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Key Points

• Low-cost transcrip-
tional diagnostics can
accurately classify lym-
phomas in LMICs.

•Machine learning algo-
rithms to classify gene
expression could trans-
form the diagnosis of
lymphomas in LMICs.

Inadequate diagnostics compromise cancer care across lower- and middle-income countries

(LMICs). We hypothesized that an inexpensive gene expression assay using paraffin-

embedded biopsy specimens from LMICs could distinguish lymphoma subtypes without

pathologist input. We reviewed all biopsy specimens obtained at the Instituto de

Canceroloǵıa y Hospital Dr. Bernardo Del Valle in Guatemala City between 2006

and 2018 for suspicion of lymphoma. Diagnoses were established based on theWorld Health

Organization classification and then binned into 9 categories: nonmalignant, aggressive

B-cell, diffuse large B-cell, follicular, Hodgkin, mantle cell, marginal zone, natural

killer/T-cell, or mature T-cell lymphoma. We established a chemical ligation probe-based

assay (CLPA) that quantifies expression of 37 genes by capillary electrophoresis with

reagent/consumable cost of approximately $10/sample. To assign bins based on gene

expression, 13 models were evaluated as candidate base learners, and class probabilities

from each model were then used as predictors in an extreme gradient boosting super

learner. Cases with call probabilities , 60% were classified as indeterminate. Four (2%) of

194 biopsy specimens in storage ,3 years experienced assay failure. Diagnostic samples

were divided into 70% (n 5 397) training and 30% (n 5 163) validation cohorts. Overall

accuracy for the validation cohort was 86% (95% confidence interval [CI]: 80%-91%). After

excluding 28 (17%) indeterminate calls, accuracy increased to 94% (95% CI: 89%-97%).

Concordance was 97% for a set of high-probability calls (n 5 37) assayed by CLPA in

both the United States and Guatemala. Accuracy for a cohort of relapsed/refractory biopsy

specimens (n 5 39) was 79% and 88%, respectively, after excluding indeterminate cases.

Machine-learning analysis of gene expression accurately classifies paraffin-embedded

lymphoma biopsy specimens and could transform diagnosis in LMICs.

Introduction

Accurate diagnosis is an essential component of optimal cancer care.1 In high-income countries (HICs),
this typically requires a pathologist to perform and review histology and immunohistochemistry (IHC).
The World Health Organization (WHO) includes histopathology with IHC among the essential in vitro
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diagnostics for health care facilities with clinical laboratories.2 Yet, most
patients in low- and middle-income countries (LMICs) do not have
access because of both high cost and a dearth of pathologists.3,4

Many subtypes of lymphoma can be effectively treated with avail-
able therapies,5 including chemotherapies, monoclonal antibodies, or
small molecule–targeted agents. As a result, there is a pressing need
for inexpensive, accurate, and operator-independent diagnostics to
guide therapeutic selection for patients with lymphoma. In many
ways, this mimics the situation within LMICs in the late 1990s on the
discovery of highly active antiretroviral therapy for HIV. Deployment
of highly active antiretroviral therapy in LMICs absolutely required
the validation and deployment of point-of-care diagnostics that
were inexpensive and operator independent.6

Advancements in transcriptional profiling now allow for rapid
assessment of the expression of multiple genes using formalin-
fixed, paraffin-embedded (FFPE) samples.7,8 Several reports have
identified gene signatures that can facilitate binary distinctions
between subtypes of lymphoma (eg, Burkitt lymphoma vs diffuse
large B-cell lymphoma [DLBCL]).9-12 These distinctions still require
prior knowledge based on standard pathology to narrow between
preselected comparators. We hypothesized that a single transcrip-
tional assay could bin biopsy specimens obtained for suspicion of
lymphoma into treatment-driven groups without prior knowledge
and thereby decrease the need for pathologist review.

The Instituto de Cancerologı́a y Hospital Dr. Bernardo Del Valle
(INCAN) in Guatemala is the country’s only public cancer hospital.
It serves a large urban population and rural indigenous Mayan
communities. Approximately 100 patients present to INCAN with
findings suspicious for lymphoma annually. Limited IHC is available
for an out-of-pocket cost of approximately $450, which is beyond
the means of most patients. As a result, biopsy specimens are
commonly assessed solely by hematoxylin and eosin (H&E) staining,
resulting in ambiguous diagnoses (eg, suspect large cell lymphoma
or lymphoma-not otherwise specified [NOS]).

To address the feasibility of a transcriptional diagnostic for
lymphoma, we collected FFPE biopsy specimens obtained at
INCAN that were performed because of clinical suspicion of
lymphoma over a 13-year period. We established diagnoses
according to the WHO classification using standard-of-care
pathology assessment.5 We then designed an assay with reagent
and consumable costs of approximately $10 per sample to assess
the expression of 37 genes and applied a machine learning–based
platform to bin diagnoses. We show high accuracy for this
approach across diagnostic subsets in validation cohorts.

Methods

Case selection

This study was approved by the institutional review boards of the
Dana-Farber Cancer Institute and Stanford University and the
ethics committee of La Liga Nacional Contra el Cáncer. Research
was conducted in accordance with the Declaration of Helsinki. We
reviewed medical records to identify all biopsy specimens collected
at INCAN between 2006 and 2018 that were performed because
of clinical suspicion for lymphoma (supplemental Table 1). This
included 3015 tissue blocks from 1836 individual patients. To
preserve tissue for future clinical needs, core biopsy specimens and
cases with blocks ,1 cm3 were excluded. Clinical data were

collected by manual review of paper charts. Most biopsy specimens
were from lymph nodes or secondary lymphoid tissue, but additional
extranodal sites (eg, palate, testicle, eyelid, femur, thyroid, skin,
mesentery, tongue, breast, lung) were included.

WHO guidelines–based pathology diagnosis

One-half of each FFPE block was shipped to Stanford University
where H&E slides were generated from whole sections and
reviewed by 2 expert hematopathologists (O.S. and Y.N.).
Representative areas were selected, and 2 cores from each sample
were included for tissue microarray (TMA) construction, as
previously described.13 TMAs were sectioned at 4-mm thick-
ness and subjected to IHC per routine protocol on automated
immunostainers (Leica BOND-III, Leica Biosystems, Buffalo Grove,
IL or BenchMark ULTRA, Roche/Ventana Medical Systems, Tucson,
AZ). Epstein-Barr virus (EBV) was assessed by IHC for EBV-LMP1
and in situ hybridization for EBV-associated small RNAs by rou-
tine methods using the Ventana autostainer. Fluorescence in situ
hybridization assays were performed on TMA sections to detect
breakpoints in the MYC, BCL2, and BCL6 loci using 59/39 break-
apart probes (ZytoVision, Bremerhaven, Germany), as previously
described.14 All biopsy specimens were classified according to the
2016 WHO classification5 and then categorized into diagnostic
bins (supplemental Table 2).

To ensure that the TMAs would accurately represent large tissue
biopsy specimens, H&Es of each case were screened before the
incorporation into the TMA to ensure that representative tumor
areas were incorporated into the TMA. As a second validation,
80 cases (supplemental Table 3) were randomly selected using
a uniform distribution [0,1] and stratified sampling to proportionally
represent the 9 diagnostic bins and nondiagnostic categories. O.S.
and Y.S. were blinded to the original diagnosis. H&Es from these
cases were rereviewed after at least a 1-year washout period from
prior review. A differential diagnosis was generated, and selected
IHC stains were performed on whole sections.

Targeted expression profiling

Expression was quantified as previously described, with the addition
of unique buffers for extraction from FFPE tissue.15 Briefly, 6-mm
(multisite comparison) or 10-mm (training and validation sets)
scrolls from paraffin-embedded tissue were cut from the entire
tissue blocks without selecting for a minimum tumor percentage.
Scrolls were added to individual wells of a 96-well polymerase chain
reaction (PCR) reaction plate with 15 mL of 13 TE (10 mM Tris,
0.1 mM EDTA; pH 8.0), 50 mL of DxBuffer1 reaction buffer, 15 mL
of Lymphoma RUO Mix A, 15 mL of Lymphoma RUO Mix B, and
5 mL of DirectMix C, followed by ligation for 5 minutes at 55°C,
10 minutes at 80°C, and 165 minutes at 55°C. Following ligation,
5 mL of Directbeads was added, followed by 15-minute incubation
at 55°C.

Samples were placed on a magnetic plate and washed 3 times
with DirectWash buffer. All liquid was removed, and 5 mL of
DirectTaq and 5 mL of DxPrime were added. Samples were
transferred to a PCR thermal cycler for hot start at 2 minutes at
95°C, followed by 30 cycles of denaturation for 10 seconds at
95°C, annealing for 20 seconds at 61°C, and extension for 20
seconds at 72°C, followed by 4°C hold. GeneScan 600LIZ Size
Standard (0.5 mL) and 17.5 mL of formamide solution (Thermo
Fisher Scientific) were combined with 2 mL of PCR reaction to
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a capillary electrophoresis plate. Capillary electrophoresis was run
on an Applied Biosystems 3500 or SeqStudio Genetic Analyzer
(Thermo Fisher Scientific). Control genes LIGC (ligation control)
and PCRC (PCR control) were included in the assay. Two
ubiquitously expressed normalizer genes (ISY1 and WDR55) were
added to each reaction in each fluorescent channel. Probe
sequences are available from the authors on request.

Model generation and validation

RStudio version 1.1.463 with R version 3.6.1 was used for analysis.
Models were tuned and trained on a high-performance cluster. A
model stacking approach, in which a “super learner” is trained on
predicted class probabilities from several base learners, was used.
The Classification and Regression Training package was used to
select model training and validation sets. Normalized expression
value of each gene was calculated by subtracting the mean of the
log2 normalizer signals from the log2 signal of the response gene.
Normalizer values are calculated independently for each fluorescent
channel, and a floor of 25 was applied to all fragments. Diagnostic
samples were split into training (70%) and validation (30%) sets,
and their gene expression values were centered and scaled in the
training set using the preProcess option in the train function. The
createDataPartition function was used to maintain the ratio of
diagnoses between the training and validation sets. The multi-
ClassSummary and classProb options were selected in the
trainControl function. Parameters for 14 candidate models were
tuned on the training set using five repeats of 10-fold cross-
validation and a logarithmic loss performance metric (supplemental
Table 9). A grid search was used to tune models with 1 parameter.
For models with 2 or more tuning parameters, an initial random
search of at least 150 parameter settings was followed by a focused
search over a smaller grid.

Base learners were selected by considering accuracy, sensitivity,
specificity, and negative/positive predictive values for each di-
agnostic class in the validation set. Probabilities from these models
were used as predictors for the extreme gradient booster super
learner model, which determined the final class label for the first-
stage model. Additional cohorts of relapsed samples and excluded
samples were used as test sets.

Multisite comparison

Fifty-nine cases were randomly selected from the validation cohort
in proportion to the incidence of the lymphoma subtype in the
original cohort. Consecutive 6-mm sections were obtained from
each block of tissue and either stayed at INCAN for testing or were
shipped to DxTerity for testing. Technicians employed at each site
ran the assay blinded. If a sample failed quality control on the first
run, a second cut was used.

Results

WHO-based tumor classification

We assayed 670 banked FFPE samples from INCAN (Figure 1),
including 650 that were collected because of clinical suspicion of
lymphoma between 2006 and 2018 and 20 of normal tonsillar tissue
that served as additional benign controls. Summarized clinical data
for the 643 individual patients with suspected lymphoma is included
in supplemental Table 4. Individual patient characteristics, diagnoses,
and frontline treatments for the validation cohort are shown in

supplemental Table 5. Biopsies were assayed by H&E on whole
sections and then IHC (.30000 individual stain assessments) on
TMAs (supplemental Figure 1A) to establish a final diagnosis
according to the 2016 WHO classification.5

To ensure that diagnosis using TMA of selected regions was
adequate, we randomly sampled 80 cases proportional to the
frequency of lymphoma subtypes in our cohort. Additional whole
sections were cut from each case and subjected to repeat
evaluation by IHC in a blinded manner. Two cases were excluded
because of insufficient remaining tissue for IHC of whole sections.
Diagnoses from the TMA and whole sections were concordant in
77 of 78 cases (98.7%) (supplemental Table 3), with a single
diagnosis changed from peripheral T-cell lymphoma-NOS (PTCL-
NOS) on the TMA to nodular lymphocyte predominant Hodgkin
lymphoma (HL) after rare large CD201 cells were noted on IHC of
the whole section.

We then binned diagnoses into 9 therapeutically driven categories
(Figure 1; supplemental Table 2A): (1) aggressive B-cell lymphoma
including Burkitt lymphoma and B-lymphoblastic lymphoma; (2)
DLBCL including high-grade B-cell lymphomas; (3) HL including
nodular lymphocyte predominant HL; (4) marginal zone lymphoma
(MZL); (5) mantle cell lymphoma (MCL); (6) follicular lymphoma
(FL); (7) natural killer/T-cell lymphoma (NKTCL); (8) T-cell
lymphoma (TCL) including cutaneous and peripheral TCL subtypes;
and (9) nonmalignant including cases that lacked evidence of
lymphoma or other malignancy.

Original diagnoses from INCAN were also binned into these
categories. For 244 (38%; 95% confidence interval [CI]; 34%-
42%) of 643 unique patients with biopsy specimens evaluated at
both centers, the diagnoses at INCAN and Stanford resulted in
similar classification into 1 of the 9 groups (supplemental
Table 6). In the remaining cases, the diagnoses either resulted
in separate grouping or diagnosis at INCAN was incomplete (eg,
lymphoma NOS).

Lymphoma classification based on gene expression

We established a chemical ligation probe-based assay (CLPA)
that quantifies the expression of 37 genes plus 2 controls from
FFPE biopsy specimens using standard capillary electrophoresis
equipment (supplemental Figure 1B). The genes were selected
from previous publications based on (1) lineage- or subtype-specific
expression, (2) prognostic value, or (3) therapeutic relevance
(supplemental Table 7). We performed the CLPA on scrolls cut
from each biopsy specimen. Of the 670, 60 (8.9%) failed quality
control metrics based on expression of control genes (Figure 1).
Older age of tissue biopsy specimen was associated with sig-
nificantly higher failure rate, with only 4 (2%) of 194 biopsy
specimens from 2015 or later failing quality control (supplemen-
tal Table 8). After averaging 11 duplicate runs of nonmalignant
samples, we established a cohort of 599 samples from 597
patients (Figure 1). The 560 samples obtained before treat-
ment were divided 70%:30% into training and validation cohorts
(Figure 1).

Distributions of gene expression for each gene and correlations
between genes are included in supplemental Figure 2. Unsuper-
vised clustering of 560 cases based on expression of the 37 genes
demonstrated notable clustering (Figure 2), in some cases because
of the expression of very few genes. For example, expression of
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CCND1 alone clustered nearly all cases of MCL, whereas
expression of EBER1, NCAM1, CD244, and TBX21 clustered
cases of NKTCL (Figure 2).

Thirteen models were evaluated as candidate base learners, and
the class probabilities from each model were then used as
predictors in an extreme gradient boosting super learner to assign
class labels for each sample (Figure 3; supplemental Table 9).
After training on 397 cases, the validation cohort of 163 cases
was assessed and compared with the IHC-based diagnosis.
Overall accuracy for the assay was 86% (140 of 163), with
$90% accuracy for DLBCL, HL, MCL, and NKTCL (Figure 4A;
supplemental Table 10). There were no significant differences in
classification accuracy (excluding samples that failed quality
control) based on biopsy specimen age (supplemental Table 11A) or

between nodal/secondary lymphoid tissue and extranodal biopsy
specimens (supplemental Table 11B).

We noted that 135 of 163 (83%) calls from the validation set had
.90% confidence probability (Figure 4B). Thus, we chose a conser-
vative cutoff probability value of $60% and reclassified all cases
with ,60% probability value as indeterminate. Of the remaining
136, 128 (94%) were classified correctly (Figure 4A; supple-
mental Table 10). Among the 8 mischaracterized cases with
probability$60% were as follows: n5 1 called DLBCL by CLPA
but B-lymphoblastic lymphoma by IHC, n 5 2 called FL by CLPA
but DLBCL by IHC, n 5 2 called DLBCL by CLPA but FL by IHC,
n 5 2 called HL by CLPA but anaplastic large cell lymphoma or
PTCL-NOS by IHC, and n 5 1 called NKTCL by CLPA but PTCL-
NOS by IHC (supplemental Table 12). Rereview of 1 case called

Failed QC
N=60 (8.9%)

HL n=25
DLBCL n=14

Nonmalignant n=8
MZL n=4

NKTCL n=4
MCL n=3
FL n=1

TCL n=1

Model Testing Relapse
N=39

Aggressive BCL n=1
DLBCL n=19

FL n=6
HL n=6

MCL n=5
MZL n=1

NKTCL n=1

2 Patients with Both a Diagnostic
and a Relapse Sample

FL grade 1-2 -> FL grade 1-2
FL grade 3 -> DLBCL NOS22 Duplicate

Non-malignant Samples
(11 Patients) Averaged

670 Samples 610 Samples 599 Samples

560 Patients

Model Training Diagnosis
N=397

Aggressive BCL n=7
DLBCL n=163

FL n=31
HL n=50

MCL n=40
MZL n=13

NKTCL n=35
TCL n=28

Nonmalignant n=30

Model Validation
Diagnosis N=163

Aggressive BCL n=2
DLBCL n=69

FL n=13
HL n=21

MCL n=16
MZL n=5

NKTCL n=14
TCL n=11

Nonmalignant n=12

Figure 1. Schema of samples from INCAN. Of 670 FFPE biopsy specimens, 60 failed quality control based on expression of housekeeping genes. Among the

remaining 610, 11 patients had 2 samples each, and the results from each pair were averaged. The remaining 599 samples (597 patients) consisted of 560 obtained

before therapy and 39 after relapse. Two patients had biopsy specimens both before therapy and after relapse; 1 had FL grade 1 to 2 at both time points, and 1 had FL

grade 3A before treatment and DLBCL-not otherwise specified (NOS) at relapse. Untreated biopsy specimens were divided into training (n 5 397) and validation/testing

(n 5 163) cohorts.

Diagnosis

Diagnosis

NFKBIA
GATA3
TNFSR8
DLEU1
SOX8
ALK
EBER1
NCAM1
CD244
TBX21
MKI67
MYC
IRF4
IGHM
FOXP1
TNFRSF13B
FCER2
CD5
ICOS
MAL
BCL2A1
CD44
STAT3
CCND1
CRBN
ID3
TCF3
BCL2
REL
MS4A1
PAX5
BMP7
LMO2
NEK6
MYBL1
BCL6
MME

3

2

1

0

-1

-2

-3

Agg BCL

DLBCL

FL

HL

MCL

MZL

NKTCL

Nonmal

TCL

Figure 2. Unsupervised hierarchical clustering

using Spearman correlation with complete link-

age of the 560 biopsy specimens obtained before

therapy based on normalized gene expression

across the 37 genes in the CLPA. Diagnosis is

according to IHC-based classification. Agg BCL, ag-

gressive B-cell lymphoma; Nonmal, nonmalignant.
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PTCL-NOS by IHC but HL by CLPA showed rare CD301, CD151

(subset), PAX51 (variable), MUM11, EBV-negative cells consistent
with classical HL, indicating that the CLPA made the accurate call.
There were no significant changes on rereview of the remaining cases.

Approximately 7.5% of the biopsies performed for suspicion of
lymphoma at INCAN were categorized as nonmalignant by IHC
(Figure 1). Many of these patients were incorrectly diagnosed with
lymphoma at INCAN and treated with cytotoxic agents. In contrast, the
CLPA called all nonmalignant cases either nonmalignant or inde-
terminate (Figure 4A). At the same time, only 1 of 234 samples
classified as malignant lymphoma by standard pathology in the 3
validation cohorts was classified with high confidence as nonmalignant
by CLPA.

Analyses to validate assay performance

To test the reliability of the assay across independent laboratories,
we selected 59 cases from the validation cohort, including cases
with ,60% or $60% probability calls. Consecutive sections were
used for CLPA testing at DxTerity in the United States and by
INCAN laboratory staff in Guatemala City. Of the 59, 58 cases
passed quality control at both sites, and the remaining case failed at
both sites. Thirty-seven of 58 cases reached 60% diagnostic
probability at both sites, and the diagnosis at both sites was
concordant in 36 of 37 cases (97%). The single discordant call was
called FL at INCAN and DLBCL at DxTerity. In 9 of 58 cases, only 1
site reached the 60% probability threshold (5 at INCAN and 4 at
DxTerity); 8 of the 9 were concordant with IHC-based diagnosis.
The remaining 12 cases were indeterminate at both sites.

As an additional test cohort, we assayed the 39 cases from patients
with relapsed disease. Two of the biopsy specimens were from
patients included in the initial 560 cases (both in the training

cohort): 1 with the same diagnosis and 1 who relapsed with
DLCBL after presenting with FL (Figure 1). Overall accuracy of
CLPA-based classification compared with IHC was 79% (95%
CI: 64%-91%). After excluding the 5 cases with probability
values ,0.6, overall accuracy increased to 88% (95% CI: 73%-
97%; supplemental Table 13).

Our initial review of cases suspected to be lymphoma included 32 cases
with diagnoses that were not included within the 9 bins (supplemental
Table 2B). These included chronic lymphocytic leukemia/small lympho-
cytic lymphoma (CLL/SLL; n 5 14), plasma cell neoplasms (n 5 7),
T-lymphoblastic lymphoma (n 5 4), blastic plasmacytoid dendritic cell
neoplasm (n5 1), carcinoma (n5 3), plasmablastic lymphoma (n5 1),
and neuroectodermal tumor (n5 1).We hypothesized that these biopsy
specimens would be classified as indeterminate by the CLPA. Indeed
25 of 32 (78%) cases had probability,0.6 andwere correctly classified
as indeterminate. Of the 7 cases with probability .0.6, n 5 2 were
called DLBCL by CLPA but CLL/SLL by IHC, n5 1 was called HL by
CLPA and plasmablastic lymphoma by IHC, n 5 1 was called non-
malignant but CLL/SLL by IHC, and n5 1was called TCL byCLPA but
T-lymphoblastic lymphoma by IHC.

Finally, we performed a cost analysis based on our experience
purchasing supplies in Guatemala. The cost of manufacturing
assay-specific reagents is approximately $5 per sample. Running
95 samples per week with appropriate controls resulted in a cost of
$6.76 per sample for reagents plus consumables (supplemental
Table 14). Cost increases with decreasing test volume but does not
exceed $15 per sample for 16 tests per week.

Discussion

The lack of access to adequate pathology services is a critical
roadblock that limits improvements in health care across LMICs.16
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Several groups from the United States and Europe have established
partnerships with medical centers in LMICs; these typically use
telemedicine, build critical infrastructure, and enhance the training
of local clinicians. Although such efforts can markedly increase
capacity at partner sites, they fail to improve outcomes for most
patients across the world.17

We were inspired by the remarkable success in treatment of
chronic myelogenous leukemia orchestrated by the Max Foundation
(https://www.themaxfoundation.org/). In collaboration with pharma-
ceutical companies, the Max Foundation has extended approxi-
mately 10 million doses of imatinib and other high-cost drugs to
patients who have a confirmed BCR-ABL rearrangement across .
70 countries. Those diagnoses were enabled by the development of
a low-cost BCR-ABL assay on the GeneXpert platform,18 which is

widely available across LMICs. We similarly designed our assay to
use equipment that is available in many LMICs; based on an informal
survey of potential partners in Latin America, most large centers
have access to a PCR machine and capillary electrophoresis
instruments, either within their hospital/university or by collaborating
with private laboratories.

We hypothesized that a more extensive assay that quantifies
expression across a larger gene set could classify lymphomas into
treatment-directed bins. Our findings indicate that, even in complex
diagnostic settings like lymphoma, gene expression–based testing
can be both more accurate and less expensive than currently
available strategies in LMICs. The CLPA accurately classified
biopsy specimens, including FFPE blocks that were stored at room
temperature in a tropical climate for more than 10 years into 9 bins.
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Figure 4. CLPA accuracy. (A) Predicted calls among each diagnostic bin. Cases predicted within diagnostic bins are separated by “/” with the first number representing calls

that met the $60% probability threshold and the number following the “/” representing cases that did not meet the $60% probability threshold. Overall Accuracy includes all
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Additional metrics are in supplemental Table 9.
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Assay failure among biopsy specimens from 2015 or later (ie,
,3 years before CLPA testing) was only 2%.

The CLPA assay was performed directly from FFPE sections and
did not require prereview to ensure high tumor cell content. In
addition to binning lymphomas, the CLPA quantified the expression
of specific transcripts that could guide targeted therapies, such as
MS4A1/CD20 and MME/CD30 for monoclonal antibodies or ALK
for anaplastic lymphoma kinase (ALK) inhibitor therapy. It is worth
noting that many of the genes included in the panel have also been
associated with specific diagnoses and could be used to further
subcategorize within bins (eg,SOX8, MME, BCL6, TBX21, ICOS, and
GATA3 for TCLs19) or are associated with outcomes (eg, MKI6720).

The overall concordance between the CLPA and IHC-based
diagnosis ranged between 79% and 94%, depending on the
cohort and stringency of calling. However, the true accuracy of
the assay is somewhat unclear for 2 reasons. First, clinical
pathology testing is a highly problematic standard for bench-
marking accuracy. Discordance rates between expert hemato-
pathologists in the diagnosis of lymphoma are typically 10% in
high-income countries17,21 and exceed 30% in LMICs.22 Many
academic centers in high-income countries require that lymphoma
pathology be rereviewed at the time of second opinion because of
the high rates of misdiagnosis. We addressed this by using 2
independent hematopathologists to confirm all diagnoses.

The second reason that clinical pathology testing is a problematic
standard relates to interpatient heterogeneity in lymphoma biology.
Gene expression and sequencing studies have consistently
reported that a fraction of lymphomas diagnosed as 1 entity
based on IHC cluster more closely in unsupervised analyses with
a separate entity (eg, cases of DLBCL that are Burkitt-like12).
Considering these factors, prospective treatment studies using CLPA
for diagnosis will be required to clarify whether subsets of patients are
truly misclassified in ways that compromise outcome. Adding clinical
characteristics (eg, site of presentation, duration of symptoms),
patient demographics (age, sex, HIV status), and other available
information (eg, local epidemiology) to the machine learning model for
CLPA-based binning could further improve the accuracy of the assay.

Many types of lymphoma are either curable or highly responsive to
therapeutic regimens that are accessible within LMICs, including
CVP (cyclophosphamide, vincristine, and prednisone) or CHOP
(cyclophosphamide, doxorubicin, vincristine, and prednisone) che-
motherapy for follicular, marginal zone, mantle cell, peripheral T-cell,
and DLBCL, CODOX-m (cyclophosphamide, vincristine, doxorubicin,
and methotrexate) or hyper-CVAD (hyperfractionated cyclophospha-
mide, vincristine, doxorubicin, and dexamethasone) chemotherapy for
Burkitt or B-lymphoblastic lymphoma, ABVD (doxorubicin, bleomycin,
vinblastine, and dacarbazine) chemotherapy for HL, and SMILE
(dexamethasone, methotrexate, ifosfamide, L-asparaginase, and
etoposide) chemotherapy for extranodal NKTCL.23,24 Generic
versions of some targeted agents and biosimilars for rituximab are also
available, whereas others (eg, BTK inhibitors, venetoclax, phospha-
tidylinositol 3-kinase inhibitors, brentuximab) could be made available,
as ABL inhibitors have been for chronic myelogenous leukemia and
gastrointestinal stromal tumors. It will simply require forward-thinking
pharmaceutical companies and appropriate advocacy.

We used available treatment guidance and the epidemiology of
lymphoma subtypes to design our diagnostic bins. As treatment

options evolve, refinements to the binning of cases and selection of
genes will undoubtedly be required to maximize clinical utility. For
example, we did not use fluorescence in situ hybridization results to
distinguish DLBCL from high grade B-cell lymphoma with MYC,
BCL2, and/or BCL6 rearrangements (double/triple hit lymphoma).
Although more aggressive regimens may improve outcomes for
patients with MYC rearrangement,25,26 recent classifications suggest
that some non–MYC-rearranged DLBCLs have outcomes and biology
that highly overlap with MYC-rearranged cases.27 Thus, it remains
appropriate (and standard of care in many LMICs) to treat these
cases with CHOP-based therapy.23

Our assay has multiple limitations that must be carefully considered.
First is the inclusion of B-cell lymphoblastic lymphoma and Burkitt
lymphoma in the same diagnostic bin. Together, these accounted
for only 10 cases diagnosed by lymph node biopsy at INCAN over
the previous 12 years. On the rare occasion that this call is made,
H&E and IHC staining for terminal deoxynucleotide transferase
could guide the final diagnosis. The 15% to 20% of all cases,
including biopsy specimens from diseases not binned using our
current assay, that have a probability score, 0.6 would also require
additional assessments, including IHC. Among the latter, CLL/SLL
and plasma cell neoplasms are more frequently diagnosed from
blood or bone marrow at INCAN than by lymph node biopsy, but this
may vary across institutions. Of note, the number of genes using
standard capillary electrophoresis equipment and our current
chemistry can be easily expanded to 55. Thus, we are redesigning
the assay to distinguish Burkitt, B-cell lymphoblastic lymphoma, and
plasma cell neoplasms. We are also testing additional cohorts in
other LMICs to improve the diagnostic accuracy of lymphoma
subtypes that were infrequent at INCAN (eg, marginal zone
lymphoma, TCL), to ensure assay performance across populations
with different genetic backgrounds and coexisting pathology (eg,
tuberculosis, HIV) and to quantify assay performance on needle
biopsies. For the latter, it is worth noting that the CLPA training and
validation testing described above was performed on a single
10-mm section from excisional biopsy specimens that ranged in size
from 53 10 mm2 to 203 20 mm2. This results in a tissue volume of
0.5 to 4.0 mm3, which is comparable to one-half or less of a needle
biopsy. Core biopsies are frequently used for clinical and research
sequencing, consistent with the conclusion that they contain an
adequate quantity of genetic material for diagnosis.

Based on the assay performance at INCAN, approximately 75% of
patient biopsy specimens would be accurately binned, approximately
17% would be called indeterminate, 6% would be incorrectly binned,
and 2%would fail the assay. As a proof-of-principle, this performance
markedly exceeds the status quo in many LMIC settings and thus
could improve diagnosis as a primary test for lymphoma. Limited
resources could then be allocated to patients with indeterminate
calls. The medicolegal considerations for an assay that incorrectly
bins 6% of patients will vary greatly by country, but as for all
laboratory tests, the results should always be considered within
the context of an individual patient’s presentation and the ordering
physician’s clinical judgement.

We initiated a prospective study of CLPA-based diagnosis that
extends across centers in Guatemala, El Salvador, and Belize. The
assay is performed entirely at INCAN. Turnaround from biopsy to
reporting can be performed at INCAN in ,24 hours when urgent
results are needed, although this does increase cost. Finally, we are
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establishing an open-access R Shiny App that allows anyone on
Earth to input CLPA data and receive a diagnosis and probability
score from the machine-learning model. Similar gene sets and
calling algorithms can easily be established for other cancer types
and thereby guide optimal therapeutic selection for patients in
desperate need.
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