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Abstract: Autistic people face many challenges in various aspects of daily life such as social skills,
repetitive behaviors, speech, and verbal communication. They feel hesitant to talk with others. The
signs of autism vary from one individual to another, with a range from mild to severe. Autistic
children use fewer communicative gestures compared with typically developing children (TD). With
time, the parents may learn their gestures and understand what is occurring in their child’s mind.
However, it is difficult for other people to understand their gestures. In this paper, we propose a
wearable-sensors-based platform to recognize autistic gestures using various classification techniques.
The proposed system defines, monitors, and classifies the gestures of the individuals. We propose
using wearable sensors that transmit their data using a Bluetooth interface to a data acquisition
and classification server. A dataset of 24 gestures is created by 10 autistic children performing each
gesture about 10 times. Time- and frequency-domain features are extracted from the sensors’ data,
which are classified using k-nearest neighbor (KNN), decision tree, neural network, and random
forest models. The main objective of this work is to develop a wearable-sensor-based IoT platform
for gesture recognition in children with autism spectrum disorder (ASD). We achieve an accuracy
of about 91% with most of the classifiers using dataset cross-validation and leave-one-person-out
cross-validation.

Keywords: wearable sensors; autism spectrum disorder (ASD); stereotype movements; gestures;
machine learning; KNN; decision tree; random forest; neural network

1. Introduction

Autism spectrum disorder, commonly called autism, is defined as a variety of dis-
orders, which include challenges with social rules, difficulty in verbal and non-verbal
communication, and restricted or repetitive actions [1]. Each child with ASD has their own
specific needs and a collection of habits and behaviors that can hinder their day-to-day
tasks. As ASD is a heterogeneous neurodevelopmental disorder, its symptoms appear
during the early ages, normally in the first two or three years of life [2]. It is an intricate
neurobehavioral condition that makes social interactions problematic for such individu-
als. Not all the disorders in this spectrum are equally severe; some appear to be a minor
handicap, while others are serious and can practically disrupt the whole lifestyle of the
affected person. Children with ASD struggle to communicate with others. Reading visual
emotions is tricky for them and they usually struggle to understand what other people feel
and think.
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Autistic people face many challenges in their daily lives in areas such as social skills,
repetitive behaviors, speech, and nonverbal communication, and experience feelings of
hesitation. They use fewer communicative gestures compared with typically developing
children (TD), so they struggle to convey their ideas or thoughts with words, gestures, or
facial expressions. Usually, people with autism develop strange behaviors and, in some
cases, they can be dangerous to themselves and to the people around them [3]. Due to the
impairment in their speaking ability, their children’s physical abilities may be weakened,
which can lead to risk [3]. These disorders are more common in boys than girls, with a
ratio of about 4:1 [4]. To effectively communicate with people from an early age and initiate
social interactions, the child must be able to understand verbal and non-verbal messages [5].
Gestures are the universal and most important feature of our communication [6]. Verbal
gestures involves the use of our voice and co-verbal gestures involve hand and arm
movements. They simplify linguistic content, emphasize our point of view, regulate the
flow of speech, and maintain the audience’s attention toward the speaker. Although there
is no rigid rule about gesture categories, conventional gestures (CG) have well-established
premises [7]. These are conversational and deliberate actions that enable direct and accurate
verbal translation so that they are easily understood even without spoken help. Because
conventional gestures contribute to communication and are a pre-cursor to verbal language,
their recognition in children presenting neurodevelopmental disorders is crucial. Over the
course of time, their parents can grow accustomed to their gestures and understand what
is occurring in their child’s mind, but others may find these gestures difficult to interpret.

Due to nonverbal communication or repetitive speaking, ASD children have diffi-
culties conveying their message and other people struggle to understand their gestures.
Sign-language, or hand-speak, has become a popular method of communicating for those
who cannot verbally speak. However, sign language is difficult to understand for normal
people. A gesture translator is needed to communicate with ASD people. The Internet of
Things (IoT) is providing new and emerging capabilities through continuous connectivity.
This concept generally revolves around the rapidly expanding environments of computing
capabilities and network connectivity to sensors, objects, devices, and items that efficiently
exchange digital data with each other without external assistance, i.e., human involvement.
The main objective of the IoT is to design, operate, deploy, and transform physical devices
through data acquisition, predictive analytics, smart networking, deep optimization, and
some other related solutions [8]. Wearable devices provide opportunities for innovative ser-
vices in health sciences along with predictive health monitoring by persistently acquiring
the data of the wearer [9]. Wearable sensors provide reliable and accurate information about
human gestures and behaviors to ensure a safe and secure living environment [10]. Gesture
recognition is required for the development of various operations such as feedback from
acquired data, tracking physical fitness, health monitoring, and self-control/management
of a wearable device [11].

Our proposed platform can effectively recognize gestures. Gesture recognition is
divided into different steps, the first of which is the collection of data by a body-worn
sensor. A tri-axial accelerometer and gyroscope are used with a sampling frequency of 50
Hz. Then, for the removal of noise and unreliable data, pre-processing is performed. The
data are then used to extract various time- and frequency-domain features such as entropy,
standard deviation, mean, and root mean square values. The features data with labels are
then used for classification.

The following were the main objectives in this study:

• Constructing a wearable-sensors-based platform to acquire and recognize ASD chil-
dren’s gestures.

• Extracting various features from the gestures data and comparing performance to
select features for efficient recognition.

• Comparing performance using various machine learning algorithms to increase recog-
nition accuracy.
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In the literature related to ASD gesture recognition, the Flex sensor and switch sensors
have mostly been used. The limitation of these sensors is that they only have on and off
switch status. So, the limited nature of gestures that do not involve much variation in
movement is not discussed in the literature. In order to cope with these challenges, the
novel contributions in this paper are as follows:

• Since ASD is a special body condition, both medically and physically, we did not
use the data of normal people to train the supervised machine learning algorithm for
the gestures recognition of ASD. Instead, we collected a novel dataset of 24 physical
activities from 10 children who had mild and moderate levels of ASD.

• We performed features extraction on the acquired data using various statistical mea-
sures from both the time and frequency domains.

• For gestures recognition on the novel dataset, we evaluated several classifiers and
selected the one that produced the most accurate cumulative result.

• We conducted Raspberry-PI-based real-time gesture monitoring of ASD to facilitate
the communication between ASD and normal people.

The rest of the paper is organized as follows: Section 2 briefly introduces the related
literature work. The methodology is explained in Section 3, and the results and discussion
in Section 4. Finally, we conclude the paper in Section 5.

2. Background and Related Work

In this section, we briefly focus on the background and the related work conducted
regarding the platform used for autism activity and gesture recognition, placement of sen-
sors on the body, extracting features from the acquired sensors data, and the performance
comparison analysis of classifiers.

In the literature, some studies focused on the ASD subject, their types of gesture used,
and how they behave while communicating with others. Autistic children face difficulties
in conveying their thoughts to others. They use fewer communicative gestures compared
with typically developing (TD) children [7]. Over time, their parents may grow accustomed
to their gestures and understand what their child’s is thinking, but it often remains hard
for other people to understand their gestures. Their sign language is normally different
from those who are deaf and mute, making it even more difficult to grasp their thoughts.
Almost all TD children undergo the same procedure of gestures development [12]. Autistic
children may either have an unusual behavioral pattern or have a stereotypic behavioral
display [13]. Stereotypic behaviors are abnormal gestures that humans make without
having an obvious function or purpose [14]. This kind of behavioral pattern elevates
the activation level of children with autism. An autistic person may show some of the
classic stereotypic behaviors, e.g., hand flapping, head-banging, body rocking, and top
spinning [15].

Human gestures can be detected by ambient-environmental sensors or body-worn
sensors. Ambient sensors are installed in offices or homes and are stable in nature, so they
cannot perform outside the installed area. These kinds of sensor systems are stationary;
hence, they are bound in their specific areas. These systems are not known to have the best
efficiency as their observation is strictly bound to a limited area. These types of sensors
are highly application-specific. Due to this issue, wearable or mobile monitoring sensors
are usually preferred to acquire data continuously and effectively. Mobile monitoring
sensors can be used to acquire data remotely and accurately. Despite these many benefits,
mobile-sensors-based acquisition has some drawbacks as well [16]. One of them is that
most of the time, the smartphone is placed in some pocket position, which reduces the
efficiency of recognition of certain activities. Wearable sensors are used to overcome the
localization problem. Modern smartphones and smartwatches are equipped with sensors.
Gyroscope, accelerometer, magnetometer, temperature, and sound sensors have been used
for activity detection [17]. Microphones and web cameras have been used for gestures and
expression recognition [18]. A bone conducting speaker, a heads-up display, and wearable
glasses were used for recognizing facial gestures [19]. A multisensor accelerometer was
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used for the detection of stereotypical motor movements (SMMs), which include complex
hand movements, body rocking, and mouthing [20]. The Kinect and Flex sensors with a
camera have been used to recognize head and hand movements [21–25]. Force sensitive
resistor sensors (FSRs) were used to identify multiple gait cycles during walking [26]. Wi-Fi
and GPS systems were used for movement recognition [27]. Leap motion device was used
to record gesture movements of users for American sign language in virtual reality by
generating a 3D hand model [28]. An electromyography sensor (EMG) was used to acquire
hand gestures from 15 people. The hand movements included open and closed hand,
neutral, victory sign, wrist flexion, tap, and wrist extension. [29]. The Myo Arm band was
used to collect gestures data for Hand Cricket between two persons [30].

Sensor placement on human body considers the relative position of the body and
the orientation of the sensor. Studies showed that the location of a sensor on a part of
the body depends on the activities to be recognized. Accuracy is proportional to the
number of sensors used: more sensors lead to higher accuracy and less sensors result in
lower accuracy. Researchers have placed sensors on various parts of the body to recognize
different activities, such as the wrist, ankle, and chest [31–33].

For gesture recognition, various features are extracted from data sensed by sensors.
Feature extraction is an important and difficult step in activity recognition. The features
that have been extracted by different researchers from the acquired sensors data related
to different activities are as follows: the duration of activity, mean, variance, standard
deviation, median absolute deviation, zero-crossing, cross-correlation, autocorrelation,
maximum peaks, total peaks, average of all peaks, area of signal magnitude, energy of
signal, frequency component with prime magnitude, mean of the frequency components,
power spectral entropy, root mean square, fast Fourier transform, etc. The most commonly
adopted classifiers include the k-nearest neighbor (KNN), random forest (RF), multilayer
perceptron (MLP), support vector machine (SVM), decision tree, and artificial neural net-
work (ANN) etc. Estrada used KNN and decision trees to recognize static gestures, and
the dynamic time warping (DTW) algorithm for the recognition of dynamic gestures [24].
Sombandith et al. [25] used the histogram of oriented gradients and correlation coefficients
to recognize the hand gestures of the Lao alphabet sign language. Gonçalves proposed
the detection of stereotype movements of autistic people using the dynamic time warping
algorithm [22]. Rad used a convolutional neural network for the detection of SMM using a
accelerometer sensor [20]. Comprehensive details and a comparison of the proposed tech-
nique with techniques reported in the literature are tabulated in Table 1. We investigated
gestures or activity recognition based on the type of activities performed, the data set, and
the machine learning algorithms applied.

Table 1. A summary of the literature and related works about gestures and activities recognition of normal and
autistic people.

Ref. No Sensors Activities Features Algorithms and Accuracy

[2] Moto 360 smartwatch Flapping, painting, and
sibbing

Discrete cosine transform,
FFT, variance, bi-spectrum,
z transform, entropy

Simple tree, complex tree, linear and
gaussian SVM, boosted and bagged
ensemble trees
Accuracy: 96.7%

[34] ECG, accelerometer,
gyroscope, magnetometer

Walking, climbing stairs,
frontal elevation of arms,
knees bending, cycling,
jogging, running, jump
front and back, sitting,
relaxing

Mean, standard deviation,
and correlation

Mean prediction rate 99.69%,
HMM 89.98%, DBN 92.01%, RNN
99.69%

[35] Not mentioned 9 uniform hand gestures Not mentioned, total 576
features extracted SVM 98.72%
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Table 1. Cont.

Ref. No Sensors Activities Features Algorithms and Accuracy

[36] Gyroscope, accelerometer Hand movements, body
movements

Publicly available dataset
features

Convolutional neural network 87.1%,
KNN 66.1%, SVM 77.1%, fully CN 88%

[37] Not mentioned Static and dynamic
unistroke hand gestures Not mentioned SVM 97.95%

[38] Accelerometer, magnetometer,
gyroscope

Jogging, walking, cycling
jumping, running,
jump-rope

Mean, standard dev,
kurtosis, skewness, range,
correlation, spectral
energy, spectral entropy,
peak frequencies, and
cross-spectral densities

SVM 26%, DT 93.24%, KNN 96.07%,
RF 97.12%, Naïve Bayes 76.47%

[39] Accelerometer, strain sensor Walking, eating

Mean value, standard dev,
percentiles, and
correlation frequency
domain (energy, entropy)

DT 93.15%

[40] Camera Gestures of alphabets Not mentioned KNN 94.49%

[41] Flex sensor, accelerometer,
camera,

Malaysian sign language
gestures Not mentioned General algorithm for the data-glove

detection system 78.33–5%

[42] Camera 24 Fingerspelling static
gestures Not mentioned

KNN classifier 87.38%, Logistic
regression 84.32%, naïve Bayes
classifier 84.62%, support vector
machine (SVM) 91.35%

[43] Leap Motion Sensor

Gestures for greetings,
possessive adjectives,
colors, numbers, names,
etc.

Not mentioned Hidden Markov models (HMM) 87.4%,
KNN+DTW 88.4%

[44] Accelerometer Cycling, sedentary,
ambulation

Mean, standard deviation,
acceleration range SVM from 88.5% to 91.6%

[45] Not mentioned ASL alphabets and
basic hand shapes

The number of fingers, the
width and height of the
gesture, the distance
between the hand fingers,
etc.

Type-2 Fuzzy HMM (T2FHMM)
100% accuracy for uniform hand
images and 95.5% for cluttered hand
images

[24] Flex sensor

Patterns representing:

• Letters/Words
• Numbers

Not mentioned

K-nearest neighbor
decision tree
dynamic time warpinga
verage accuracy = 90%

[46] QA screening method using
mobile app Not mentioned Age, sex, ethnicity,

country of residence, etc. RIPPER 80.95%, C4.5 82.54%

[47]
Not mentioned Dataset taken
from UCL Machine Learning
repository

Common attributes like
age, nationality, sex, etc. Not mentioned

SVM 98.30%, KNN 88.13%, CNN
98.30% ANN 98.30%, naïve Bayes
94.91%, LR 98.30%

3. Proposed Wearable-Sensors-Based Platform for Gesture Recognition of Autism
Spectrum Disorder Children

In this section, we describe the proposed platform, the acquisition of data from
sensors, the construction of feature vectors, and the classifiers used for gesture recognition.
Figure 1 shows the complete architecture of the proposed framework, which consists of
two main parts.
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Figure 1. The proposed architecture for wearable-sensors-based platform for the gesture recognition of autism spectrum
disorder children using machine learning algorithms.

The first part is based on the acquisitioning of data from sensors and its pre-processing,
and the other part consists of the recognition of the processed data using different machine
learning algorithms. A single Hexiwear sensor module consisting of both an accelerometer
and a gyroscope was installed at the writing position of either the right or left hand.
Sensor placement on a child mainly includes the relative position of the activity being
performed and the orientation of the sensor. The proposed methodology is explained in
the following subsections.

3.1. Data Collection

In the literature related to ASD gesture recognition, the Flex sensor or switch sensors
are most often used. These sensors only have on and off switch status. So, few gestures that
do not have movement variations are mentioned in the literature. In this study, we collected
data from the sensors installed on the wrist of the child. The sensor was worn by the user
and data were measured through a specific Bluetooth range of approximately 100 m. The
data through sensors were collected at different sampling rates based on sensor type. We
configured the sensor by fixing the accelerometer and gyroscope sampling frequency or
sampling rate to 50 Hz to precisely capture the hand movement of the gesture. Figure 2
shows a sequence of pictures for two gestures. The gesture signal was digitized and the
acquired data points comprise a timestamp and three axes values for the accelerometer
and gyroscope. Table 2 shows the sensors configuration that was used for collecting data.
The data set comprised different records gathered from the 10 subjects using two sensors.
Each subject produced gestures for 24 activities and data were gathered for 3 seconds; this
process was repeated 7–12 times. Table 3 shows the complete set of activities for which
gestures of ASD children were recorded.

Table 2. Sensors configuration for the collection of data from autistic children.

Sensors Sampling Frequency (Hz) Quantization Levels (Bits) Range

Accelerometer 50 16 ±16 gs
Gyroscope 50 16 ±2000◦/s
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Table 3. Information about the gestures which are recorded for data collection.

Gesture Label Gesture Labels

Good Morning G1 Angry G13
Good Afternoon G2 Bulb G14

Good Night G3 Cricket G15
Good Bye G4 Fan off G16
Thank you G5 Fan on G17

Please G6 Switch G18
Yes G7 Milk G19
No G8 Need eraser G20

Wow G9 Need pencil G21
Hello G10 Need toilet G22
Sleep G11 Need water G23

Afraid G12 School book G24
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Figure 2. Pictorial overview of the sequence of images for showing the hand movements when performing the gestures.

3.2. Features Extraction and Selection

The collected data were limited to a window size of three seconds, a set of features
was extracted from the window, and a specific label was given to this features set, which
was then used for learning purposes to construct a trained model. We extracted several
features in both the time and frequency domains, inspired by the literature and [48]. The
details and formulation of some of the features are given below, and the overall features
vector processing is shown in Figure 3.
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• Mean: We found the mean value for the accelerometer (x,y,z), and magnetome-
ter (x,y,z).

µ =
1
N

N−1

∑
i=0

xi (1)

• Standard Deviation: We calculated the spread in the sensors data around the mean as,

σ =

√
1
N

N−1

∑
i=0

(xi − µ)2 (2)

• Entropy: Entropy was used to differentiate between the gestures of a static nature, i.e.,
low movement, and activities having higher variation.

Entropy = − 1
N

N−1

∑
i=0

pi log pi (3)

• Cross-correlation was used to help differentiate between activities with variation.

Corr =
Cov (x, y)

σxσy
(4)

where Cov (x, y) = ∑N−1
i=0 (xi−µx)(yi−µy)

N−1

• Zero-crossing (ZC): Zero-crossing is the number of times the signal crosses zero
and its sign changes. We considered ZC for the accelerometer along three axes.
Mathematically, it can be written as:

ZC = COUNT ({(xi > 0) AND (xi+1 < 0)} OR {(xi < 0) AND (xi+1 > 0)}), 0 ≤ i ≥ N − 1 (5)

• Maximum Value: We calculated the maximum value of the accelerometer (x,y,z).

Accmax = max (xφ), 0 ≤ i ≥ N − 1 (6)

• Skewness: The coefficient of skewness is a measure of the degree of symmetry in the
variable distribution. It was calculated for every axis of the accelerometer.

Skewness =
∑N−1

i=0 (xi − µx)
3

(N − 1)σ3
x

(7)

• Kurtosis: The coefficient of kurtosis is a measure of the degree of tail in the vari-
able distribution.
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Kurtosis =
∑N−1

i=0 (xi − µx)
4

(N − 1)σ4
x

(8)

• Fast Fourier Transform: Equation (9) was used to find the fast Fourier transform (FFT)
of acceleration data. We considered six frequency domain features based on the FFT
of the acceleration data. The six features were the FFT magnitude: peak_ f, low_ f 1,
low_ f 2, low_ f 3, med_ f, and high_ f.

H(k) =
N−1

∑
n=0

x(n)e−j2π(k n
N ) (9)

3.3. Classification Algorithms for the Proposed Work

The task of this recognition system is the labelling of the recorded gesture from G1
to G24. For this, we used different supervised machine learning algorithms commonly
known as classifiers. The process consisted of two parts. In the first phase, the classification
algorithm found the relationship between the features and their corresponding labels using
the training data to generate a model. Then, in the second part, the model was tested by
providing new input features that are unknown to the model and then the model-output
labels were compared with the actual labels to determine the classification accuracy of the
algorithm. In this study, we used four classifiers, KNN, DT, RF, and the back-propagation
model of a neural network. The details of the algorithms are explained in the following
subsections.

3.3.1. The K-Nearest Neighbor Algorithm

The KNN algorithm is known as a lazy method of learning, which means that learning
(finding the relationship between input features and their labels) does not start until a
testing input is used. The algorithm only finds the k labels from the training data that are
similar to the testing input [49]. These k samples and their corresponding labels are then
used to predict the label for the new testing input. The closeness was found in terms of
Euclidean and Manhattan distances between the new sample and every sample present
in the training set in this paper. Equations (10) and (11) were used to find these closeness
distances, respectively.

D(x, y) =

√
n

∑
i=0

(xi−yi)
2 (10)

D(x, y) =
n

∑
i=0
|xi−yi| (11)

3.3.2. The Decision Tree Algorithm

Decision tree (DT) is a supervised Learning algorithm mostly used to solve classifica-
tion problems [50]. The main idea is to create a tree for all the data, and process a single
outcome at every leaf node or minimize the error at every leaf node. In this structure,
internal nodes represent the features of a dataset, branches represent the decision crite-
ria, and leaf nodes represents the outcome. The algorithm uses entropy (E) and the Gini
Index (G)-based information gain (I) to select the root node and leaf node. If a number
of classes are represented by C, an attribute by A, and V represents the possible values
in the attribute A, then the following equations can be used to find the E, G, and I of
entropy, respectively.

E(C) = −
C

∑
i=1

pi log2 pi (12)

G(C) = 1−
C

∑
i=1

p2
i (13)
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I (C, A) = E(C)− ∑
V ∈ values (A)

|Cv|
|C| E(A) (14)

The algorithm maximizes the information gain value, and the node having the highest
gain splits first. The algorithm we used is shown in Figure 4.
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3.3.3. The Random Forest Algorithm

Random forest [51] is type of classification that works by building multiple decision
trees (weak learners) and finally identifying the decision made by the majority of weak
learners. Normally, pruning of the decision trees is used to avoid over-fitting. Pruning
is basically a trade-off between accuracy and complexity. No pruning results in high
complexity, larger time consumption, and higher resource utilization. Random forest
has the same parameters as a decision tree classifier. However, it grows each tree on an
independent bootstrap sample from the training data. At each node, a subset of variables
is randomly selected from all possible variables (independently for each node) and the best
split is found on the selected subset variables. After the forest is formed, the trees are voted
or averaged to obtain predictions.

3.3.4. Back-Propagation-Based Neural Networks Algorithm

The back-propagation model [52] is the core of the neural network training process.
It is a method of fine-tuning the weights of a neural net based on the error rate obtained
in the previous iteration. Tuning the weights properly ensures the model is reliable by
increasing its generalization and reduces the error rates. The feature vector acts as the
input to the neural network. Different activation functions are compared to generate the
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output and then the error is calculated for the back-propagation procedure. The following
equations show how the process starts, error is calculated, and the backward propagation
with corresponding weight adjustments. Equation (15) calculates the forward value of the
input to the output.

v1
v2
...

vn

 =


w11 w12 . . . w1 45
w21 w22 . . . w2 45

...
...

...
...

wn1 wn2 . . . wn 45




x1
x2
...

x45

+


b1
b2
...

bn

 (15)

Error calculation:
δ = φ′(v)e (16)

We used the sigmoid function as our activation function, which is given by Equa-
tion (17).

ϕ(v) =
1

1 + e−v (17)

ϕ′(v) = ϕ(v)(1− ϕ(v)) (18)

Error propagation:
e(k) = WTδ (19)

δ (K) = φ′(v(k))e(k) (20)

Weight adjustment:
∆wij = αδ ixj (21)

wij
new = wold

ij (22)

where x is input, e is the error, v is the product of weights and corresponding inputs, W is
the weight matrix, b is the bias vector of the node, φ(v) represents the activation function,
φ′(v) shows its derivative, α is the learning rate, and i and j are the output and input node
numbers, respectively.

4. Simulation Results and Discussion

In this section, we briefly introduce the sensors’ response in time-series, describe the
data set, and compare the performance comparison of the machine learning algorithms
using cross-validation, i.e., dividing the whole dataset into percentage of training and
testing, and leave-one-person-out cross-validation (LOOCV) Nine ASD children were used
for training and one for testing.

4.1. Sensors Response and Dataset Description

Figure 5 shows the time-series response of the accelerometer and gyroscope for three
activities G12 (Afraid), G13 (Angry), and G17 (FAN ON). The sampling period was 50 Hz
and the graph shows each gesture was performed six times by the ASD child. Figure 5
depicts that each gesture was performed in 3 s including the variation in hand gesture
movement. So, a window of 3 s was used to extract the features for each gesture from
sensors data and label it. Table 4 describes the complete data set of the ASD children
who performed each gesture 7–12 times so the records for each gesture varied from 83–
103 records.
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Table 4. ASD children data set description.

Gestures Label No. Records Gestures Label No. Records

G1 99 G13 100
G2 85 G14 99
G3 100 G15 90
G4 90 G16 89
G5 86 G17 97
G6 90 G18 99
G7 100 G19 99
G8 98 G20 90
G9 93 G21 89

G10 80 G22 97
G11 100 G23 90
G12 103 G24 78
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4.2. Individual Classifier Performance Comparison Using Data Cross-Validation

For different classifiers, we used different evaluating functions. For KNN, we used 10
folds for validation and comparison was performed on the basis of distances, i.e., Euclidean
and Manhattan. For DT and RF, we calculated both the information gain and Gini index
for the different number of trees and variable depths of trees. For the neural network, we
compared the results on both the single layer and double layers with a variable number of
neurons and learning rates.

Figure 6 shows the complete individual comparison of all the classifiers using different
parameters. Figure 6a compares the performance of the KNN classifier, which clearly shows
that the Manhattan distance performed better compared with the Euclidean distance. We
used 10-fold cross-validation, i.e., 90% of the data set was used for training and 10%
for testing. The accuracy indicates the average of the 10-fold cross-validation. Figure 6
compares the performance of decision tree with varying depths of the decision tree; the
data were split into 90% training and 10% testing. The accuracies were found by changing
number of trees and the tree depth to evaluate the accuracy. The results are summarized in
Figure 6c for random forest. The classifiers performed with accuracy of about 91%.
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Figure 6. Individual performance comparison of all the classifiers: (a) KNN with different distances applied, (b) DT (c) RF,
and (d) single-layer NN.

The results for the single-layer network are summarized in Figure 6d with varying
numbers of neurons and using the sigmoid activation function. It achieved the highest
accuracy of 91.96% with 130 neurons. At each iteration, the learning rate helps to find
the step size needed to minimize the loss function in order to obtain the best parameter
that produces the highest accuracy. In the Figure 6d, the learning rate of 0.02 achieved the
highest accuracy.

Figure 7 shows the confusion matrices for the different algorithms. In most of the
algorithms, each individual gesture was recognized with accuracy more than 85%. Due to
the similar nature of some gestures, some showed high correlation to each other such G1
and G3, as shown in Figure 7a,c. G3 showed low precision and recall values and had high
correlation with G1 due to the similar variation in hand gesture movement. G22, G23, and
G24 received the highest accuracy for almost every classification algorithm. These gestures
involve angular hand movements that are mostly different from the other gestures.
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4.3. Performance Comparison of the Classifiers

The overall comparison showed that the single-layer neural network produced the
most accurate results. However, KNN algorithm with the Manhattan distance along with
random forest also produced similar results for the data set, as shown in Figure 8. Figure 9
shows the precision and recall of the classifiers. Overall, the three classifiers, KNN using
Manhattan distance, RF, and single-layer NN, had an accuracy of about 91%.
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4.4. Performance Comparison of the Classifiers Using Leave-One-Person-out Cross-Validation

In the leave-one-person-out cross-validation (LOOCV), we used the nine subjects for
training and one subject for testing. The subject used for testing performed each gesture
seven times. We present the results of RF and NN using backpropagation. Figure 10 shows
the performance comparison of the LOOCV for RF, which shows that RF using information
gain had a recognition accuracy greater than 91%, which was achieved by the 10-fold
cross-validation.
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Figure 11 shows the confusion matrix of RF using LOOCV, which shows that each
gesture was recognized with higher accuracy.
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Figure 12 shows the accuracy of ASD children gestures recognition of NN back-
propagation using LOOCV. The NN also performed better and each gesture was recognized
with higher accuracy, as shown in Figure 13 for a learning rate of 0.02.
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5. Conclusions, Limitations, and Future Work

In this paper, we proposed a wearable-sensors-based platform for recognizing the
gesture movements of children with autism spectrum disorder (ASD) using machine
learning algorithms. This work focused on recognizing the daily gestures of ASD children
to enable them to communicate with normal people without any hesitation. Modern
Androids and smart watches are equipped with sensors such as gyroscopes, accelerometers,
and GPS. Smartphones are the most widespread platform used for the recognition of
human physical activities. However, their placement on the body creates some limitations,
whereas wearable sensors can be placed easily on the human body. We used a wrist-
worn sensors module consisting of an accelerometer and gyroscope for the x, y, and z
axes and acquired the data at 50 Hz to obtain both the linear and angular motion for
increased recognition accuracy of complex gestures. Twenty-four gestures were performed
by ten subjects, and each gesture was repeated 7–12 times. A window of 3 s was used to
extract various statistical measures (45 features) from the sensors data. The gesture was
completed in about 3 s, so we considered a window of 3 s. We compared four classifiers:
K-nearest neighbor (KNN), decision tree (DT), random forest (RF), and neural network
(NN) using back-propagation using data-based cross-validation and leave-one-person-
out cross-validation (LOOCV). Both the data-based 10-fold cross-validation and LOOCV
produced accuracies greater than 91%. The RF, NN, and KNN showed about similar
accuracy. Most of the individual gestures were recognized with accuracy greater than 90%
by both data-partitioning-based cross-validation and LOOCV. This paper focused only the
recognition of gestures of ASD children, but the proposed architecture can be utilized for
remote health monitoring of ASD children.

The data were collected in a constrained environment where the ASD children per-
formed the gestures in standing positions. The system and data set have not been validated
on sensors data from the ASD children in the sitting or any other body position. The Hexi-
wear sensor has also limited processing and battery power. Its battery needs recharging
after a certain time. The data were collected using a single sensor worn at the wrist position,
so may not be capable of recognizing complex gestures.

In future work, we will work on a multiple- and heterogeneous-sensors-based plat-
form for the gesture recognition of ASD children. We are also working with LSTM-based
ML algorithms for validation and performance comparison with RF and NN back-propagation.
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