Skip to main content
. 2020 Dec 13;37(8):1107–1114. doi: 10.1093/bioinformatics/btaa919

Table 1.

Clustering algorithms used in benchmarking

SC3 Seurat RaceID3 ILoReg CIDR
Clustering workflow Feature selection + Distance matrices with three measures + PCA + k-means + CSPA + hierarchical Feature selection + PCA + graph-based Feature selection + k-medoids ICP L times + PCA + hierarchical Imputation + PCoA + hierarchical
Visualization workflow None (via Scater R package) Feature selection + PCA + t-SNE, UMAP etc. Feature selection + t-SNE or kNN graph ICP L times + PCA + t-SNE or UMAP Imputation + PCoA
Method for estimating the number of clusters (k) Random matrix theory None (k by default resolution value) Saturation Silhouette Calinski-Harabasz Index
Version 1.12.00 3.0.0 0.1.3 0.1.0 (Git reference ID ‘85196be6’) 0.1.5