Table 3.
KNN | LDA | LR | Ensemble | ||
---|---|---|---|---|---|
>Accuracy (%) | Train | 92.86 ± 2.41 | 96.01 ± 1.50 | 100 ± 0.00 | 99.62 ± 0.59 |
Validation | 85.82 ± 3.82 | 90.03 ± 2.53 | 89.78 ± 3.29 | 92.61 ± 2.48 | |
Test | 82.92 ± 2.90 | 88.77 ± 3.89 | 87.42 ± 4.00 | 91.64 ± 3.20 | |
>F1-score (%) | Train | 93.26 ± 2.20 | 96.14 ± 1.43 | 100.00 ± 0.00 | 99.63 ± 0.58 |
Validation | 87.26 ± 3.21 | 90.61 ± 2.23 | 89.55 ± 3.49 | 92.97 ± 2.27 | |
Test | 84.63 ± 2.76 | 89.34 ± 3.50 | 86.87 ± 4.53 | 92.04 ± 2.97 | |
>Sensitivity (%) | Train | 98.43 ± 1.86 | 98.99 ± 1.29 | 100.00 ± 0.00 | 99.87 ± 0.48 |
Validation | 96.48 ± 2.88 | 95.79 ± 3.04 | 87.86 ± 5.07 | 97.36 ± 2.25 | |
Test | 94.21 ± 5.00 | 93.58 ± 3.63 | 84.03 ± 6.73 | 96.23 ± 3.17 | |
>Specificity (%) | Train | 87.30 ± 4.05 | 93.02 ± 2.81 | 100.00 ± 0.00 | 99.37 ± 1.14 |
Validation | 75.16 ± 7.40 | 84.28 ± 5.48 | 91.70 ± 4.22 | 87.86 ± 4.34 | |
Test | 71.64 ± 4.58 | 83.96 ± 6.59 | 90.82 ± 3.67 | 87.04 ± 5.47 | |
>PPV (%) | Train | 88.67 ± 3.28 | 93.48 ± 2.49 | 100.00 ± 0.00 | 99.39 ± 1.11 |
Validation | 79.83 ± 5.19 | 86.12 ± 3.95 | 91.51 ± 4.08 | 89.04±3.49 | |
Test | 76.95 ± 2.76 | 85.63 ± 5.02 | 90.2 ± 3.58 | 88.33 ± 4.44 | |
>NPV (%) | Train | 98.25 ± 2.09 | 98.95 ± 1.33 | 100.00 ± 0.00 | 99.88 ± 0.47 |
Validation | 95.64 ± 3.32 | 95.41 ± 3.18 | 88.50 ± 4.28 | 97.13 ± 2.40 | |
Test | 92.92 ± 5.42 | 92.99 ± 3.78 | 85.33 ± 5.28 | 95.94 ± 3.35 | |
>AUC (%) | Train | 98.49 ± 0.83 | 99.30 ± 0.56 | 100.00 ± 0.00 | 100.00 ± 0.00 |
Validation | 92.16 ± 2.37 | 94.72 ± 2.10 | 93.03 ± 2.74 | 98.63 ± 0.85 | |
Test | 90.20 ± 2.41 | 94.72 ± 2.54 | 91.44 ± 2.63 | 98.13 ± 1.26 |