Skip to main content
. 2021 May 7;9(5):547. doi: 10.3390/healthcare9050547

Table 3.

Performance evaluation of prediction models on nonselection and after feature selection.

Method Accuracy Kappa Sensitivity Specificity AUC
Overall
(72 variables)
LGR 0.7198 0.4427 0.6711 0.7939 0.7926
RF 0.7077 0.3965 0.7355 0.6655 0.7784
MARS 0.7104 0.4294 0.6444 0.8108 0.7890
CART 0.6930 0.3360 0.8111 0.5135 0.7031
XGBoost 0.7225 0.4394 0.7044 0.7500 0.7934
LGR selection
(17 variables)
LGR 0.6179 0.2752 0.4888 0.8141 0.6981
RF 0.6260 0.2829 0.5177 0.7905 0.6912
MARS 0.6219 0.2771 0.5088 0.7939 0.6917
CART 0.5911 0.2292 0.4533 0.8006 0.6576
XGBoost 0.6246 0.2845 0.5044 0.8074 0.6977
RF selection
(11 variables)
LGR 0.6876 0.3960 0.5866 0.8412 0.7784
RF 0.6916 0.3937 0.6244 0.7939 0.7637
MARS 0.6890 0.3817 0.6444 0.7567 0.7675
CART 0.6930 0.3360 0.8111 0.5135 0.7031
XGBoost 0.6983 0.4161 0.5977 0.8513 0.7790
CART selection
(9 variables)
LGR 0.7091 0.4009 0.7311 0.6756 0.7624
RF 0.6554 0.3464 0.5200 0.8614 0.7557
MARS 0.7091 0.3954 0.7488 0.6486 0.7653
CART 0.6930 0.3360 0.8111 0.5135 0.7031
XGBoost 0.7131 0.4062 0.7444 0.6655 0.7652
MARS selection
(7 variables)
LGR 0.6876 0.3960 0.5866 0.8412 0.7784
RF 0.6916 0.3937 0.6244 0.7939 0.7637
MARS 0.6890 0.3817 0.6444 0.7567 0.7675
CART 0.6930 0.3360 0.8111 0.5135 0.7031
XGBoost 0.6983 0.4161 0.5977 0.8513 0.7790
XGBoost
selection
(7 variables)
LGR 0.7184 0.4186 0.7444 0.6790 0.7739
RF 0.6903 0.3800 0.6600 0.7364 0.7453
MARS 0.7131 0.4096 0.7333 0.6824 0.7683
CART 0.6930 0.3360 0.8111 0.5135 0.7031
XGBoost 0.7104 0.4212 0.6733 0.7668 0.7763
XGBoost
selection
and 3 risk factors
(10 variables)
LGR 0.6890 0.3937 0.6044 0.8175 0.7807
RF 0.7037 0.4008 0.6911 0.7229 0.7727
MARS 0.7225 0.4233 0.7600 0.6665 0.7831
CART 0.6930 0.3360 0.8111 0.5135 0.7031
XGBoost 0.6970 0.4069 0.6200 0.8141 0.7845
MARS selection
and 3 risk factors
(10 variables)
LGR 0.6916 0.3964 0.6155 0.8074 0.7780
RF 0.6836 0.3806 0.6088 0.7972 0.7629
MARS 0.7024 0.3998 0.6844 0.7297 0.7722
CART 0.6930 0.3360 0.8111 0.5135 0.7031
XGBoost 0.7077 0.4190 0.6600 0.7804 0.7806

Abbreviations: LGR: logistic regression; RF: random forest; CART: classification and regression tree; MARS: multivariate adaptive regression splines; AUC: area under the curve; XGBoost: extreme gradient boosting.