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Abstract: Early folliculogenesis begins with the activation of the follicle and ends with the formation of
the follicular antrum, which takes up most of the time of folliculogenesis. In this long process, follicles
complete a series of developmental events, including but not limited to granulosa cell (GC) proliferation,
theca folliculi formation, and antrum formation. However, the logical or temporal sequence of these
events is not entirely clear. This study demonstrated in a mouse model that completion of early
folliculogenesis required a minimum of two weeks. The oocyte reached its largest size in the Type 4–5
stage, which was therefore considered as the optimum period for studying oogenesis. Postnatal days
(PD) 10–12 were regarded as the crucial stage of theca folliculi formation, as Lhcgr sharply increased
during this stage. PD13–15 was the rapid growth period of early follicles, which was characterized
by rapid cell proliferation, the sudden emergence of the antrum, and increased Fshr expression. The
ovarian morphology remained stable during PD15–21, but antrum follicles accumulated gradually.
Atresia occurred at all stages, with the lowest rate in Type 3 follicles and no differences among early
Type 4–6 follicles. The earliest vaginal opening was observed at PD24, almost immediately after the
first growing follicular wave. Therefore, the period of PD22–23 could be considered as a suitable period
for studying puberty initiation. This study objectively revealed the pattern of early folliculogenesis and
provided time windows for the study of biological events in this process.

Keywords: folliculogenesis; preantral follicle; oogenesis; ovary; puberty

1. Introduction

The ovary in the prepubertal female is not a dormant organ but is characterized by
continuous follicle recruitment and growth, which is known as early folliculogenesis or
gonadotropin-independent folliculogenesis [1]. Early folliculogenesis starts from the ac-
tivation of primordial follicles and ends with the formation of small antral follicles. In
this process, the early follicles go through four stages, namely primary (Type 3), early sec-
ondary (Type 4), middle secondary (Type 5a), and late secondary (Type 5b) [2–4]. Pituitary
gonadotropins can affect early folliculogenesis, but are not essential, because follicles can de-
velop into the late secondary follicular stage despite the lack of follicle-stimulating hormone
(FSH) and luteinizing hormone (LH) signaling [5,6]. After antrum formation, the destiny of
follicles is mainly determined by gonadotropins. They either mature under the co-regulation
of FSH and LH or get eliminated by atresia in the case of insufficient gonadotropins [7]. As
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a result, early folliculogenesis occurs round after round in the prepubertal ovary. However,
as the pituitary gland is not yet fully mature, none of the follicles can ovulate, which leads
to a futile exhaustion of the ovarian follicle reserve [8]. Mice are unique in that they can
only complete one round of early folliculogenesis before puberty due to the short interval
between birth and puberty initiation [9]. Early folliculogenesis is regulated mainly by
ovarian signals. Experimental works have suggested that transforming growth factor-beta
family cytokines (including inhibin/activin, follistatin, and growth and differentiation factor
9) [10], FSH [11], C-type natriuretic peptide [12], melatonin [13], and hippo signaling [14] in
the ovary play important roles in the regulation of early folliculogenesis.

The duration of the female’s reproductive period depends on the activation rate of
the follicle pool. Thus, the amount of activated primordial follicles is tightly regulated, as
abnormalities in primordial follicle activation can lead to premature ovarian failure (POF)
and female infertility [15,16]. Studies have demonstrated that early-growing follicles can
produce feedback signals to control the scale of activated primordial follicles. For example,
anti-Müllerian hormone (AMH) made by early-growing follicles inhibits the activation
of primordial follicles, and the absence of AMH leads to a faster depletion of primordial
follicles and causes POF [17,18]. The FSH receptor (Fshr) is not expressed in primordial
follicles but has been detected in GCs in the early-growing follicles. Fshr-null follicles do
not develop beyond the preantral stage and thus disturb the process of follicle activation,
which causes POF in one-year-old mice [5,19].

The above examples indicate that early-growing follicles play a key role in maintaining
the female reproductive period. Nevertheless, research has mainly focused on the brief period
of follicular activation rather than early folliculogenesis. This is partially due to the fact that
follicular activation connects tightly to reproductive aging, and the morphological changes
involved in it are relatively simple, which reduces the difficulty of designing research proto-
cols [15,16]. By contrast, early folliculogenesis is a long and complicated process involving
multiple stages, namely Type 3, Type 4, Type 5a, Type 5b, and Type 6. Furthermore, many
biological events such as zona pellucida formation, oocyte enlargement, follicular theca for-
mation, follicular antrum formation, and GC proliferationand differentiation occur in early
folliculogenesis [2,20]. Therefore, without an accurate understanding of the developmental
pattern of early follicles, it is difficult to formulate reasonable experimental designs for specific
biological events, let alone study the entire process of early folliculogenesis.

The present study aims to sketch out a detailed map of early folliculogenesis and trace
the “time window” for the study of biological events involved in it. To accomplish this, the
first wave of activated follicles in newborn mice was used to explore the morphological
pattern of early folliculogenesis, because it can provide a clean background and ideally
eliminate the interruptions of follicles in other developmental stages. In brief, ovaries
were collected daily during PD5–21 and subjected to histological analysis. The growth
curves of the follicles and oocytes were recorded carefully, and the expression profiles of
follicle-growth-related genes and puberty initiation were explored.

2. Results
2.1. Histological Analysis of the Dynamics of Early Folliculogenesis

Ovaries were collected during PD5–21 and subjected to hematoxylin and eosin (HE)
staining; the representative figures of each day are listed in Figure 1a. The maximum
cross-sectional area was recorded as the ovarian area, and the data demonstrated that
the ovaries underwent a period of slow development during PD5–12 (PD5: 0.30 ± 0.042
versus PD12: 0.62 ± 0.046 mm2, p < 0.05), after which two rapid developmental stages
were observed on PD13–15 (PD13: 0.79 ± 0.056 versus PD15: 1.21 ± 0.054 mm2, p < 0.01)
and PD17–19 (PD17: 1.29 ± 0.036 versus PD19: 1.91 ± 0.038 mm2, p < 0.01) (Figure 1b).
Then, the follicle diameter, the number of layers of GCs, and the antral follicle index were
measured to investigate the development pattern of early follicles. The pattern of change
in follicle diameter was very similar to that of the ovary. It underwent a period of slow
development during PD5–13 (PD5: 40.27 ± 1.94 versus PD13: 98.07 ± 3.83 µm, p < 0.01).
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Two rapid development stages were observed during PD13–15 (PD13: 98.1 ± 3.83 versus
PD15: 168.5 ± 5.22 µm, p < 0.01) and during PD16–19 (PD16: 172.5 ± 4.04 versus PD19:
250.5 ± 7.20 µm, p < 0.01) (Figure 1c). The number of GC layers underwent a period of
slow development during PD5–13 (PD5: 1.32 ± 0.09 versus PD13: 4.22 ± 0.25, p < 0.01),
which was followed by rapid development during PD13–15 (PD13: 4.22 ± 0.25 versus
PD15: 10.25 ± 0.75, p < 0.01). During PD15–21, the number of cell layers did not obviously
change (Figure 1d). The process of follicular antrum formation was recorded; the antrum
was visible on day 14 and then increased gradually during days 15 to 21 (Figure 1e). The
proportion of atretic follicles was also calculated. We observed a rapid increase in atretic
follicles on PD5 to 7, followed by a fluctuation of 4 to 8 percent (Figure 1f). Further analysis
showed that atresia occurred at all follicular stages, with the lowest rate in Type 3 follicles
and no difference among Type 4–6 follicles (Figure 1g).

2.2. Expression Patterns of Genes Related to Folliculogenesis

The expression patterns of genes associated with follicle development (Fshr, Lhcgr,
Cyp11α1, Cyp19α1, Inhα, Egfr) were examined. Compared with the expression level on
PD 5, Fshr was upregulated slowly during PD6–13 and increased sharply during PD13–15,
after which the expression level remained unchanged (Figure 2a). By contrast, Lhcgr was
upregulated slowly during PD6–10, and increased sharply during PD10–12; thereafter,
the expression of Lhcgr remained consistent (Figure 2b). The expression of Cyp11α1 kept
consistent during PD5–8 and increased slowly during PD8–19, then increased sharply
(Figure 2c). Similarly, the expression of Cyp19α1 showed no significant change during
PD5–8 and increased gradually during PD8–19, then increased quickly from PD19 to 21
(Figure 2d). The expression pattern of Inhα was similar to that of Cyp19α1: it kept consistent
during PD5–8 and increased gradually from PD8 to 21 (Figure 2e). The expression of Egfr
showed no significant variation during early folliculogenesis (Figure 2f). Similarly, no
changes of expression levels for either Vegfα or Vegfr2 mRNA were observed (Figure 2g,h).

2.3. Expression Patterns of Genes Related to Proliferation

The expression patterns of genes associated with cell proliferation were also examined.
CyclinD2 was upregulated slightly during PD12–15 and down-regulated in later stages
(Figure 3a). By contrast, both PCNA and P27 showed no significant changes during early
folliculogenesis (Figure 3b,c). The expression of P21 remained consistent during PD5–10
and then decreased gradually from PD10 to 21 (Figure 3d).

2.4. Relationship between Oogenesis and Early Folliculogenesis

It is widely believed that follicle development is necessary for oogenesis. It was
particularly interesting for us to determine the growth pattern of oocytes during follicle
development. It was observed that oocytes within a Type 2–3b follicle enlarged gradually
(Type 2: 2740 ± 162.8 versus Type 3b: 16,789 ± 450.3 µm3, p < 0.01); those within a
Type 4–5 follicle enlarged sharply, and the largest oocytes were observed within Type 5b
follicles (Type 4: 41,506 ± 2202 versus Type 5b: 158,482 ± 4696 µm3, p < 0.01) (Figure 4).
Subsequently, oocyte volume did not change. These data suggested that oogenesis is not
synchronized with follicle development.

2.5. Identification of the Day-Age of Follicles Entering the Gonadotropin-Dependent Phase

Superovulation was conducted to determine the time when follicles responded to
gonadotropic hormones by observing the changes in the size and congestion of the re-
productive organs. The response of the reproductive organs to gonadotropin increased
gradually during PD15–21 (Figure 5a). Ovulation was observed after the gonadotropin
stimulation on PD15. The number of ovulated oocytes increased on PD17 (PD15: 4.8 ± 3.09
versus PD17: 19.4± 6.16, p > 0.05) and then reached its largest value during PD19–21 (PD19:
43.6 ± 7.49 versus PD21: 48.2 ± 4.41, p > 0.05). As we expected, hCG cannot independently
induce ovulation without PMSG pretreatment (Figure 5b).
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Figure 1. The development mode of follicles during prepubertal stage.(a) The representative HE
staining of ovary from PD5 to 21. The scale bar = 100 µm. (b) Maximum cross-sectional area of
ovaries (data are expressed as mean ± SEM). Three to five ovaries from 3–5 mice in each group were
used for sectioning. Three to five sections in each group were used for these statistics. Statistical
significance was determined using one-way ANOVA followed by Tukey post hoc test. (c) Follicle
diameter (data are expressed as mean ± SEM). Thirty to forty-five sections from 3–5 mice in each
group were used for these statistics. Statistical significance was determined using one-way ANOVA
followed by Tukey post hoc test. (d) The number of GC layers (data are expressed as mean ± SEM).
Thirty to forty-five sections from 3–5 mice in each group were used for these statistics. Statistical
significance was determined using one-way ANOVA followed by Tukey post hoc test. (e) Antral
follicle index. Thirty to forty-five sections from 3–5 mice on each day were counted. (f) Percentage of
atretic follicles at different days of age. Thirty to forty-five sections from 3–5 mice on each day were
counted. (g) Percentage of follicular atresia at different developmental stages. The number of follicles
used for these statistics: n = 844 (Type 3), 986 (Type 4), 2308 (Type 5), 207 (Type 6). The difference is
significant or not depends on whether one or more identical superscript letters (a–i) between groups
exist (p > 0.05) or not (p < 0.05).
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Figure 2. The expression patterns of genes associated with folliculogenesis during early folliculogen-
esis: (a) follicle-stimulating hormone receptor (Fshr); (b) luteinizing hormone/ choriogonadotropin
receptor (Lhcgr); (c) cytochrome p450 family 11 subfamily-A member 1 (Cyp11α1); (d) cytochrome
p450 family 19 subfamily-A member 1 (Cyp19α1); (e) inhibin-a subunit (Inhα); (f) epidermal growth
factor receptor (Egfr); (g) vascular endothelial growth factor a (Vegfα); (h) vascular endothelial growth
factor receptor 2 (Vegfr2). Three samples in each group were used for gene quantification. Normaliza-
tion was performed using the housekeeping gene Actb as control. Data are expressed as mean± SEM.
Statistical significance was determined using one-way ANOVA followed by Tukey post hoc test. The
difference is significant or not depends on whether one or more identical superscript letters (a–e)
between groups exist (p > 0.05) or not (p < 0.05).
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Figure 3. The expression patterns of genes associated with proliferation during early folliculogenesis:
(a) G1/S-specific cyclin-D2 (CyclinD2); (b) proliferating cell nuclear antigen (PCNA); (c) cyclin-
dependent kinase inhibitor 1 (P27); (d) cyclin-dependent kinase inhibitor 1B (P21). Three samples in
each group were used for gene quantification. Normalization was performed using the housekeeping
gene Actb as control. Data were expressed as mean ± SEM. Statistical significance was determined
using one-way ANOVA followed by Tukey post hoc test. The difference is significant or not depends
on whether one or more identical superscript letters (a–d) between groups exist (p > 0.05) or not
(p < 0.05).

Figure 4. The relationship between oogenesis and folliculogenesis: (a) the selection criteria of the
follicles, the scale bar = 20 µm (type 2–3b follicles), 50 µm (type 4–6 follicles); (b) the development pat-
tern of the oocytes. Twenty oocytes in each phase were counted. Data are expressed as mean ± SEM.
Statistical significance was determined using one-way ANOVA followed by Tukey post hoc test. The
different superscript letters (a–e) represent a significant difference (p < 0.05).
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Figure 5. Identification of the day-age of follicles entering the gonadotropin-dependent phase:
(a) representative reproductive organ pictures of each time point after gonadotropin injection, the
scale bar = 5 mm; (b) number of ovulated oocytes. Five mice were subjected to superovulation
in each group. Data are expressed as mean ± SEM. Statistical significance was determined using
one-way ANOVA followed by Tukey post hoc test. The different superscript letters (a–b) represent a
significant difference (p < 0.05).

2.6. Identification of the Day-Age of Puberty Initiation

The day of vaginal opening and first mating were detected to confirm the competition
time of puberty initiation. The average day of vaginal opening was 25.3 ± 0.17 day, and
the average day of first mating age was 27.4 ± 0.14 day (Figure 6a). Compared with PD21,
FSH levels on PD23 and 24 were significantly increased (PD21: 1.03 ± 0.106 versus PD23:
1.70 ± 0.115 mIU/mL, p < 0.05; PD21: 1.03 ± 0.106 versus PD24: 1.70 ± 0.108 mIU/mL,
p < 0.05) (Figure 6b). By contrast, LH and estradiol-17β levels were at their highest levels
on PD22 and then decreased gradually (Figure 6c,d).

Figure 6. The day-age of puberty initiation and hormone variation pattern: (a) the day-age of vagina
opening and first mating. Blue grid: vagina opening, red grid: first-mating. Twenty-five mice were
used for vaginal examination and mating; (b–d) variation curves of FSH, LH, and estrogen. Six serum
samples in each group were used for hormone assay. Data are expressed as mean ± SEM. Statistical
significance was determined using one-way ANOVA followed by Tukey post hoc test. The difference
is significant or not depends on whether one or more identical superscript letters (a–c) between
groups exist (p > 0.05) or not (p < 0.05).
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3. Discussion

Newborn mouse ovaries are densely packed with germ cell cysts. The germ cell cysts
are transformed into primordial follicles, which process is also known as the establishment
of the follicular pool, during PD3–5 [21]. Thereafter, a certain proportion of primordial
follicles are activated to form the first follicle growth wave. After a long process, most
form a small follicular antrum, which is regarded as an indicator of the end of early
folliculogenesis [22]. The first batch of activated follicles originating from the newborn
ovary is a perfect model for studying early folliculogenesis because it can provide a clean
background and ideally eliminate the interruption of follicles in other developmental
stages. Previous research has used less frequent sampling. For example, Peters used a
1 week sample interval and compared morphological differences between PD 1, 7, 14, and
21 [23]. Infrequent sampling cannot trace the entire process of folliculogenesis, as it would
miss some crucial biological events. In this study, we collected the ovaries from PD5 to 21
and subjected them to histomorphological analysis, which is currently the most detailed
description of the model of early folliculogenesis in mice.

This study showed that early folliculogenesis consisted of three phases: slow growth,
rapid growth, and slow growth (Figure 1). During the first slow growth phase, comprising
the interval of PD5–13, the activated follicles grew slowly to the Type 5b stage. During
PD13–15, follicles underwent a rapid growth and formed a small antrum, which marked the
acquisition of the ability to respond to gonadotropins. Therefore, the interval of PD13–15
is a crucial phase in transformation of the early follicle into a gonadotropin-dependent
follicle. However, the exact signal and how it is activated during PD13–15 is still unknown.
During the interval of PD15 to 21, the growth of the early follicles slowed down again and
the ovaries changed rarely in morphology, but antral follicles accumulated gradually. It is
believed that the first batch of small antral follicles play an important role in regulating
puberty initiation [24]; therefore, the period of PD15–21 may also be the preparation phase
for puberty initiation. Atresia occurred at all follicular stages [25]. Earlier studies have
demonstrated that the majority of follicles undergo atresia at the small antral follicular
stage [26,27], because small antrum follicles often fail to have adequate access to FSH,
which is essential for survival [28]. This study once again confirmed that atresia occurred
at all stages of early follicle development. However, atresia of secondary follicles was
not less than that of small antral follicles (Figure 1f,g). The above findings further the
understanding of follicular atresia.

Fshr and Lhcgr act as antennas on the follicle, where they are responsible for receiving
gonadotropin signals from the pituitary gland [29–31]. In the current study, we found
that both Fshr and Lhcgr were gradually upregulated at the early stage of folliculogenesis;
soon afterwards, they underwent a period of rapid increase and then reached a plateau.
The rapid increase of Lhcgr emerged on days 10 to 12. Lhcgr is mainly expressed in the
theca folliculi of the early follicle [32,33]. Thus, we presume that the period of PD10
to 12 is the crucial stage for theca folliculi formation. Notably, the expression of Fshr
experienced at least two periods, namely the slow increase period before follicular antrum
formation, and the rapid increase period during follicular antrum formation. Therefore,
the increase of Fshr may be an important prerequisite for the formation of the follicular
antrum. This finding also helps us to understand why follicles can still develop into the
late secondary follicles after Fshr deletion, but the follicular antrum cannot be further
formed [5,19]. In other words, it inspired us to use Fshr as a breakthrough point to
study the formation of the follicular antrum. For example, signals or genes that induce a
sharp upregulation of Fshr may be involved in the regulation of antrum formation. The
time point of follicle entrance to the gonadotropin-dependent phase was investigated.
It was observed that oocytes started to ovulate on PD15 when Fshr expression reached
the highest level. Superovulation experiments also indicated that the completion of early
folliculogenesis required a minimum of two weeks, which is much longer than the two day
time of gonadotropin-dependent folliculogenesis [31]. Cyp11α1, Cyp19α1, Inhα, Egfr, Vegf α,
and Vegfr2 are the downstream genes of FSH-FSHR signaling. Among them, Cyp11α1
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and Cyp19α1 control the synthesis of sex steroids [34], and Inhα influences gonadotropin
secretion [35]. These three genes were all upregulated and then reached their highest levels
on PD21, just before puberty initiation. Thus, these genes may provide molecular markers
of puberty initiation.

Deletion of CyclinD2 impairs GC proliferation and prevents follicle development [36].
In the current study, CyclinD2 increased slightly during PD12–15, which coincided with the
rapid growth of the follicle. Initiation of the cell cycle involves the inhibition of endogenous
Cdk inhibitors (e.g., P21 and P27), which inhibit the activity of cyclin/Cdk complexes [37].
In the current study, the expression of P27 gradually decreased after day 10, while that of
P21 did not change significantly. We also found that GCs proliferated in a restricted manner
and formed an antrum when the cells went beyond 10 layers. Notably, the layers of GCs did
not increase further after the forming of the follicular antrum. It seems that the layers (or
cell amounts) of GCs may act as a timer within the follicle to drive GC differentiation and
antrum formation. This would be similar to the emergence of the blastocyst cavity, wherein
the blastomere cannot initiate differentiation and secrete fluids to form the blastocyst cavity
until its cell number increases to a certain value at morula stage [38,39]. However, the
mechanism by which the follicle senses the amount of GCs is unknown.

Our findings suggest that oogenesis is not synchronized with folliculogenesis. The
oocyte underwent a rapid expansion during the very early stage and reached its largest
size in the Type 4–5 stage. During the subsequent process, the oocyte reached a steady state
even though follicle growth was just beginning. Previous studies have also confirmed that
oocytes do not grow during gonadotropin-dependent folliculogenesis. Instead, the nuclear
maturation capacity of oocytes is acquired during early folliculogenesis [40–42]. The reason
why folliculogenesis is slower than oogenesis is also currently unclear. We presume that
this development model is an important strategy of reproductive regulation that evolved
during the evolution. In this model, the oocyte is the core of female reproduction, while
follicle acts as a “liaison“ between the oocyte and the nerve center: the gonadal hormones
released by the follicle allow the nerve center to perceive the mature state of the oocyte; in
turn, the nerve center promotes estrogen secretion and produces a preovulatory LH peak,
thereby accurately controlling the mating and ovulation time of females and ensuring that
the ovulated oocytes have sufficient fertilization opportunities.

This study shows that puberty occurs mainly on PD24–26, much earlier than the day 34
observed by Peters [23]. Therefore, we conclude that PD22–23 may be a “time window” for
studying puberty initiation. In particular, most of the mice exhibited mating activity within
2 days of PD22–23, suggesting that mice can mate naturally even when they weigh much
less than adults. This finding can be used as a reference for the design of related experiments.
During puberty initiation, the basal level of LH was much higher than that of FSH. Moreover,
changes in LH and estrogen concentrations were very similar. Since the main role of LH is
to induce the theca folliculi to synthesize the precursor of estrogen, we speculated that the
ability of estrogen synthesis in prepubertal mice may also be determined by LH. Therefore,
LH may play a more important role during puberty initiation than FSH. This idea has also
been put forward by researchers in earlier years [43]. Notably, the release of FSH and LH is
pulsatile in a day; hence, the level of these hormones is time-dependent [44]. Therefore, a
shorter sampling interval may be used to depict the change in hormones accurately.

4. Materials and Methods
4.1. Mice Handing

Kunming mice were purchased from the Experimental Animal Center of Huazhong
Agricultural University (Wuhan, China). Mice were housed under suitable temperature
(22–26 ◦C) with constant 12 h light-dark cycles and allowed access to food and water ad
libitum. All animal experiments were carried out with the approval of the Animal Ethics
Committee of Huazhong Agricultural University. The approval number is HZAUMO–
2018–060. Euthanasia was performed using gradual increase in CO2 concentration or
cervical dislocation.
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4.2. Histomorphological Analysis

Ovaries were collected on PD5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, and
21 (n = 3–5 per group). Then the samples were fixed in 4% paraformaldehyde at room
temperature for 48 h (G1101, Servicebio technology, Wuhan, China). After fixation, the
ovaries were washed in phosphate buffer and embedded in paraffin. Complete ovaries
were serial sectioned (5 µm-thick paraffin sections), and every fifth section was chosen for
HE staining. The images were taken by a microscope (Olympus, Tokyo, Japan) connected to
a computer. Ovary area and follicle diameter were measured by Image J software (National
Institutes of Health, Bethesda, MD, USA). In brief, the area of all sections derived from the
same ovary was determined, and the maximum value was selected as the area of ovary;
the diameter of the growing follicle was measured; and the number of GC layers was
counted. Since early folliculogenesis is a continuous process, we measured the diameter
and GC layers of all growing follicles in each section in order to accurately show the growth
curve of early follicles, and then arranged the follicle diameter and cell layer number in
descending order. Finally, the top 20% of values were used to generate Figure 1. The antral
follicle index was calculated as the number of antral follicles divided by the number of
growing follicles. The area of oocytes originating from follicles at different developmental
phases was measured. Follicles were classified according to Pedersen’s criterion [4].

4.3. Gene Expression Assay with Real-Time qPCR

The ovaries were collected on PD5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, and
21. Three samples at each time point were used for gene quantification. The samples were
ground in liquid nitrogen. Total RNA was extracted using Trizol reagent (Invitrogen Inc.,
Carlsbad, CA, USA). Thereafter, the expression of genes associated with folliculogenesis
(Fshr, Lhcgr, Cyp11α1, Cyp19α1, Inhα, Egfr, Vegf α, Vegfr2) and proliferation (CylinD2, PCNA,
P21, P27) was determined as follows:

RNA was reverse transcription using a PrimeScriptTM RT reagent kit with genome
DNA Eraser (RR047A, Takara Bio Inc., Tokyo, Japan). The following was the reaction
procedure of qPCR. qPCR analysis was performed using a QuantiFast SYBR Green PCR
Kit on a Bio-Rad CFX Manager Machine (Bio-Rad, Hercules, CA, USA). The qPCR reaction
contained SYBR Green (10 µL), forward and reverse primers (500 nM for each), template
cDNA (8 µL), and added ddH2O to make a total volume of 20 µL. The reaction procedure
was as follows: predegeneration 95 ◦C for 10 min; 35 cycles of denaturation at 95 ◦C for 10 s
and annealing/extension at 60 ◦C for 15 s; and melting curve from 65–95 ◦C, increasing
in increments of 0.5 ◦C every 5 s. The relative RNA levels were normalized to those of
housekeeping gene Actb. The relative mRNA expression was calculated by the 2−44ct

method. Primer sequences are listed in Table 1.

Table 1. The primers for qPCR.

Genes Primer Sequence (5′–3′) Product Size (bp) Tm (◦C)

Actb
Forward: CCAGCCTTCCTTCTTGGGTAT

93 60Reverse: AGGTCTTTACGGATGTCAACG

Lhcgr Forward: CTGAGGAGATTTGGTTGCTGTA
234 60Reverse: ATTTGGGTGGACTTTTTTGGGG

Cyp11α1 Forward: GGGCAGTTTGGAGTCAGTTTAC
186 60Reverse: TTTAGGACGATTCGGTCTTTCTT

Fshr
Forward: GCAGATGTGTTCTCCAACCTACC

172 60Reverse: GGAGAGACTGGATCTTGTGAAAGG

Egfr Forward: AAGGCACAAGTAACAGGCTCA
114 60Reverse: CCAAGTTCCCAAGGACCACT

Cyp19α1 Forward: GACACATCATGCTGGACACC
179 60Reverse: CAAGTCCTTGACGGATCGTT

Vegfα Forward: GAGAAGACAGGGTGGTGGAAG
193 60Reverse: GAAGGGAAGATGAGGAAGGGT
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Table 1. Cont.

Genes Primer Sequence (5′–3′) Product Size (bp) Tm (◦C)

Vegfr2 Forward: CCTGCCTACCTCACCTGTTTC
205 60Reverse: CCACTGTCTGTCTGGCTGTC

Inhα
Forward: CTTTCCCTCTGCTGACCCA

184 60Reverse: AAAGCCGCAGGAGACCAA

CyclinD2 Forward: GCTATGGAGCTGCTGTGCT
263 60Reverse: CCAAGAAACGGTCCAGGTAA

PCNA
Forward: ACCTGCAGAGCATGGACTCG

83 60Reverse: GCAGCGGTATGTGTCGAAGC

P21
Forward: CCTGGTGATGTCCGACCTG

130 60Reverse: CCATGAGCGCATCGCAATC

P27
Forward: TCAAACGTGAGAGTGTCTAACG

238 60Reverse: CCGGGCCGAAGAGATTTCTG

4.4. Superovulation

Mice were injected with 5 IU PMSG (B191009, Ningbo Hormone Products Co., Ltd.
Zhejiang, China) to stimulate follicle growth on PD15, 17, 19, and 21 (n = 5 per group).
Forty-four hours after PMSG injection (the control group mice were not injected with
PMSG), hCG at a dose of 5 IU (S180801, Ningbo Hormone Products Co., Ltd. Zhejiang,
China) was injected to trigger ovulation. Fourteen hours after hCG injection, mice were
sacrificed, and the reproductive organs were collected for visual observation. MII-stage
oocytes were collected and counted by puncturing the oviduct.

4.5. Puberty Initiation Determination

After PD21, the state of the vagina was determined every morning, and opening of
the vagina was considered as a sign of puberty. The pubertal mice were then collected and
allowed to cohabitate with a male that night. Mating was confirmed by the presence of a
vaginal plug.

4.6. FSH, LH, and Estradiol-17β Level Analyses by Radioimmunoassay

The serum concentrations of FSH, LH, and estradiol-17β were measured on PD21,
22, 23, and 24 (n = 6 per group). In brief, blood was collected from the caudal vein. After
clotting, the serum was obtained by centrifugation at 3000 rpm for 10 min and stored at
−20 °C. The levels of FSH, LH, and estradiol-17β were measured by radioimmunoassay.
These hormone levels were measured by the Beijing North Institute of Biological Technol-
ogy (Being, China). The FSH, LH, and estradiol-17β detection kits were all purchased from
the Jiancheng Bioengineering Institute (Nanjing, China).

4.7. Statistics Analysis

GraphPad Prism 8.0 software (GraphPad Software Inc., San Diego, CA, USA) was used
for data statistical analysis. Data were presented as the mean ± standard error of mean
(SEM). The statistical analysis was performed by one-way analysis of variance (ANOVA)
followed by the Tukey post hoc test and chi-square test. p-value < 0.05 was considered
statistically significant; p-value < 0.01 was considered highly statistically significant.

5. Conclusions

The current study demonstrated that: completion of early folliculogenesis required a
minimum of two weeks; the oocyte reached its largest size in Type 4–5 stage, after which
they stop enlarging; PD10–12 could be the crucial stage of theca folliculi growth; PD13–15
was a period of rapid growth of early follicles, during which the follicular antrum began
to form; atresia occurred at all follicular stages, with a higher atretic percent in Type 4–6
follicles; puberty onset almost immediately the end of the first growing follicular wave. In
short, we drew a detailed atlas of early folliculogenesis and provided time windows for
studying oocyte growth, theca folliculi formation, follicular antrum formation, follicular
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atresia, and puberty initiation, thereby laying the foundation for further investigation of
the regulatory mechanisms underlying early folliculogenesis.
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