Skip to main content
. 2021 May 12;21(10):3346. doi: 10.3390/s21103346

Table 1.

Summary of configurations of classifiers.

Classifier Parameters Value
RF Number of variables to sample 10
Maximum number of splits 200
Predictor selection criterion “interaction curvature”
Other parameters Default
SVM Model error-correcting output code multiclass
Kernel function “rbf”
Kernel scale “auto”
Standardize true
Other parameters Default
MLP Number of hidden layers 512
Size of mini batch 300
Optimizer “adam”
Maximum number of epochs 40
Other parameters Default
k-NN Number of neighbors 3
Other parameters Default
NB Data distributions Multivariate multinomial distribution
Other parameters Default