Table 1.
Layers | Hyperparameter Settings | Output Shape |
---|---|---|
Input_1 | shape = (31) | (31) |
Embedding | Input dim = 22 | |
Output dim = 32 | (31, 32) | |
Input shape = (31 ) | ||
LSTM | units = 32 | |
Kernal reg = L2 (1 × 10) | (31, 32) | |
Recurrent reg = L2 (1 × 10) | ||
Bias reg = L2 (1 × 10) | ||
Dropout | Rate = 0.2 | (31, 32) |
MaxPooling1D | Pool size = 2 | (15, 32) |
Flatten_1 | Just flatten the matrix | (480) |
Input_2 | shape = (31, 5) | (31, 5) |
Conv1D | filters = 16 | |
kernal_size = 3 | (29, 16) | |
Activation = relu | ||
MaxPooling1D | Pool size = 2 | (14, 16) |
Dropout | Rate = 0.2 | (14, 16) |
Flatten_2 | Just flatten the matrix | (224) |
Concatenate | concatenate the Flatten_1 and Flatten_2 | (704) |
Dense | Activation = relu | (16) |
Units = 16 | ||
Dropout | Rate = 0.4 | (16) |
Dense | Activation = softmax | (2) |
Units = 2 |