View full-text article in PMC Entropy (Basel). 2021 May 12;23(5):598. doi: 10.3390/e23050598 Search in PMC Search in PubMed View in NLM Catalog Add to search Copyright and License information © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). PMC Copyright notice Table 3. Multimodal benchmark functions. Function Expression n Range fmin Schwefel f8(x)=∑i=1n−xisin(|xi|) 5 [−500,500] −418.9829 × 5 Rastrigrin f9(x)=∑i=1n[xi2−10cos(2πxi)+10] 5 [−5.12,5.12] 0 Ackley f10(x)=−20exp(−0.21n∑i=1nxi2)−exp(1n∑i=1ncos(2πxi))+20+e 5 [−32.32] 0 Griewank f11(x)=14000∑i=1nxi2−∏i=1ncos(xii)+1 5 [−600,600] 0 Penalty# f12(x)=πn{10sin(πy1)+∑i=1n−1(yi−1)2[1+sin(πyi+1)]+(yn−1)2}+∑i=1nu(xi,10,100,4)}yi=1+xi+14u(xi,a,k,m)={k(xi−a)m,xi>a0,−a<xi<ak(−xi−a)m,xi<−a 5 [−50,50] 0 Penalized 1.2 f13(x)=0.1{sin2(3πx1)+∑i=1n(xi−1)2[1+sin2(3πxi+1)]+(xn−1)2[1+sin2(2πxn)]}+∑i=1nu(xi,5,100,4) 5 [−50,50] 0