDM/ABM
satisfies SCH if the factorial-moment generating function is
of the form

GEDM(zjs) ¼
X
x

YN
i¼1

zxii PEDM(xjs) ¼ F(s(z� 1)), (3:3)

where F(t) ¼ Ex[e
PN

i¼1
tiki ], the moment-generating function

of the concentration vector, is cell-size (s) independent. An
interesting observation is that SCH implies that the mean
numbers and coefficients of variation for cells of the same
size s are given by

EP[xjs] ¼ sEx[k], CV2
P(xjs) ¼

1
sEx[k]

þ CV2
x(k): (3:4)

Since κ is independent of s, SCH implies homeostasis of the
mean concentrations in (3.4) but concentration homeostasis
on average does not necessarily imply SCH. The coefficients
of variation coincide both for concentrations and molecule
numbers and have size-dependent and size-independent
components. In the following, we provide examples of reac-
tion networks for which SCH holds for all values of the rate
constants and demonstrate the validity of the EDM by com-
paring its distribution solutions to ABM simulations.

It can be seen from (3.1) and (3.4) that when the EDM’s
stationary distribution is Poissonian with deterministic con-
centration vector κ, this distribution satisfies SCH and
hence is also a solution of the ABM. More generally, SCH
can be checked without solving for GEDM(z|s) (or
PEDM(xjs)). Assuming mass-action kinetics (2.6), for example,
a sufficient condition for SCH is that the network consists
entirely of mono-molecular reactions (see appendix A) of
the form:

� �!D(t)s
S1, or ��!D(t)

ms � S1,

or ��!s S1, or S1 ! �, or S1 ! S2,

)
(3:5)

where S1 and S2 denote any pair of species that are parti-
tioned at cell division and D(t) is a exogenous stationary
stochastic process modelling a genetic state which is copied
but not partitioned at cell division and does not scale with
cell size. The propensities of zero-order reactions in SCH net-
works must either be proportional to cell size or include size-
dependent random bursts ms whose burst distribution
satisfies SCH itself. We illustrate the predictive power of
this result by demonstrating SCH for common gene
expression models involving reactions of the form (3.5) and
show that the analytical solution of the chemical master
equations agrees exactly with the ABMs (figure 2a–c).

mRNA expression involving a two-state promoter [53]
(figure 2a),

Doff O
kon

koff
Don �!sk0 Don þM, M�!kdm �

satisfies SCH for all parameter values since the network is of
the form (3.5) whenever the transcription rate is proportional
to cell size. The stochastic concentration variable is distribu-
ted as κ∼ (k0/(kdm + α))Beta(kon/(kdm + α), koff/(kdm + α)).

Bursty protein expression (figure 2b) of a stable (non-
degrading) protein arising from a two-stage model of gene
expression can be modelled using stochastic bursts:

��!k0 ms � P:

According to (3.5) the model satisfies SCH for all parameter
values when the burst distribution obeys SCH. This is the
case for geometrically distributed burstsms whose mean is pro-
portional to cell size, E[ms|s] = bs. It can be shown that the
stochastic concentration variable follows κ∼Gamma(k0/α, b).

Similarly, bursty protein expression from a two-state pro-
moter arising from a three-stage gene expression model
[54,56] (figure 2c),

Doff O
kon

koff
Don �!k0 Don þms � P,

also satisfies SCH for geometrically distributed bursts (with
mean bs) but the concentration variable is doubly stochastic1

κ∼Gamma((a−/α), br), r∼ Beta(a−/α, (a+ + kon + koff )/α)
where a+ ¼ koff þ kon þ k0 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(koff þ kon þ k0)2 � 4k0kon

p
. We

observe excellent numerical agreement between the ABM
simulations and analytical EDM solutions in all these cases
validating our theoretical predictions (figure 2a–c).

A complex example of the reactions (3.5) that obeys SCH
for all parameter values but yet defies analytical solution is

Di �!
gij

D j 8 i, j ¼ 1, . . . , ND

Di �!sti Di þM1, 8 i ¼ 1, . . . , ND

M1 �!k1 M2 �!k2 . . .�!kS MS,

Mi �!di � 8 i ¼ 1, . . . , NM

where the exogenous genetic states Di undergo switching
with rates gij and are copied but not partitioned at cell div-
ision, transcription rates s ti are assumed to be proportional
to cell size s, and processing of transcripts Mi follows a
multi-step process with rates ki and degradation with rates
δi. For example, it can be checked that for NM = 1 we recover
the 2m-multistate model [57] as a special case whose EDM has
a factorial-moment generating function (compare eqn (7) in
[57] with (3.3)) satisfies SCH precisely when the transcription
rates are proportional to cell size.

On the other hand, discrepancies between the EDM and
ABM solutions will be apparent when reactions do not
obey SCH. To illustrate this point, we return to the gene
expression model with transcriptional size-scaling and expli-
cit protein translation reaction (2.13). Note that in the EDM
extra reactions are being added for the dilution of mRNAs
and proteins, while for the ABM proteins are diluted through
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Figure 2. Distributions of CME and agent-based models agree for reaction networks with stochastic concentration homeostasis. (a–c) The EDM (solid lines, analytical
solution [53,54]) agrees with agent-based simulations (shaded areas) for a range of gene expression models. Panels show (a) bursty transcription [53] with tran-
scription rate proportional to cell size, (b) bursty translation [54], and (c) bursty transcription and translation [54] with geometrically distributed bursts ms whose
average is proportional to cell size s (see main text for details). (d ) mRNA distributions simulated using the ABM (shaded areas) are shown for cells of sizes s = s0
(red), s = 1.5s0 (orange) and s = 2s0 (green), which agree with the effective dilution model (dots, Poisson distribution). (e) Simulated protein distributions (shaded
areas) disagree with the effective dilution model (solid lines, solution in [55]). ( f ) Absolute error (ℓ1) of the effective dilution model as a function of cell size for
mRNA (teal) and protein (red) distributions. ABM simulations were obtained using the First-Division Algorithm (box 1) assuming an adder model (a = 1) and
parameters k0 = 10, kdm = 9, ktl = 100, α = 1. Cell cycle noise assumes gamma distribution ~w(D) with unit mean and CVw[Δ] = 0.1, while division noise assumes
symmetric beta distribution with CVp[u] ¼ 0:01.
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growth and divisions. Using our condition (3.3), it is straight-
forward to verify that the Poissonian mRNA distributions
of the EDM coincide exactly with the distributions of the
ABM (figure 2d ). However, this condition is not met for the
protein distribution since the translation reaction is not a
monomolecular reaction of the form (3.5). To demonstrate
the breakdown of the EDM, we compare the analytical
steady-state distributions obtained by Bokes et al. [55] against
ABM simulations at various cell sizes (figure 2e). We observe
that the error of the EDM (as quantified by the ℓ1-distance of
the two distributions, figure 2f ) is pronounced both for new-
born and dividing cells. The remainder of this article is
dedicated to investigate the sources and consequences of
these discrepancies.

3.2. The EDM approximates the mean concentrations
of ABMs lacking SCH

SCH provides a general criterion with which to probe the val-
idity of the EDM probability distributions. In practice,
however, approximate agreement of the first few moments,
e.g. mean and variances, often suffices. Here, we establish
that under the mass-action scaling assumption (2.6) the mean
concentrations of the ABM and EDM agree approximately,
and they satisfy concentration homeostasis on average. This
can be seen bymultiplying equation (2.25) by x and averaging,
which yields ODEs for the mean numbers:

as
@

@s
EP[xjs, s0] ¼

XR
r¼1

ðnþr � n�r ÞEP[wr(x)js, s0], (3:6a)
and the boundary conditions

EP[xjs0, s0] ¼ Er
s0
s0
EP[xjs0, s00]js0

h i
: (3:6b)

Unfortunately, equations (3.6) are not necessarily closed since
the equation for the mean may involve higher order moments
when wr(x) depends nonlinearly on x and we need to resort to
approximations. Analogously to the linear noise approxi-
mation, we set E[xjs, s0] ¼ s�X and EP[wr(x)js, s0] � sfr(�X) and
insert the resulting expression into equations (3.6). It follows
that �X is independent of size and satisfies the rate equations
(2.2). We conclude that, for mass-action kinetics, the EDM
agrees exactly with the ABM on average for networks with
linear propensities and approximately for large cell size for
nonlinear reaction networks.
3.3. Scaling of fluctuations with size in individual cells
manifests the breakdown of the EDM lacking SCH

Next we investigate the scaling of fluctuations with cell size.
Under the linear noise approximation the covariance matrix
S(s, s0) ¼ CovP[xjs, s0] evolves according to

as
@

@s
S(s, s0) ¼ JS(s, s0)þ S(s, s0)J T þ sD(�X), (3:7a)

where J (�X) and D(�X) are the Jacobian and diffusion
matrices defined after equation (2.11). To make analytical
progress, we assume for now that cell division is deter-
ministic (CVw[D] ¼ CVp[u] ¼ 0), which implies the
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following boundary condition

4S(s0, s0) ¼ 2s0diag(�X)þ S(2s0, s0): (3:7b)

The first term is due to binomial partitioning of molecules
and the second stems from gene expression noise at division.
It is implicit in the deterministic division assumption
(CVw[D] ¼ CVp[u] ¼ 0) that the birth size s0 across cells is
fixed and that the size distribution in equation (2.24)
reduces to

P(s) ¼ P(sjs0) ¼ 2s0
s2

(3:8)

for s0≤ s≤ 2s0 and zero otherwise, in agreement with pre-
vious results [58,59]. Similarly, the ancestral distribution
(2.25c) reduces to ρ(s0, s00|s0) = δ(s0 − 2s0)δ(s00 − s0).

Equations (3.7) can be solved in closed form using
the eigendecomposition of the Jacobian J . The solution to
(3.7a) that respects the boundary condition (3.7b) is (appendixD)

S(s, s0) ¼
X
ij

s ûiû
y
j

(a� li � l�j)

� ~Dij þ
~Dij þ ~Xij(li þ l�j � a)

2((liþl�j )=a)�1 � 2

s0
s

� �1�(liþl�j )=a
" #

, (3:9)

where y denotes the conjugate-transpose and we defined
the matrices ~D ¼ U�1DU�y, ~X ¼ U�1diag(�X)U�y and U ¼
(û1, . . . , ûN) whose columns are the eigenvectors of J such that
U�1JU ¼ diag(l).

We demonstrate the implications of this result using the
gene expression example with transcriptional size-scaling
and explicit translation reaction (2.13). The mean of mRNA
numbers m and protein numbers p are

EP[mjs] ¼ s
k0
ad

, EP[pjs] ¼ s
bk0
a

, (3:10)

where the constants are defined in equation (2.16). These
expressions hold both for the EDM and the ABM, and they
exhibit concentration homeostasis on average as shown in
the previous section. The exact agreement between EDM
and ABM is also confirmed by ABM simulations (figure 3b).
Using equation (3.7), we find that the cell size-dependent
fluctuations satisfy

VarP[mjs, s0] ¼ EP[mjs],
CovP[m, pjs, s0] ¼ sbk0

ad 1þ s0
s

� 	d 2d
1�2dþ1

� �
,

VarP[pjs, s0] ¼ EP[pjs]
�(1þ 2b� s0

s
4bd

3(d�1) þ s0
s

� 	d b
d�1

2dþ1

(2dþ1�1)):

9>>>>=
>>>>;

(3:11)

We note that the mRNAvariance of the ABM agrees precisely
with the EDM (figure 3c). The agreement is a direct conse-
quence of SCH exhibited by the mRNA transcription and
degradation reactions (cf. (3.5)). However, the expressions
for the predicted mRNA–protein covariance and protein var-
iance disagree with their EDM counterpart since the reactions
involving the protein violate SCH. To explore this depen-
dence, we compare the corresponding coefficients of
variation of both models (figure 3d ). The EDM overestimates
cell-to-cell variation of small cells but underestimates it for
large cells. Moreover, the EDM’s coefficient of variation
decreases monotonically with cell size, but this is not the
case for the ABM.

Strikingly, the coefficient of variation peaks as cells pro-
gress through the cell cycle (figure 3d, solid red line), which
is in excellent agreement with the ABM simulations (blue
dots) but is not seen in the EDM (solid grey). This can be
seen directly from equation (3.11) for which protein fluctu-
ations can be approximated in the limit of fast mRNA
degradation (δ≫ 1) as

CV2
ABM[pjs, s0] �

1
EP[pjs] 1þ b 2� s0

s
4
3

� �� �
, (3:12)

which has a maximum at a cell size of s = s0 8b/(3(2b + 1)) as
confirmed by agent-based simulations (figure 3d ). Depend-
ing on the burst size b, the peak shifts from s = s0 for b = 3/
2 to s = 4/3 s0 for b≫ 1. The qualitative difference between
the scalings of gene expression noise with cell size of EDMs
and ABMs manifests the breakdown of the EDM, which is
observed both for concentrations and molecule numbers
since their coefficients of variation coincide when considering
cells of the same size.
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3.3.1. Effect of cell size control on gene expression dynamics
Next, we ask how fluctuations in the cell size control affect
gene expression noise. It may be intuitively expected that
noise in cell size control and division errors cause variable
birth sizes, variable division times and hence noisy
expression levels. mRNA fluctuations in the gene expression
model with transcriptional size-scaling (2.13) obey SCH and
hence are unaffected by these noise sources. The effect on
protein noise remains yet to be elucidated.

To this end, we assume small birth-size variations and
approximate the actual birth size with an averaged estimate
EP[s0js] of the retrospective birth size for a cell of size s.
The covariance matrix (or any other moment) can then be
approximated as

S(s) ¼ EP[S(s, s0)js] � S(s, EP[s0js])): (3:13a)

This simplification can formally be justified through a saddle-
point approximation as the joint distribution P(s, s0) has a
maximum atP(s, EP[s0js])). Generally no analytical expression
of EP[s0js] can be derived from equation (2.24) in the presence
of cell size control fluctuations, however, and we approximate
EP[s0js] by a matched asymptotic expansion (appendix C):

EP[s0js]��s0�s

ffiffiffiffiffiffiffiffi
2=p

p
e�((s��s0)2=2s2)

1þerf (s��s0)=
ffiffiffi
2

p
s

� 	|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
small cells

þ2as2g(s�a�s0)|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
large cells

, (3:13b)

which holds for the linear cell size control model (2.19).
The first term is the average birth size in the absence of
cell size control fluctuations, the second term denotes
the contributions from small cells, while the third term stems
from large cells. The interpretation of this conditional
expectation is that small cells were born with sizes smaller
than average while larger cells were born with sizes above
average depending on their size control (figure 6 in appendix
C). The parameters in equation (3.13b) are given by the
mean birth size �s0 and variance σ2 in a backward lineage tra-
cing the ancestors of a random cell in the population (see [50]
for details):

�s0¼ (2�a)(1þCV2
u)

2�a(1þCV2
u)
,

s2¼�s20
CV2

D(1þ3CV2
u)(2�a(1þCV2

u))
2þ4CV2

u(1�CV2
u)

(CV2
uþ1)2(4�a2(1þ3CV2

u))
:

9>=
>; (3:13c)

Equation (3.13) provide a closed-form approximation of
the cell size dependence of any given moment accurate to
order O(σ3).

To verify the accuracy of proposed approximation, we test
the theory for various strengths of size control noise and div-
ision errors (figure 4). We observe that increasing cell size
noise results in the monotonic decrease of gene expression
noise with cell size (figure 4a–d ) in good agreement with
ABM simulations, even for large cell size fluctuations. We
further ask about the effects of partitioning noise, which
shows a similar dependence but agrees less well with the
ABM simulations for cells smaller than the mean birth size
(figure 4e–h), presumably since the effect of large variability
in birth sizes is not captured in our approximation. Neverthe-
less, the present approximation qualitatively captures the
overall cell size dependence of the ABM simulations (figure
4). Our findings confirm that birth size variation contributes
significantly to the cell size dependence of gene expression
noise of networks lacking SCH.
3.4. ENMs provide surprisingly accurate approximations
of total noise in ABMs lacking SCH

We go on to compare the ENM introduced in §2.1 with the
ABM. In contrast to the EDM, the ENM predicts the total
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Figure 5. The extrinsic noise model approximates gene expression noise with size control and division errors. (a) Scaling of mRNA concentration noise with mean
concentrations for various noise levels in added size CV[Δ] and partition noise CV[θ] when the transcription rate k0 is varied (top). Corresponding scaling is shown
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noise statistics including the variability introduced by the cell
size distribution. It is clear that the ENM agrees exactly with
the ABM whenever the network obeys SCH. In particular, the
marginal factorial-moment generating function of the ABM’s
molecule numbers G(z) ¼ EP[

QN
i¼1 z

xi
i ] (irrespective of cell

size) follows from equation (3.1) as

G(z) ¼ Ex

YN
i¼1

K(ki(zi � 1))

" #
, (3:14)

when the concentration distribution χ has been identified (as
we did for the models in §3.1) and the moment-generating
function K(t) ¼ EP[ets] of the cell size distribution (2.24) is
known. When SCH does not hold, the ABM statistics can in
principle be obtained through integrating equation (3.9)
against the size distribution P(s, s0). Specifically, denoting
molecule numbers by x and concentrations by X = x/s, as
before, we have

CovP[X] ¼ EP
S(s, s0)

s2

h i
,

CovP[x] ¼ EP[S(s, s0)]þ VarP(s)�X�XT ,

9=
; (3:15)

where S(s, s0) is the size-dependent covariance matrix
discussed in §3.3.

To illustrate this dependence, we consider the gene
expression model with transcriptional size-scaling (2.13)
and integrate equation (3.11) numerically against the size
distribution (2.24). We observe that the mRNA noise-
mean relationship of the ABM follows exactly the ENM
predictions when the mean varies through the transcription
rate (figure 5a). This agreement is confirmed for various
strengths of cell size control fluctuations and division
errors, both for mRNA concentrations and numbers, which
validates our theoretical predictions that the mRNA
distribution satisfies SCH and hence the ENM is exact.

However, the protein noise–mean relationships of the
ABM and ENM differ (figure 5b). The discrepancy,
albeit small, exists even for deterministic divisions
(CVw[D] ¼ CVp[u] ¼ 0) for which the averages (3.15) over
the size distribution can be carried out analytically and
result in:

CV2
ABM[P] ¼ 1

VP�P
1þ 2b(12�(24(2d�1�1))=((2dþ1�1)(d�1))þ13d)

27(dþ2)

h i
,

CV2
ABM[p] ¼ CV2

P[s]

þ 1
V p�P

1þ 2b((2(2d�1�1)=((2dþ1�1)(d�1)))þd( ln (8)�1)�1)
3d ln (2)

h i
,

9>>>=
>>>;

(3:16)

where VP ¼ EP[s�1]�1 and V p ¼ EP[s] and δ, b are defined as
in equation (2.16). It can be verified by optimizing (3.16) over
δ that the ENM underestimates ABM noise of protein numbers
by at most 2%, while it overestimates noise in protein
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concentrations by the same amount. The difference between
the ENM and ABM predictions increases with cell size control
noise for concentration measures but appears to be practically
independent of cell size control noise for protein number fluc-
tuations (figure 5b, insets). The protein number noise, but not
concentration noise, exhibits an extrinsic noise floor (CV2

P[s]
in (3.16)) for large mean numbers due to extrinsic cell size
variability across the population and this noise floor increases
with noise in size control (CVw[Δ]) and division errors (CVp[u])
as it is also predicted by the ENM (figure 5b).

Similar conclusions hold for the noise–mean relationship
when the mean is varied through translation rate (figure 5c)
but there appears an additional intrinsic noise floor due to sto-
chastic bursting (figure 5c and equation (3.16)) that is present
both in the protein concentration and number noise. This
phenomenon is in qualitative agreement with previous findings
[27,35,40] and similarly predicted by the ENM (2.15). Presum-
ably, the better quantitative agreement for molecule numbers
as compared to concentrations (figure 5b,c) is due the fact that
the ENM and ABM predictions are dominated by extrinsic
noise, which has the same effect in both models. Our obser-
vations suggest that, surprisingly, the ENM provides much
more accurate approximations of the ABM statistics than the
EDM.

4. Discussion
We presented an agent-based framework to study gene
expression noise coupled to cell size dynamics across grow-
ing and dividing cell populations. The framework consists of
an exact algorithm for simulating the stochastic dynamics of
dividing cells (box 1), which generalizes previous algorithms
for isolated lineages [4,17,32,60–62] towards growing cell
populations, and amaster equation framework (§2) that exactly
characterizes the snapshot-distribution of gene expression and
cell size across such a agent-based population.

Our theory shows that the newly defined SCH (cf. §3.1 and
theorem A.2) provides a necessary and sufficient condition for
the stationary distributions of the chemical master equation
(EDMs and ENMs) to agree exactly with the snapshot distri-
butions of detailed ABMs. A broad class of gene networks
(3.5), involving mono-molecular reactions, multi-state promo-
ters and bursting, satisfy SCH irrespective of network
parameters when the reaction rates scale with cell size accord-
ing to the law of mass-action. SCH is however not restricted to
this particular class of network and can generally be checked
on a case-by-case basis using the generating function
equations, which can be accomplished without solving the
chemical master equation analytically (see appendix A).

SCH guarantees that gene expression distributions for
cells of a given size are entirely independent of extrinsic
noise sources affecting birth size such as cell size control
and division noise. They thus reveal whether a network
embedded in a growing cell can be insulated against such
noise sources, an important feature that can guide the
design of synthetic circuits.

Nevertheless, most gene regulatory networks of interest do
not obey SCH. To address this issue, we developed the linear
noise approximation for ABMs lacking SCH embedded in
growing and dividing cells. The theory provides ODEs for the
mean molecule numbers (3.6) and their covariances (3.7),
which—unlike the conventional linear noise approximation
describing EDMs [6,43]—describe their evolution across sizes
and features a boundary conditiondescribing the stochastic par-
titioning ofmolecules at cell division.We showed that,when the
reactions follow mass-action size-scaling, the mean concen-
trations of EDMs and ABMs agree, because they exhibit
concentration homeostasis (§3.2). The theory further provides
closed-form analytical expressions for the covariance matrix of
gene expression fluctuations in the absence of SCH. We note
that like the conventional linear noise approximation, the
linear noise approximation for ABMs is exact for
linear reaction networks but represents an approximation for
nonlinear reaction networks (§3.3).

While the EDM always predicts birth-size-independent
noise, the ABM’s covariance matrices generally depend on it
(§3.3.1), both for concentrations and molecule numbers. This
means that, unlike in SCH conditions, size-control noise and
division errors can propagate to gene expression levels, and
we unveiled quantitative and qualitative differences between
EDMs and ABMs regarding the dependence of expression
noise on cell size. Such differences prevail even for relatively
simple gene networks involving protein expression (see
(2.13)) for which our linear noise approximation readily pro-
vides exact expressions for mean and noise statistics.

Despite these discrepancies, we found that the ENM of
these simple gene expression models provides surprisingly
accurate total noise estimates (§3.4). In fact, we showed ana-
lytically that the ENM (and EDM) of bursty production with
translational size-scaling agrees exactly with the ABM since it
obeys SCH. For transcriptional size-scaling, which implies the
absence of SCH, the ENM deviates at most a few per cent
from ABM’s total protein noise prediction. To resolve such
small differences experimentally, one would need to probe
on the order of 10 000 cells for measuring the squared coeffi-
cient of variation accurate to three leading digits (assuming
sampling errors inversely proportional to cell number),
which is achievable only with high-throughput techniques.

An outstanding question is whether the good agreement
we observed is specific to the particular model or parameter
values we have chosen or whether the ENM is more generally
valid. We have made an initial step in this direction by pro-
viding closed-form expressions for the ABM’s linear noise
approximation of any single-species reaction network with
deterministic size-distribution (appendix D). These results
demonstrate that the ENM overestimates the ABM’s coeffi-
cient of variation of concentrations by at most 8% but
underestimates it by at most 2%, and vice versa for molecule
numbers, and these bounds hold independently of the choice
of parameters. This suggests that ENMs could be surprisingly
accurate approximation of ABMs. Other effective models of
bursty protein production without any size-scaling as pro-
posed in [63] cannot obey SCH since they ignore cell size
and generally produce larger errors than the ENM even for
deterministic cell cycles.

A limitation of our study is that we assumed the validity
of the linear noise approximation for the noise statistics of
networks lacking SCH. Mean and covariance of the linear
noise approximation are exact for linear reaction networks,
as those we have studied here, but it represents an approxi-
mation for networks with nonlinear propensities valid in
the limit of large molecule numbers. To improve the estimates
of our theory, one could consider higher-order terms in the
system size expansion [44], resort to moment-closure approxi-
mations [64] or to compute moment bounds [65] for
nonlinear reaction networks.
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Another limitation is that we neglected growth rate varia-
bility, which is a significant source of noise at the single-cell
level [49]. It would be interesting to include these features
in our ABMs, compare them to the effective models, and
investigate whether SCH can be generalized to this case. Pre-
vious studies [3] have investigated the dependence of gene
expression noise on growth rate dynamics in isolated lineages
using small noise approximations similar to the one used
here. Nevertheless, it may be expected that selection plays a
pronounced role in populations where cells compete for
growth unlike in isolated lineages, which in turn may lead
to significant deviations of ENMs from ABMs [38,66,67]
that we have not studied here.

In summary, we proposed SCH as a general condition for
exactness of EDMs. In the absence of SCH, we found that
despite qualitative differences in the predictions of EDMs,
ENMs closely approximate the total noise statistics of
ABMs. Our results reinstate the validity of effective models
as approximations of the agent-based dynamics, and thus
they significantly extend the scope of state-of-the-art master
equation methods to a broad range of single-cell analyses in
growing cell populations.
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Endnote
1This follows from the fact that F(x) = 2F1(a, λ; γ + λ; b x) is the
moment-generating function of κ∼Gamma(a, (1 + b r)−1) and r∼
Beta(λ, γ). Letting EP[zpjs] ¼ F(s(z� 1)), a = a−/α, λ = a−α and λ +
γ = (kon + koff )/α then yields the factorial-moment generating function
solutions in [54,56].
Appendix A. Stochastic concentration
homeostasis and the validity of EDMs
and ENMs
Appendices A and B use multi-index notation. In brief,
a multi-index is a N-tuple α = (α1, α2,…, αN). One defines
powers of a vector x via xa ¼ xa1

1 xa2
2 . . . xaN

N , derivatives
@a
x ¼ @a1

@xa1
@a2

@xa2 . . .
@aN

@xaN , sum of components |α| = α1 + α2 +
· · · + αN, and the factorials α! = α1! · α2! · · · αN! and analo-
gously

�
ab
	 ¼ a!=b!(a� b)!.

Definition A.1 (Stochastic concentration homeostasis). A
probability mass function P(xjs) with state space X obeys
SCH if for all s∈ [0, ∞) there exists a random variable κ on
K with density χ(κ) satisfying:

P(xjs) ¼
ð
K
dkx(k)

(ks)x

x!
e�sjkj, 8 x [ X : (A 1)

Definition A 1 implies that if κ has a moment-generating
function F(t) ¼ Ex[et

Tk] then using (A 1) one finds the
factorial-moment generating function

EP[zxjs] ¼
X
x[X

zxP(xjs) ¼
ð
K
dkx(k) e�sjkjX

x[X
zx

(ks)x

x!

¼ Ex[es(z�1)Tk] ¼ F(s(z� 1)) (A 2)

and similarly the factorial moments

mnðsÞ ¼ EP
x!

(x� n)!
js


 �
¼ (@n

zEP[zxjs])z¼1 ¼ sjnjEx[kn]: (A 3)

for a multi-index n. Since the factorial-moment generating func-
tion uniquely determines the distribution, equations (A 2) and
(A 3) may equivalently serve as definitions of SCH. Further-
more, when {x(s)}s∈[0,∞) is interpreted as a point processes
along the size coordinate s, SCH emphasizes the fact that it is
mixed Poisson process with stationary concentration vector κ.
Theorem A.2. Assume that the partitioning kernel B(x|x0, θ) is
binomial with probability θ given by the ratio of daughter birth
size and mother division size. A stationary solution of the EDM
(2.4), if it exists, is also a solution of the ABM (2.25):

P(xjs, s0) ¼ PEDM(xjs), (A 4)

if and only if the EDM’s solution (2.4) obeys SCH.

The utility of the theorem is that SCH can be checked with-
out solving the chemical master equation. We demonstrate
this aspect for a general reaction network of the form (2.1)
with mass-action propensities wr(x, s) ¼ s1�jn�r jkr(x!=(x� n�r )!),
whose factorial-moment generating function (see ch. 7 in [68])
obeys:

as
@

@s
G(zjs, s0) ¼

XR
r¼1

krs1�jn�r j(zn
þ
r � zn

�
r )@n�r

z G(zjs, s0) (A 5)

Substituting G(z|s, s0) = F(s(z− 1)) and x= s(z− 1) gives

ax � rF(x) ¼
XR
r¼1

krs((xþ s)n
þ
r s�jnþr j � (xþ s)n

�
r s�jn�r j)@n�r

x F(x):

It can now be seen that the right-hand side of the above
equation is independent of s if either (i) jn�r j ¼ 0 and jnþr j ¼ 1,
(ii) jn�r j ¼ 1 and jnþr j ¼ 0, or (iii) jn�r j ¼ jnþr j ¼ 1. Thus, the
EDM and the ABM solutions coincide for mass-action reaction
networks (2.1) when they comprise only the mono-molecular
reactions given in (3.5).

Similarly, we check that adding bursty reactions of the
form ��!k ms � X leads to a generating function equation

as
@

@s
G(zjs, s0) ¼ k[g(zjs)� 1]G(zjs, s0)þ � � � , (A 6)

where g(zjs) ¼ E[zms js] is the factorial-moment generating
function of the burst distribution. Equation (A 6) transforms
to ax � rF(x) ¼ k[g(x=sþ 1js)� 1]F(x) after substituting G(z|s,
s0) = F(s(z− 1)) and x= s(z− 1). Hence, bursty reactions obey
SCH if and only if the burst distribution obeys SCH, i.e. if
there exist a moment-generating function f satisfying f(x) =
g(x/s+ 1|s) as in (A 2).
Appendix B. Proof of theorem A.2
The proof of theorem A.2 is divided in three steps. The first
step shows that a general condition (B 1) guarantees snapshot
distributions that are independent of birth size. We then

github.com/pthomaslab/fda
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show that (B 1) satisfies the effective dilution model and
reduces to SCH for binomial partitioning at cell division.
The proof also clarifies that the assumption of binomial par-
titioning cannot be removed under biological constraints
conserving the total number of molecule numbers at cell div-
ision. General conditions for the existence of the EDM’s
stationary distributions have been discussed in [69].

B.1. Step 1: Distributions invariant of birth size
The conditional distribution P(xjs, s0) is independent of birth
size s0 if and only if

P(xjus, s0) ¼
X
x0

B(xjx0, u)P(x0js, s0), (B 1)

where B(x|x0, θ) is the partitioning kernel in equation (2.25b)
that depends only the inherited size fraction θ = s0/s0. This
fact can be verified using (B 1) in the boundary condition
(2.25b), which leads to

P(xjs0, s0) ¼
ð1
0
ds0
ðs0
0
ds00 r(s

0, s00js0)P(xjs0, s00):

This implies that P(xjs, s0) must be independent of birth size

P(xjs, s0) ¼ P(xjs):
In the following, we show that under condition (B 1) P(xjs)
coincides with the EDM solution.

B.2. Step 2: Transformation into an effective dilution
model

Let us denote the factorial-moment generating function of the
partitioning kernel by GB(zjx0, u) ¼

P
x z

xB(xjx0, u) such that
the invariance condition (B 1) becomes

G(zjus) ¼
X
x0

GB(zjx0, u)P(x0js): (B 2)

Assume that additionally

u@uGB(zjx0, u) ¼
XN
i¼1

(zi � 1)@ziGB(zjx0, u), (B 3)

which holds for the binomial partition kernel GB(z|x0,
θ) = (1− θ + θz)x

0
. Differentiating equation (B 2) with respect

to θ then gives

u@uG(zjus) ¼
X
x0

u@uGB(zjx0, u)P(x0js)

¼
XN
i¼1

(zi � 1)@ziG(zjus), (B 4)

where in the last line we used assumption (B 3). Changing
variables (θs→ s) in (B 4) yields

s@sG(zjs) ¼
XN
i¼1

(zi � 1)
@

@zi
G(zjs),

or equivalently the EDM

as
@

@s

� �
P(xjs)

¼�a
XN
i¼1

[(xiþ1)P(x1, . . . , xiþ1, . . . , xN js)�xiP(xjs)]

¼�DP(xjs):
(B 5)
Using the above relation, we see that (2.25a) coincides with
(2.4) and (A 4) follows.
B.3. Step 3: SCH and the necessity of binomial
partitioning

Finally, we show that condition (B 3) required for the validity
of the EDM implies independent binomial partitioning of
molecules. (B 3) is a linear PDE that can be solved using the
method of characteristics, which leads to

u
@zi
@u

¼ (1� zi), u
@GB

@u
¼ 0:

The general solution is GB(z|x0, θ) = J(1− θ + θz) where
the function J is fixed by the condition that for θ = 1 all mol-
ecules are partitioned deterministically, i.e. J(z) = zx

0
. Hence,

we obtain

GB(zjx0, u) ¼ (1� uþ uz)x
0
,

which corresponds to independent binomial partitioning of
molecules in (2.20). It then follows that (B 2) (and (B 1)) are
equivalent to

G(zjus) ¼ G((1� u)þ uzjs): (B 6)

Finally,we show that (B 6) is equivalent toG(z|s) = F(s(z− 1))
for binomial partitioning. Expanding (B 6) around z = 1 and
identifying the series coefficients with the factorial moments
mn(s) in (A 3), we find that the factorial moments are homo-
geneous functions of order jnj ¼Pi ni: μn(θs) = θ|n|μn(s).
Then by Euler’s homogeneous function theorem, it follows
that the factorial moments with index n, satisfy s(∂/∂s)μn-
(s) = |n|μn(s) and hence μn(s) = s|n|μn(1). This implies that
the factorial-moment generating function is

G(zjs) ¼
X
n

sjnjmn(1)
(z� 1)n

n!
¼ F(s(z� 1)),

with F(x) ¼Pn x
nmn(1)=n!. It remains to be shown that F is

indeed a moment-generating function. To this end, we
note that @kG(zjs)

@zk ¼ sjkjF(k)(s(z� 1)) � 0 for z∈ (1, −∞) and
hence F(− x) is a completely monotone function on x∈ (0,
∞), which implies that there exists a distribution χ for
which F(� x) ¼ Ex[e�sx] is a Laplace transform, which con-
cludes the proof of theorem A.2.
Appendix C. Approximation of birth size moments
We here derive an analytical approximation (3.13b) for the
conditional birth size moments. We start by rewriting
EP[s0js] in terms of the backward lineage distribution ψbw

using equation (2.24):

EP[s0js] ¼
ðs
0
ds0 s0P(s0js)

¼
Ð s
0 ds0 s0P(s0, s)Ð s
0 ds0 P(s0, s)

¼ Ec[s0F(sjs0)1s0�s]
Ec[F(sjs0)1s0�s]

: (C 1)

We now apply matched asymptotic expansion to this
expression.
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C.1. Large cell asymptotics
For large cells s≫ s0, we can extend the range of integration in
equation (C 1) and compute the expectation value as follows

Ec[f(s0, s)] ¼
ð1
0
ds0cbw(s0)f(s0, s)

¼
ð1
0
ds0
ð1
�1

dk
2p

e�ik(s0��s0) 1� k2s2

2

� �
f(s0, s)þO(s3)

¼ f(�s0, s)þ s2

2
@2f(�s0, s)

@�s20
þO(s3):

Using f(s0, s) ¼ s0F(sjs0) and f(s0, s) ¼ F(sjs0) in equation
(C 1), the conditional moments of birth size can be approxi-
mated by

Elarge
P [s0js] ¼ �s0 1þ 2s2

�s0

@ lnF(sj�s0)
@�s0

� �
þO(s3)

¼ (�s0 þ 2as2g(s� a�s0))þO(s3),

where the last equality follows from γ(s, s0) = γ(s− as0) for the
linear cell size control model (2.19), and �s0 and σ are the
mean and standard deviation of the backward lineage distri-
bution ψbw given by equations (3.13c).

C.2. Small cell asymptotics
Next we consider small cells by noting that F(sjs0) is practi-
cally constant when s≈ s0, the integral in (C 1) can be
approximated by

EP[s0js] � Ec[s01s0�s]
Ec[1s0�s]

: (C 2)

Assuming that ψ, is approximately Gaussian with mean �s0
and variance σ2, we find that near s � �s0, we have

Ec[s01s0�s]� 1
2�s0 1þ erf s��s0ffiffi

2
p

s

� �� �
� se�((s��s0)2)=2s2ffiffiffiffi

2p
p

ann Ec[1�s0�s]� 1
2 1þ erf s��s0ffiffi

2
p

s

� �� �
9=
; (C 3)
and hence

Esmall
P [s0js]¼ �s0 �

ffiffiffiffiffiffiffiffi
2=p

p
se�((s��s0)2)=2s2

1þ erf (s��s0)=
ffiffiffi
2

p
s

� 	þO(s3),

which is accurate to order σ3.

C.3. Global asymptotics
The two asymptotic solutions can be matched at the bound-
ary layer. Since

lim
s!1Esmall

P [s0js] ¼ lim
s!s0

Elarge
P [s0js] ¼ �s0,

the uniformly valid matched asymptotic expansion is

EP[s0js] � Esmall
P [s0js]þ Elarge

P [s0js]� �s0,

which gives equation (3.13b) (figure 6).
Appendix D. Analytical solutions and error
bounds using the linear noise
approximation for deterministic cell
division
We begin by outlining the solution of (3.7). Defining
~S(s, s0) ¼ U�1S(s, s0)U�y, equation (3.7) of the main text
becomes

as@s
~Sij ¼ (li þ l�j )

~Sij þ s~Dij (D 1)

and

4~Sij(s0, s0) ¼ ~Sij(2s0, s0)þ 2s0 ~Xij: (D 2)

Equation (D 1) has the solution

~Sij(s, s0) ¼ cij s
(liþl�j )=a þ

~Dijs
a(1� (li þ l�j )=a)

, (D 3)

where the constants cij are fixed using the boundary
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condition (D 2) which gives the solution of the EDM,
equation (3.9) of the main text.

Using equation (3.15) and averaging (D 3) over the deter-
ministic size distribution (3.8), we find the covariance matrix
of concentrations X,

CovP[X] ¼ 1
V

XN
i,j¼1

ûiû
y
j

bij(coth((1=2)bij ln 2)þ 3)

3(bij þ 1)
a~Xij

jij

þ bij(3bij � coth((1=2)bij ln 2))

3(b2
ij � 1)

~Dij

jij
, (D 4)

where jij ¼ 2a� li � l�j , βij = ξij/α, V�1 ¼ EP[s�1] ¼
(3=4)1=s0, and ûi are the eigenvectors of the Jacobian J intro-
duced before equation (3.9). Similarly, considering molecule
numbers x, we have CovP[x] ¼ Sint

ABM þ VarP(s)�X�XT where
the intrinsic noise contribution is given by

Sint
ABM ¼ V

XN
i,j¼1

ûiû
y
j

"
(2bij � 2)bij

(2bij � 1)(bij � 1) ln 4
a~Xij

jij

þ bij((2
bij � 1)bij ln 4� 2bij (1þ ln 4)þ 2þ ln 4)

(2bij � 1)(bij � 1)2 ln 4

~Dij

jij

#
,

(D 5)

with V ¼ EP[s] ¼ s0 ln 4.
The expressions greatly simplify for a single species since
û ¼ ûi, β = βij and ξ = ξij. We note that in this case (D 4)
increases monotonically with βwhile (D 5) decreases monoto-
nically with β. Using the limits β→ 0 and β→∞, we find that
the ABM’s coefficients of variation can be bounded by the
EDM’s coefficients:
6
7
� CV2

ENM[X]
CV2

ABM[X]
� 3

2
ln 2, (D 6)
and
2 ln2 (2) � CV2
ENM[x]

CV2
ABM[x]

� 4 ln 2
1þ ln 4

, (D 7)
where we have used the fact that D(�X) � a�X and the ENM
solution of (2.9) is Sint

ENM ¼ a�X=Vjþ (D=Vj). The result
implies that the ENM overestimates the ABM’s coefficient
of variation of concentrations by at most 8% but underesti-
mates it by at most 2%, and vice versa for molecule numbers.
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