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Abstract

Background: Pancreatic cancer (PC) is a major cause of cancer death. In an effort to improve treatment strategies
and outcomes, DNA damage repair (DDR) pathways have been introduced as a new target in PC and in other
cancers, through the exploitation of synthetic lethality. Furthermore, genes involved in DDR are among the major
determinants of cancer susceptibility. In addition to the well-known BRCA1 and BRCA2 genes, a plethora of other
targets in the same pathways are now emerging.

Methods: We analyzed samples from 60 patients, affected by PC and already tested for BRCA, using a panel with 24
other cancer susceptibility genes.

Results: We detected 8 pathogenic or likely pathogenic mutations (13.3% of samples analyzed), 4 of which were
found in non-BRCA genes (2 in ATM, 1 each in PALB2 and RAD50). Furthermore, 4 pathogenic or likely pathogenic
mutations were found in patients without a personal or familial history of cancer.

Conclusions: Our results suggest that genetic testing with a comprehensive gene panel should be perfomed in all
patients with PC, in order to allow screening for PC and other gene-related cancers in all at risk family members
and to assess patients’ eligibility for emerging therapeutic options.
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Background
Pancreatic cancer (PC) is the seventh leading cause of
cancer death in the world [1], with a 5-year survival rate
of about 9% [2]. Surgery is the only curative treatment,
but no more than 20% of patients are eligible for resec-
tion [3], since the majority of cases are diagnosed at a
late stage and are only amenable to systemic therapy.
Despite recent advancements with chemotherapy
combination regimens that resulted in increased survival
[4, 5], the identification of new targets is critical to
improve the efficacy of systemic therapy. Increasing
attention is been paid to DNA damage repair (DDR)
pathways in PC and in other diseases. Indeed, genomic
instability and mutations are among the hallmarks of
cancer [6]; genomic instability derives not only from an
accumulation of mutations and other genetic alterations
(e.g. induced by mutagen chemical compounds, ionizing
or ultraviolet radiation) exacerbated by the replication
stress in highly proliferating cells, but also from the im-
pairment in repair pathways. These are based on a net-
work of highly coordinated proteins that sense, signal
and repair DNA damage, and coordinate this process
with cell cycle progression [7]. Among the various
mechanisms involved, the homologous recombination
(HR) repair is critical for DNA double-strand breaks.
The pathogenetic role of mutations in BRCA1 and
BRCA2, two key components of HR mechanism, has
been largely established in several cancers such as breast,
ovarian, prostate and PC [8], and BRCA1/2 germline
mutations are among the most common causes of inher-
ited cancer susceptibility. Within this context, about
10% of PC cases have been linked to a familial predis-
position [3], and BRCA1 and BRCA2 are among the
most frequently mutated genes in familial PC [9]. Never-
theless, the majority of PC patients with BRCA muta-
tions have no familial history, and germline BRCA1 and
BRCA2 mutations are found in about 1 and 3.6% of pa-
tients, respectively, even without selection for familial
history [10]. Moreover, alterations in DDR pathways play
a role not only in inherited susceptibility to PC, but also
in treatment of the disease, mainly through the exploit-
ation of the so-called synthetic lethality, i.e. cell death
resulting from simultaneous perturbation of the activity
of two genes [11]. A common attempt to exploit this
mechanism is a pharmacological intervention causing a
DNA damage in a cell that is already deficient in a DDR
pathway, e.g. using a platinum compound or a poly
(adenosine diphosphate–ribose) polymerase inhibitor
(PARPi) in BRCA-mutant cells. Indeed, BRCA mutations
confer sensitivity to platinum-containing regimens in PC
[12, 13]; furthermore, it has been recently established
the role of the PARPi olaparib in maintenance therapy
of BRCA-mutant PC after platinum-containing first-line
treatment [14]. Studies in cancers other than PC (i.e.

ovarian and prostate) have shown that BRCA1 and
BRCA2 are not the only genes whose alteration is
essential in this context: indeed, the wider concept of
HR deficiency, including other genes such as ATM or
PALB2, is implicated in the exploitation of synthetic
lethality [15–20]. Furthermore, new treatment options
that take advantage of this mechanism are emerging in
addition to PARPi. Given the above premises, we de-
cided to examine a series of samples from 60 consecu-
tive cases of PC (from February 2019 to September
2020) analyzed for BRCA1/2 status, and to broaden the
analysis by including 24 other cancer susceptibility genes
(ABRAXAS1, ATM, APC, BARD1, BRIP1, CDH1, CHEK2,
EPCAM, MLH1, MRE11, MSH2, MSH6, MUTYH, NBN,
PALB2, PIK3CA, PMS2, PTEN, RAD50, RAD51C,
RAD51D, STK11, TP53, XRCC2).

Methods
Patient population
From February 2019 to September 2020, peripheral
blood samples from 60 patients affected by PC were
analyzed for BRCA status at the Biosciences Laboratory
of the IRCCS Istituto Romagnolo per lo Studio dei
Tumori “Dino Amadori” - IRST (formerly Istituto
Scientifico Romagnolo per lo Studio e la Cura dei
Tumori - IRST - IRCCS). All patients had a histological
or cytological diagnosis of PC. Patients had been referred
for BRCA testing by Medical Oncology Units (IRST
IRCCS and other hospitals in the AUSL Romagna net-
work) or by the Genetics Unit of IRST IRCCS, where,
based on personal and familial history, they had been re-
ferred for counseling. Familial history refers to first- and
second-degree relatives. The study was approved by the
institutional review board (Ethics Committee IRST
IRCCS-AVR, 2207/2012) and conducted in accordance
with the Declaration of Helsinki. Patients have signed in-
formed consent before analysis.

Sample collection, DNA extraction and next-generation
sequencing analysis
Peripheral blood samples were collected and stored at −
80 °C. Genomic DNA was extracted from blood using
the QIAamp DNA Mini Kit (Qiagen, Hilden, Germany)
and quantified using Qubit fluorometer (Thermo Fisher
Scientific, Waltham, MA, USA) with Qubit dsDNA BR
Assay Kit. The Next-Generation Sequencing (NGS) ana-
lysis was performed using the enrichment protocol of
SOPHiA Hereditary Cancer Solution™ (HCS) v1.1 by
SOPHiA GENETICS (Saint Sulpice, Switzerland) which
analyzes 26 cancer predisposition genes (ABRAXAS1,
APC, ATM, BARD1, BRCA1, BRCA2, BRIP1, CDH1,
CHEK2, EPCAM, MLH1, MRE11, MSH2, MSH6,
MUTYH, NBN, PALB2, PIK3CA, PMS2, PTEN, RAD50,
RAD51C, RAD51D, STK11, TP53, XRCC2) and the
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pseudogene PMS2CL. Sequencing libraries were created
starting from 200 ng of genomic DNA, following the
HCS enrichment protocol for simultaneous sequencing
of 26 genes. The Multigene Panel Testing (MGP) targets
a total of 105 kb of the human genome and their flank-
ing regions (on average 25 bp upstream and downstream
each exon). DNA sequencing was performed with the
MiSeq® Reagent Kit v3 600 cycles (Illumina, San Diego,
CA, USA) on a MiSeq® platform (Illumina, San Diego,
CA, USA), configured 2 × 151 cycles, according to man-
ufacturer’s instructions.

Data analysis and variant filtering
Sequences were mapped to the human reference genome
GRCh37/hg19. Data output files (FASTQ) were uploaded
on the SOPHiA DDM® Platform v5.5.0 (SOPHiA GENETI
CS, Saint Sulpice, Switzerland) for analysis. Custom filters
were created to improve variant annotation and interpret-
ation according to the assay. These included: alternative
variant frequency higher than 30% (for detecting germline
variants), and a minimum read depth of 50x per variant.
The identified genetic variants were divided into five classes
according to the International Agency for Research on Can-
cer (IARC) recommendations [21]: Pathogenic (PV - class
5), Likely Pathogenic (LPV - class 4), Variant of Unknown
Significance (VUS - class 3), Likely Benign (LBV - class 2)
and Benign (BV - class 1). Additional categories according
to ClinVar interpretation including NA (Not Available) or
Other, Risk Factor, Drug Response, Protective and Conflict-
ing Interpretation, were merged with VUS. Variants auto-
matically annotated by the platform were manually checked
on the main human genomic databases. Variant classifica-
tion was performed using the main mutation databases:
BRCA Share™ (formerly Universal Mutation Database) [22],
Leiden Open Variation Database (LOVD) [23], BRCA Ex-
change [24], ClinVar [25], dbSNP [26], HCI Cancer Suscep-
tibility Genes Prior Probabilities of Pathogenicity [27],
Varsome [28], and were categorized according to the avail-
able clinical interpretation [29]. All variants classified as
PV/LPV were validated and confirmed through a second
NGS-based analysis. Variants not included in any of these
databases were classified according to the guidelines of the
American College of Medical Genetics and Genomics
(ACMG) [30]. This classification is based on variant charac-
teristics: variants producing premature stop codons or gross
deletions were considered pathogenic (PV-class 5) or likely-
pathogenic (LPV-class 4).

Results
Patient population
From February 2019 to September 2020, samples from
60 patients with PC (60% male, 40% female) were ana-
lyzed (Table 1). All patients were Caucasian. Median age
was 62 at diagnosis and 64 at testing. Personal history

details were available for 49 patients (81.7%): 10 patients
had a previous cancer diagnosis (5 breast, 2 colon, 1
prostate, 1 thyroid, 1 kidney, 1 non-Hodgkin lymph-
oma), while 39 had no previous history of cancer. Of the
32 patients (53.3%) with an available comprehensive
family history, 23 reported a familial history of cancer in
first- or second-degree relatives: 4 pancreas, 12 breast, 1
ovarian, 16 had at least a relative with another tumour
(6 cases of stomach cancer, 5 colon, 5 lung, 4 prostate, 2
uterus, 2 urothelial tract, 1 kidney, 1 esophagus, 1 head
and neck, 1 brain).

Genetic variants
PVs or LPVs were found in 8 out of 60 patients analyzed
(13.3%). VUS were reported in 15 other patients (25%),
while in 37 patients (61.7%) no variants were found
(Fig. 1). Notably, one patient had 1 PV (in BRCA2) and
2 VUS (in ATM and APC); 5 other patients had 2 VUS
in 2 different genes; one patient had 2 VUS in the same

Table 1 Patient population characteristics

n %

Patients 60 100

Male 36 60

Female 24 40

Age at diagnosis (years)

Median 62

Range 43–81

Age at testing (years)

Median 64

Range 43–81

Personal history

Available 49 81.7

Other cancera 10 20.4

Breast 5b

Ovarian 0

Other 6

No other cancer 39 79.6

Not available 11 18.3

Family historyc

Available 32 53.3

Cancera 23 71.9

Pancreatic 4

Breast 12

Ovarian 1

Other 16

No cancer 9 28.1

Not available 28 46.7
a some patients have history of ≥2 cancers; b 5 + 1 in situ; c first-grade and
second-grade relatives
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gene (ATM). Among the PVs and LPVs, 3 were found in
BRCA2, 2 in ATM, 1 each in BRCA1, PALB2 and
RAD50 (Fig. 2a and Table 2). None of the identified PVs
or LPVs were found in more than one patient. Five sin-
gle nucleotide variants, 2 deletions and 1 insertion have
been found. Among the 23 VUS reported, 5 were
detected in ATM, 3 each in BRCA2, APC, CHEK2 and
PALB2, 2 each in BARD1 and MSH6, 1 each in BRIP1
and MUTYH (Fig. 2b and Table 3). Only one mutation
(c.2870A > G in APC) was found more than once (2

patients). Nineteen missense mutations, 2 copy number
variations and 2 intronic variants were found. Of the 8
patients with a PV or LPV, only one had a previous his-
tory of cancer: a BRCA1 mutation carrier, diagnosed
with PC at the age of 69, had two triple-negative breast
cancers (TNBCs), at 42 and 55 years. Four of the 8 pa-
tients had a familial history of cancer (none for PC;
Table 2). Among the 15 patients with VUS, 5 had a pre-
vious personal history of cancer, and 5 had a familial his-
tory, of whom only one for PC (Table 3). The pedigrees
of two patients harbouring a pathogenic BRCA mutation
are shown in Fig. 3: a female patient with a BRCA1 mu-
tation (c.5468-1G > A) and a male patient with a BRCA2
mutation (c.6039del). The former, who was diagnosed
with PC at the age of 69, had a history of 2 TNBCs: the
first when she was 42 and the second (contralateral)
when she was 55. Her family history included one case
of PC, one breast cancer and one endometrial cancer;
her daughter, unaffected, carries the same BRCA1 muta-
tion. In the second case, the patient was diagnosed with
PC at the age of 63, and had no previous personal his-
tory of cancer. Of note, his daughter, carrying the same
BRCA2 mutation, was diagnosed with TNBC when she
was 41, and his family history included also one case of
gastric cancer, one lung cancer and one brain cancer.

Analysis by medical history
We then analyzed the incidence of mutations based on
medical history. Of 10 patients with a personal history of
cancer, one had a PV, 5 VUS and 4 no mutations; in 50

Fig. 1 Percentage of patients with pathogenic or likely pathogenic
mutation (positive), variants of uncertain significance (VUS) or no
mutations (negative)

Fig. 2 a Gene distribution of pathogenic and likely pathogenic mutations identified. b Gene distribution of variants of uncertain
significance identified
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patients with negative or unknown history, 7 had PVs or
LPVs, 10 VUS and 33 no mutations. Of 23 patients with
a familial history of cancer, 4 had a PV or LPV, 5 VUS
and 14 no mutations; in 37 patients with negative or un-
known familial history, 4 had a PV or LPV, 10 VUS and
23 no mutations (Table 4).

Discussion
The rate of BRCA mutations in our case series (3
BRCA2, 1 BRCA1: total 6.67%) as well as the ratio be-
tween the two genes are consistent with other reports
[10]. The number of patients with a familial history of
PC (4/32, 12.5%) is also consistent with other reports
[10]. While the rate of a positive history for breast can-
cer was as expected (5/49 for personal history, 12/32 for
familial history), a remarkable finding in our case series
is the rarity of ovarian cancer, a tumor often related to
BRCA mutations: only one case reported a familial his-
tory of ovarian cancer, whereas none of the patients had
had a previous diagnosis of this disease. Similar consid-
erations emerge from the two pedigrees shown in Fig. 3:
in both cases there was a history of TNBC, a tumor
often associated with a BRCA mutation, especially at a
younger age (the same patient carrying a BRCA1 muta-
tion, the patient’s daughter for BRCA2 mutation); the
BRCA1 mutation carrier had an aunt with PC, and none
of the two patients had relatives with a history of ovarian
cancer.
In addition to BRCA, we found pathogenic or likely

pathogenic mutations in genes involved in HR in an-
other 4 patients (2 ATM, 1 PALB2, 1 RAD50), making a
total of 13.3% of patients carrying a pathogenic muta-
tion, that is still consistent with other reports [31].

Whilst the role of PALB2 and ATM is fairly well estab-
lished in PC [9, 32–34], RAD50 is not among the genes
generally associated with this tumour. We detected a
likely pathogenic variant (c.1636-1G > A) in RAD50, in a
patient whose family history was unremarkable. The
RAD50 protein is a member of the structural mainten-
ance of chromosome protein family, and is part of a
complex, together with MRE11 and NBS1, involved in
DNA double-strand break repair [35]. RAD50 mutations
have previously been reported in PC, both at germline
and somatic level, suggesting a possible role of RAD50
as a PC predisposition gene [36, 37]. At the same time,
RAD50 protein has been found upregulated in serum of
patients affected by PC, and a possible negative feedback
mechanism has been proposed [38].
A potential limitation of our study is the lack of

CDKN2A in the gene panel. This gene is frequently mu-
tated in familial PC and is associated with the familial
atypical mole and melanoma syndrome [9]. Indeed, the
kit we used, SOPHiA HCS, is more focused on heredi-
tary breast and ovarian cancer, Lynch syndrome and
intestinal polyposis syndromes, that do not include
CDKN2A among the most relevant genes. Nevertheless,
CDKN2A is not directly involved in DDR; rather, its
main products, p16INK4a and p14ARF, are tumor sup-
pressors involved in cell cycle regulation. Indeed,
p16INK4a interacts with CDK4 and CDK6, inhibiting
their interaction with cyclin D and pRb phosphorylation,
thus preventing transition from G1 to S phase; p14ARF
induces cell cycle arrest by activating p53 through the
inhibition of its negative regulator MDM2 [39]. There-
fore, given that our aim was to investigate DDR-related
genes rather than genes merely involved in cancer

Table 2 List of pathogenic and likely pathogenic variants identified

Gene Transcript cDNA change Protein change Variant
Type

Consequence IARC Sex Age at
diagnosis

Personal
history (age)

Familial history (cases)

BRCA1
NM_007294

c.5468-1G > A p.(?) SNV Splicing C5 F 69 breast
(42, 55)

pancreas (1), breast (1),
uterus (1)

BRCA2
NM_000059

c.6039del p.(Val2014TyrfsTer26) del Frameshift C5 M 63 none breast (1), stomach (1),
lung (1), brain (1)

BRCA2
NM_000059

c.8364G > A c.8364G > A SNV Missense C5 M 72 none NA

BRCA2
NM_000059

c.1532_133insT (p.Pro512ThrfsTer2) ins Frameshift C5 M 61 none lung (1), prostate (1)

ATM
NM_000051

c.3275C > A p.(Ser1092*) SNV Nonsense C5 M 44 NA NA

ATM
NM_000051

c.4236 + 2 T > A p.(?) SNV Splicing C4 F 56 none none

PALB2
NM_024675

c.2167_2168del p.(Met723Valfs*21) del Frameshift C5 F 44 none breast (1), colon (1),
head and neck (1)

RAD50
NM_005732

c.1636-1G > A p.? SNV Splicing C4 M 53 none none

M Male, F Female, IARC International Agency for Research on Cancer classification (C5: pathogenic; C4: likely pathogenic), SNV Single Nucleotide Variation, NA
Not available
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susceptibility syndromes, we considered the SOPHiA
HCS as a valid tool for this task.
A noteworthy consideration comes from the analysis

based on medical history (Table 4). Had we limited our

analysis to patients with a personal or familial history of
cancer, 4 pathogenic or likely pathogenic mutations
would have been reported, but 4 more mutations would
have been missed (in addition to 13 VUS). Furthermore,

Table 3 List of variants of uncertain significance identified

Gene Transcript cDNA change Protein
change

Variant
type

Consequence Sex Age at
diagnosis

Personal
history (age)

Familial
history (cases)

BRCA2
NM_000059

c.9613_
9614delinsCT

p.(Ala3205Leu) delins Missense F 62 none none

BRCA2
NM_000059

c.1705C > A p.(Gln569Lys) SNV Missense M 61 none NA

BRCA2
NM_000059

c.476 T > C p.(Val159Ala) SNV Missense M 62 kidney (62) lung (1), kidney (1),
stomach (1),
esophagus (1)

APC
NM_000038

c.1450G > C p.(Glu484Gln) SNV Missense M 63 none breast (1), stomach (1),
lung (1), brain (1)

APC
NM_000038

c.2870A > G p.(Lys957Arg) SNV Missense M 61 none none

APC
NM_000038

c.2870A > G p.(Lys957Arg) SNV Missense F 64 breast (40),
thyroid (53, 59)

colon (1), stomach (1)

ATM
NM_000051

c.5975A > C p.(Lys1992Thr) SNV Missense M 63 none breast (1), stomach (1),
lung (1), brain (1)

ATM
NM_000051

c.1464G > T p.(Trp488Cys) SNV Missense M 66 none none

ATM
NM_000051

c.8734A > G p.(Arg2912Gly) SNV Missense M 58 none none

ATM
NM_000051

c.8671 + 17A > G p.(?) SNV Intronic M 71 NA NA

ATM
NM_000051

c.2376 + 16del p.(?) SNV Intronic M 71 NA NA

BARD1
NM_000465

c.2251C > T p.(Arg751Trp) SNV Missense M 66 none none

BARD1
NM_000465

c.2027A > G p.(Tyr676Cys) SNV Missense M 61 none NA

BRIP1
NM_032043

c.845C > G p.(Thr282Ser) SNV Missense M 45 none none

CHEK2
NM_007194

c.793_846del p. (?) CNVs Large deletion F 79 colon (68),
breast (71)

breast (1)

CHEK2
NM_007194

c.500G > A P. (Gly167Glu) SNV Missense M 61 none none

CHEK2
NM_007194

c.118A > G p.(Ser40Gly) SNV Missense F 75 none NA

MSH6
NM_000179

c.1660C > T p. (Arg554Cys) SNV Missense F 62 none none

MSH6
NM_000179

c.3515G > T p. (Arg1172Ile) SNV Missense F 67 breast
(40, 47, 61)

NA

MUTYH
NM_001128425

c.1483C > T p.(Arg495Cys) SNV Missense M 60 prostate (49) breast (1)

PALB2
NM_024675

c.109_211dup p. (?) CNVs Large duplication M 62 kidney (62) lung (1), kidney (1),
stomach (1),
esophagus (1)

PALB2
NM_024675

c.2453 T > C p.(Phe818Ser) SNV Missense M 60 prostate (49) breast (1)

PALB2
NM_024675

c. 3296C > T p. Thr1099Met SNV Missense M 58 none pancreas (1),
prostate (1)

M Male, F Female, SNV Single Nucleotide Variation, CNVs Copy Number Variations, NA Not available
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as seen in our series, familial history is often incomplete
in clinical records, for several reasons such as i) difficulty
in its retrieval and ii) genetic testing often performed in
different centers with respect to the oncology clinics

where patients undergo treatment. This bias may result
in the mistake of considering a lacking history as a nega-
tive one, thus excluding patients with a potential positive
history from genetic testing. This raises attention on the

Fig. 3 Pedigrees of a female patient with BRCA1 mutation c.5468-1G > A (a) and a male patient with BRCA2 mutation c.6039del (b) The probands
are indicated by arrowheads. Symbols: square, male; circle, female; black, affected by PC; gray, affected by cancer other than PC; slashed symbol,
deceased. Number above the symbols indicate age at death or last follow-up. Cancer type and age of onset are indicated below the symbols.
TNBC, triple-negative breast cancer
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likely underestimation of the ratio of mutations in BRCA
and other genes if patients’ selection for testing is based
solely on personal and familial history.
Another important consideration is our extension of

testing to other DDR-related genes in addition to BRCA:
in our case series, we detected 4 BRCA mutations (3
BRCA2, 1 BRCA1) and 4 mutations in other genes (2
ATM, 1 PALB2, 1 RAD50). Indeed, the role of genes
other than BRCA in cancer susceptibility inheritance is
well established, and PC is part of the clinical spectrum
in several syndromes (e.g. Lynch syndrome from
mismatch repair (MMR) gene mutations, Peutz-Jeghers
syndrome from STK11 mutations) [9]. Moreover, our
knowledge about other cancers (e.g., ovary, prostate) un-
derscores the possible therapeutic implications of a
broader range of DDR gene mutations [15–20], and this
concept has recently been extended to PC [40, 41]. This
highlights the need for genetic screening beyond BRCA:
in our opinion it is mandatory to take advantage of a
gene panel that cannot exclude essential genes such as
ATM, PALB2, RAD50, STK11 and MMR genes [9, 31, 40].
The technical advancements and the more affordable
costs resulting from the application of high-throughput
methods (NGS) make such an approach feasible. In the
near future, it is likely that even more alterations will be
investigated, since about 450 proteins are involved in
DDR [7], many of which are druggable targets currently
under investigation.
In PC DDR alterations are common both at germinal

and somatic level [41]. A comprehensive genomic ana-
lysis (whole-genome sequencing and copy number vari-
ation) of 100 cases of PC resulted in a classification into
4 subtypes according to chromosomal structural vari-
ation: stable, locally rearranged, scattered and unstable
[42]. The unstable subtype, accounting for 14% of cases,
exhibited a large number of structural variation events,
and was associated with DDR defects (including, but not
limited to, BRCA1/2, PALB2, ATM), along with platinum
responsiveness [42]. Indeed, while in some cancers

BRCA mutations appear to be biologically neutral, in PC
they have a paramount phenotypic importance and, if
present, they emerge as an indispensable founding event
[43]. Based on previous considerations, we can speculate
that this is also true for other DDR alterations.
Given the above premises, the identification of all

mutation carriers is critical for both risk reduction
and therapeutic strategy. With regard to risk reduc-
tion, the identification of all mutation carriers would
allow for a tailored follow-up of patients (aimed at
the early detection of secondary tumours) and would
facilitate cascade testing and screening for PC and
other gene-related cancers in all at risk family mem-
bers. As for therapeutic strategy, knowledge of a
BRCA or PALB2 mutation would orient first-line
treatment towards a platinum-containing regimen,
given the known sensitivity of BRCA- and PALB2-mu-
tated PC to platinum-based therapy [12, 13, 44]; fur-
thermore, disease control after a platinum-containing
regimen would enable patients to undergo mainten-
ance with olaparib [14]. In addition to the opportun-
ities coming from the increasing number of clinical
trials focusing on tumours with DDR defects [41],
knowledge of a mutation in this pathway would give
patients a potential therapeutic option that would
otherwise be lost if overly restrictive eligibility criteria
(i.e. based on familial history) excluded such mutated
cases from testing or if the analysis were limited to
BRCA1 and BRCA2. Indeed, up to 25% of PCs
harbour actionable molecular alterations, the majority
of which are in the DDR pathway [45]. Together with
the first approval of a targeted treatment (olaparib in
maintenance therapy of BRCA-mutated PC) [14], new
approaches, including drug combinations, are being
evaluated to increase the efficacy of available treat-
ments, increase the number of eligible patients, and
counteract resistance mechanisms. Many of these ap-
proaches aim to induce or maintain HR defectiveness,
also by inhibiting targets in other pathways, such as
PI3K, MEK, WEE1 [41].

Conclusions
In conclusion, given the potential therapeutic and
family prevention implications outlined above, we
strongly endorse genetic testing for all patients with a
confirmed diagnosis of PC, as already suggested by
some international guidelines [46]. This would trans-
late in a change of paradigm: while the first step for
BRCA analysis used to be genetic counseling which,
on the basis of family history, advised testing or not,
the new approach would offer genetic testing as soon
as received the diagnosis of PC (e.g. by the oncolo-
gist) and subsequent genetic counseling only in the
event of positive (or uncertain) results, or for patients

Table 4 Analysis by medical history. Mutations are reported
according to personal and familial history for cancer

Mutations

C4/C5 VUS no

Personal history

Yes 1 5 4

No/unknown 7 10 33

Familial history

Yes 4 5 14

No/unknown 4 10 23

C4/C5 Likely pathogenic (C4) or pathogenic (C5) according to the IARC
classification, VUS Variants of uncertain significance
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with a family history of cancer. Furthermore, our re-
sults also indicate that genetic testing should not
solely be based on BRCA1 and BRCA2, but rather on
a comprehensive gene panel including at least ATM,
PALB2, RAD50, STK11 and MMR genes.
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