Skip to main content
. 2021 May 11;12(5):717. doi: 10.3390/genes12050717

Table 1.

Proposed Model Layer Hyperparameter Details.

Layers Hyperparameter Settings Output Shape
Input_1 shape = (31) (31)
Embedding Input dim = 22
Output dim = 32 (31, 32)
Input shape = (31 )
LSTM units = 32
Kernal reg = L2 (1 × 104) (31, 32)
Recurrent reg = L2 (1 × 104)
Bias reg = L2 (1 × 104)
Dropout Rate = 0.2 (31, 32)
MaxPooling1D Pool size = 2 (15, 32)
Flatten_1 Just flatten the matrix (480)
Input_2 shape = (31, 5) (31, 5)
Conv1D filters = 16
kernal_size = 3 (29, 16)
Activation = relu
MaxPooling1D Pool size = 2 (14, 16)
Dropout Rate = 0.2 (14, 16)
Flatten_2 Just flatten the matrix (224)
Concatenate concatenate the Flatten_1 and Flatten_2 (704)
Dense Activation = relu (16)
Units = 16
Dropout Rate = 0.4 (16)
Dense Activation = softmax (2)
Units = 2