Table 1.
Clustering algorithms used in benchmarking
| SC3 | Seurat | RaceID3 | ILoReg | CIDR | |
|---|---|---|---|---|---|
| Clustering workflow | Feature selection + Distance matrices with three measures + PCA + k-means + CSPA + hierarchical | Feature selection + PCA + graph-based | Feature selection + k-medoids | ICP L times + PCA + hierarchical | Imputation + PCoA + hierarchical |
| Visualization workflow | None (via Scater R package) | Feature selection + PCA + t-SNE, UMAP etc. | Feature selection + t-SNE or kNN graph | ICP L times + PCA + t-SNE or UMAP | Imputation + PCoA |
| Method for estimating the number of clusters (k) | Random matrix theory | None (k by default resolution value) | Saturation | Silhouette | Calinski-Harabasz Index |
| Version | 1.12.00 | 3.0.0 | 0.1.3 | 0.1.0 (Git reference ID ‘85196be6’) | 0.1.5 |