1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

Author manuscript
Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2021 May 26.

-, HHS Public Access
«

Published in final edited form as:
Proc IEEE Inst Electr Electron Eng. 2020 January ; 108(1): 163-177. doi:10.1109/jproc.2019.2950187.

Comparison of Breast MRI Tumor Classification Using Human-
Engineered Radiomics, Transfer Learning From Deep
Convolutional Neural Networks, and Fusion Methods

Heather M. Whitney,

Department of Radiology, The University of Chicago, Chicago, IL 60637 USA, and also with the
Department of Physics, Wheaton College, Wheaton, IL 60187 USA

Hui Li,

Department of Radiology, The University of Chicago, Chicago, IL 60637 USA

Yu Ji,

Department of Breast Imaging, Tianjin Medical University Cancer Institute and Hospital, National
Clinical Research Center for Cancer, Tianjin Medical University, Tianjin 30060, China

Peifang Liu,
Department of Breast Imaging, Tianjin Medical University Cancer Institute and Hospital, National
Clinical Research Center for Cancer, Tianjin Medical University, Tianjin 30060, China

Maryellen L. Giger [Fellow IEEE]
Department of Radiology, The University of Chicago, Chicago, IL 60637 USA

Abstract

Digital image-based signatures of breast tumors may ultimately contribute to the design of patient-
specific breast cancer diagnostics and treatments. Beyond traditional human-engineered computer
vision methods, tumor classification methods using transfer learning from deep convolutional
neural networks (CNNs) are actively under development. This article will first discuss our
progress in using CNN-based transfer learning to characterize breast tumors for various
diagnostic, prognostic, or predictive image-based tasks across multiple imaging modalities,
including mammaography, digital breast tomosynthesis, ultrasound (US), and magnetic resonance
imaging (MRI), compared to both human-engineered feature-based radiomics and fusion
classifiers created through combination of such features. Second, a new study is presented that
reports on a comprehensive comparison of the classification performances of features derived from
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human-engineered radiomic features, CNN transfer learning, and fusion classifiers for breast
lesions imaged with MRI. These studies demonstrate the utility of transfer learning for computer-
aided diagnosis and highlight the synergistic improvement in classification performance using
fusion classifiers.
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Breast cancer; computer-aided diagnosis (CADX); deep learning; dynamic contrast-enhanced
(DCE)-magnetic resonance imaging (MRI); radiomics; transfer learning

l. INTRODUCTION

Breast cancer is the second leading cause of death among women [1], making the
development of clinical medical practice to detect and diagnose disease, as well as predict
response to treatment, a high-impact area of research. Currently, medical imaging
contributes to these efforts in several capacities, including detection through screening
programs and staging when a cancer is found. Over the course of many decades, much
research has been conducted in identifying imaging modalities that provide information to
radiologists in their efforts to detect lesions and distinguish between benign lesions and
malignant tumors. The various modalities currently in clinical use, including mammography,
ultrasound (US), and magnetic resonance (MR), are sensitive to different contrast
mechanisms in breast tissue, providing several ways to detect and diagnose disease.

Radiologists use a range of descriptors in their work in viewing medical images and in
identifying and describing lesions. The Breast Imaging Reporting and Data System (BI-
RADS) [2] is a standardized nomenclature, which was developed to describe categories of
various image-based features commonly characterized in breast images, such as
calcifications in mammaographic and US images or kinetic curve assessment features in
dynamic contrast-enhanced MR (DCE-MR) images. With BI-RADS, radiologists can give a
single malignancy descriptor for a given lesion.

During the past several decades, efforts have been made by researchers in medical imaging
to develop features that can be automatically extracted from images of lesions using
analytical expressions. For this reason, these features are called human-engineered radiomic
features (RADyE). Some of these, such as the largest dimension of the lesion, are geometric
in basis [3]. Others describe texture using gray-level co-occurrence matrices, a method used
to analyze images in many different applications in addition to medical imaging analysis [4].
When a contrast agent that changes the contrast of the tissue with respect to the biological
basis of the imaging modality is injected into the subject, the dynamic response of the tissue
to the uptake and washout of the agent can be measured quantitatively [5]. Features can also
be extracted from apparent diffusion coefficient images [6], T2-weighted images [7], and
diffusion MR images [8]. The investigation of features in the context of specific types of
lesions, such as breast lesions that are less than 1 cm in diameter [9] or of specific molecular
subtypes [10]-[13], can also be relevant. These features can collectively describe computer-
extracted image phenotypes of a lesion. Fig. 1 shows an example workflow for extracting
RADyE features from DCE-MR images of breast lesions.
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The development of these human-engineered features based upon analytical expressions has
contributed to the rise of the field of computer-aided diagnosis (CADx). CADx is a field of
investigation in which extracted features are investigated for their relationship to a medical
diagnosis, prognosis, or prediction question [14], [15]. At a basic level, regression analysis
methods may be used, but machine learning methods, typically supervised in nature, have
shown the strongest promise for investigating how such features may be used to predict
disease or response to therapy. Classifiers, such as linear discriminant analysis or support
vector machines (SVM), have been used to predict the class of lesions. Consequently,
receiver operating characteristic curve (ROC) analysis is used to compare the predicted class
of the lesions to the actual class (i.e., ground truth) and determine the true-positive fraction
and the false-positive fraction across a range of thresholds [16]. The area under the ROC
curve (AUC) is frequently used as a metric of performance, where AUC = 1 represents a
classifier with perfect classification, and AUC = 0.5 represents classification no better than
random guessing.

Artificial neural networks are computing systems designed to identify and merge features
useful for distinguishing between classes of information using computing structures
modeled after how neurons pass information among themselves. Convolutional neural
networks (CNNs) are a subset of artificial neural networks. A given CNN is made up of an
input and an output layer, with different possibilities of layers in between, called in total the
architecture. These layers may be convolutional, pooling, or fully connected. While CNNs
were initially introduced to medical image analysis in the 1980s [17], their rapid use was
limited by computational power. Subsequent gains in computational power and the broader
availability of graphical processing units have contributed to the use of CNNs for medical
image analysis in the 21st century [18], [19].

The development of a CNN for image-based classification requires a very high number of
images (on the order of millions) to learn what features may be useful for various
classification questions. AlexNet [20] and VGG19 [21] are two networks that have been
trained to identify several different classes within images, such as those of dogs or cats,
which are called natural images. The development of custom CNNSs trained from scratch for
medical image classification tasks is a focus of ongoing investigation, but the needed
collection of a large number of images in medical imaging classification questions is
difficult to acquire. However, properties of a CNN pretrained for natural image classification
can be used for other classification tasks, such as the classification of lesions as benign or
malignant. This practice is called transfer learning, allowing neural network settings that
were learned for one task to be transferred to another classification task.

Two different types of transfer learning have been applied to medical imaging classification
tasks. In fine-tuning, transfer learning involves the fine-tuning of weights that were
developed from the initial training of the network using a large number of natural images for
nonmedical classification tasks (CNNgT). The network is intercepted at the latter layers and
training is revised in the context of the medical images and the specific classification task. In
feature extraction, after input of a medical image to a CNN, which had been previously
trained on the nonmedical images, the outputs from different layers of the CNN serve as
features to conventional classifiers (CNNgg) (Fig. 2).
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Each of these transfer learning methods involves several variables that must be investigated
for the optimization of classification performance. For example, the outputs from several
layers are available for feature extraction when CNNs are used, and the selection of them
can be optimized [23]. The use of a CNN in CADX, whether trained from scratch or from
transfer learning, can be referred to as CNN-based CADX.

Radiomics-based CADx (RADyg) and CNN-based CADx (CNNgt or CNNgg) both
contribute to classification tasks in which they can yield a probability that a lesion, or some
other general region of interest (ROI) in a medical image, is part of a certain class. However,
between these CADx methods, there are differences that can influence their utility to a given
classification question. For example, in radiomics-based CADXx, the lesion is required to be
segmented from its surrounding environment, and the extracted features represent the lesion
itself. This, of course, places substantial dependence of later steps of the radiomics pipeline
onto the segmentation method. Conversely, in CNN-based CADX, the features are extracted
from images of an ROI that includes the lesion. Lesion segmentation or feature extraction
using analytical expressions is not required. However, the selection of ROI around the lesion
is relevant: inherently, some degree of background must be included, and it has been shown
that the classification performance can depend upon the size of the ROl with respect to the
tumor. If the ROI includes too much information, it hinders the classification of the lesion as
there are essentially competing classification tasks.

The application of both radiomics- and CNN-based CADXx to classification tasks in medical
imaging, particularly in breast imaging [23]-[27], has shown promise. An additional area of
investigation seeks to determine if these methods can be merged to improve classification
performance, i.e., fusion CADX.

IIl. EXAMPLES OF TRANSFER LEARNING AND FUSION CLASSIFICATION
IN CADx AND PROGNOSIS

While this is not a review article, an overview of our lab’s progress in transfer learning and
fusion classification is described in the following to provide insight into the methodology
presented in our newly reported study. While the new study uses MR images for the task of
classification of lesions as malignant or benign, the methodology has been developed from
our experience in using breast images from other modalities as well applied to classification
tasks for cancer diagnosis and risk assessment. The various studies demonstrate, within this
range of modalities and classification tasks, comparisons of performance using transfer
learning and fusion methods to that achieved using human-engineered radiomic features.

A. Transfer Learning Using CNN-Feature Extraction (CNNgg) From Full-Field Digital
Mammography of the Breast

Transfer learning using CNN-based features was demonstrated in 2016 for the classification
of 219 full-field digital mammography (FFDM) images of breast lesions as benign or cancer
and compared to the classification performance using radiomics-based features from
segmented lesions [23]. CNN-based features were extracted using AlexNet [20], a CNN
model that has been pretrained on the ImageNet data set [28], comprised of over one million
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images and describing one thousand classes. The use of a CNN provided several layers from
which features could be extracted (Fig. 3).

The study investigated the classification performance of features extracted at the different
fully connected, convolutional, and max-pooling layers and selected an optimal layer (in this
case, fully connected layer 6) due to its high predictive performance and relatively low
dimensionality (Fig. 4).

Next, the radiomics-based and CNN-based methods were merged through a fusion classifier,
constructed using soft voting to combine the outputs from the individual classifiers. While
classification performance as measured by AUC was similar for the radiomics-based
features (0.81 + 0.03) and CNN-based features (0.81 £ 0.04) used separately for
classification of lesions as benign or malignant, the fusion classifier produced statistically
significant improvement in performance (0.86 + 0.01), indicating that both RADyg and
CNNEgg each provide unique information for the classification of the images.

B. Transfer Learning Using CNN-Feature Extraction (CNNgg) and Fusion Classification
Using Full-Field Digital Mammography, US, and MR Imaging of the Breast

Transfer learning methods have been extended to other modalities [US and MR imaging
(MRI)] and other pretrained CNNs (VGG19) for evaluation of classification performance in
the task of distinguishing between breast lesions as benign or malignant [27]. The study
investigated various methods within the transfer learning analysis pipeline, including
preprocessing of ROIs and using features extracted from fully connected layers compared to
those from max-pool layers. Another variation of image input was developed by using
images from temporal 3-D image acquisition methods (DCE-MRI) into the three color
channels of red-green-blue (RGB) images (Fig. 5).

The study found moderate improvement in performance using pooled features extracted
from the original size ROIs compared to using the fully connected features extracted from
preprocessed ROIls. In addition, for each of the three modalities, the use of a fusion
radiomics-based and CNN-based classifier in the task of classification of lesions as
malignant or benign yielded performance better than either classifier on its own (Figs. 6 and
7), indicating that the use of fusion classifiers is valuable across multiple modalities.

C. Transfer Learning Using CNN-Feature Extraction (CNNgg) From Digital Breast
Tomosynthesis

Transfer learning has also been applied to classification using FFDM and digital breast
tomosynthesis (DBT), including associated synthesized 2-D images and key slices [22].
Within the consideration of modality and prepared images, classification performance was
assessed for subsets of lesions that were mass/architectural distortion (ARD) or
calcifications. Using VGG19, CNN features were extracted from craniocaudal (CC) and
medial-lateral oblique (MLO) images and used as inputs to corresponding separate
classifiers and, in addition, the outputs of the two classifiers were fused using soft voting to
create a merged-view output. Classification performance was superior in both views for
synthesized 2-D, for merged views for DBT, and for DBT when lesions were analyzed
separately by mass/ARD and calcifications (Fig. 8).
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D. Transfer Learning Using CNN-Feature Extraction (CNNgg) From Maximum Intensity
Projection DCE-MR Images of the Breast

Further work in feature extraction using transfer learning investigated the use of images that
incorporate spatial information. Maximum intensity projections (MIP) images were used for
feature extraction using ConvNet VGGNet [29]. An MIP image is made by analyzing the
gray-level values of each voxel in a stack of postcontrast subtraction images and assigning to
that voxel in the MIP the maximum voxel value from the stack. The classification
performance of CNN feature extraction from MIP images generated from the second
postcontrast images was compared to that obtained using second postcontrast central slice
and the second postcontrast subtraction central slice (Figs. 9 and 10).

The MIP CNN demonstrated superior classification performance compared to using the
second postcontrast images in either nonsubtraction or subtraction form (Fig. 11).

E. Transfer Learning Using CNN Fine-Tuning (CNNgT) and Long Short-Term Memory
Networks on Breast DCE-MR Images

Temporal information from DCE-MRIs can be incorporated into deep learning methods
using pretrained CNNs and long short-term memory (LSTM) networks. In a recent study,
the VGG19 network was fine-tuned for the task of distinguishing between benign and
malignant images by constructing RGB images from the precontrast and two postcontrast
images via the three channels [30]. This architecture was compared to that when, instead of
the RGB arrangement, various time-point MRIs were directly input to a CNNgg with the
subsequent outputs going to an LSTM architecture (Fig. 12). Classification performance was
measured using AUC. Classification performance in the task of distinguishing between
benign and malignant lesions was superior when using the LSTM, compared to using the
fine-tuned VGG network (Fig. 13).

F. Transfer Learning Using CNN-Feature Extraction (CNNgg) From Full-Field Digital
Mammography of the Breast for Cancer Risk Assessment

The studies described above involve the use of transfer learning for the task of diagnosing
lesions as benign or malignant using images acquired from a variety of modalities. Risk
assessment is an additional task for which transfer learning can be used. The analysis model
for using transfer learning for risk assessment builds upon previous work, in which
conventional radiographic texture analysis (RTA) was used to classify images of the breast
according to risk. In that prior study, it was found that women at high risk tended to have
dense breasts with parenchymal patterns that were coarse and of low contrast [31]. In a
subsequent study [32], there two high-risk groups were involved: one of women with the
BRCAL/2 gene mutation (36 with BRCAL gene mutation and 17 with BRCA2 gene
mutation) and one of 75 women with unilateral breast cancer. The low-risk group was
comprised of 328 women undergoing screening mammography and who were considered to
be at usual risk for developing breast cancer. For each case, features were extracted using
either human-engineered RTA or a pretrained CNN for input to an SVM classifier (Fig. 14).
ROC analysis was performed on the output from the classifiers as well as a fusion classifier
created from the average of the classifier outputs.
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Two risk assessment tasks were investigated, where performance in the classification of
ROIs as predictive of each of the high-risk groups as compared to the low-risk group was
conducted for RTA, CNNEgg, and the fusion method. In the task of classification of ROIs as
being from BRCA1/2 subjects versus low-risk subjects, classification performance using
RTA or CNNgg was comparable, while the fusion classifier resulted in a statistically
significant improvement in performance. However, CNNgg performed statistically
significantly better than RTA in the task of distinguishing between ROIs from the
contralateral breast in breast cancer cases versus those from the low-risk group (Fig. 15). It
may be that the parenchymal patterns of women with the BRCA1/2 gene mutation have
unique architecture compared to low-risk populations for which both RTA and CNNgg
yielded helpful distinguishing information.

. COMPARISON OF HUMAN-ENGINEERED RADIOMICS VERSUS FINE -
TUNING VERSUS FEATURE EXTRACTION

Our previously described studies involved focused investigations into the use of transfer
learning in either its fine-tuning and feature-extraction forms compared to and fused with
human-engineered radiomics. Another recent study, that by Truhn ef a/. [33], compared
performance in the task of classification of breast lesions as malignant or benign using T2-
weighted and DCE-MR images, separately for human-engineered radiomic features
(extracted after manual segmentation of the lesions) and with a pretrained neural network.
However, it would be useful to comprehensively investigate the different possibilities for the
use of transfer learning, as well as the fusion of the classifiers that result from using them,
compared to classification performance using human-engineered radiomics. Our study
described below offers insight into understanding the methods and possibilities for the
contributions of human-engineered radiomics, transfer learning, and fusion methods to
CADx of breast cancer.

The breast DCE-MRI data set included in this article was retrospectively collected under a
Health Insurance Portability and Accountability Act of 1996 (HIPAA)-compliant,
Institutional Review Board-approved protocol with the waiver of consent. These MR
imaging examinations were performed between 2015 and 2017 and included 1494 malignant
lesions and 496 benign lesions based on the histopathology. There were 1494 malignant
lesions from 1483 cancer patients, including eight bilateral and three bifocal cancer patients
and 496 benign lesions from 496 benign patients. The clinical characteristics of the study
population are listed in Tables 1 and 2. MR images were acquired with 3T GE scanners
using a dedicated eight-channel phased-array breast coil with T1-weighted spoiled gradient
sequence and gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) as a contrast
agent. Because our study made use of images commonly used by radiologists in their
clinical interpretations, the images were not corrected for magnetic field inhomogeneity, and
intrapatient standardization of image intensities was not conducted. However, it is important
to note that the evaluation was conducted on an independent testing set, as described in the
following.
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The radiologists’ classification performance in the task of distinguishing between lesions as
malignant or benign may be approximated using their clinically reported BI-RADS scores as
the decision variable for input to ROC analysis to calculate AUC. For this data set, evaluated
by patients, AUC = 0.92 when utilizing the radiologists’ BI-RADS scores. However, it is
important to note that an AUC calculated from BI-RADS data should be cautiously used to
estimate radiologists’ performance due to the necessity in ROC analysis that the input
decision variable be on an ordinal scale, which BI-RADS is not [34].

In order to minimize the bias in case selection for the computerized image analysis, the data
set was divided into a training data set and an independent testing data set. The training data
set included cases from the years 2015 and 2016, and the testing data set included cases
from year 2017. There was one lesion per patient in the testing data set. Three different
primary types of classification were performed in this article: human-engineered radiomics
(Radnge), CNN-based feature extraction (CNNgg), and CNN-based fine-tuning (CNNgT). In
addition, four different types of fusion classifiers were used. All are described in the
following. Fig. 16 shows a schematic of the seven various classification methods.

A. Human-Engineered Radiomics (Radpg)

Human-engineered radiomic features (Radyg) were collected using the following methods.
The lesion location on each MR image was indicated by an expert radiologist. Each lesion
was then automatically segmented from the DCE-MR images for each lesion, in 3-D, from
the surrounding parenchyma using a fuzzy c-means clustering method [35] using the
radiologist-indicated lesion location. Thirty-eight human-engineered 3-D radiomic features
were automatically extracted from the 3-D lesion volume for each lesion to characterize
lesion size, shape, morphology, enhancement texture, kinetics, and enhancement-variance
kinetics [3], [5], [36], [37] (Table 3). All time-point images were used to calculate the
kinetic-related radiomic features. The 3-D texture features of each computer-extracted lesion
volume were calculated on the first post contrast images, using a 32-binned co-occurrence
matrix [36]. An SVM classifier was trained on the cases from the years 2015 and 2016
(training data set), while the year 2017 cases served as the independent testing data set in the
task of distinguishing between malignant and benign lesions. Output from the SVM served
as the decision variable for input to ROC analysis.

B. CNN Feature Extraction (CNNgg)

For CNN feature extraction, the VGG19 model [21] pretrained on the ImageNet [28] data set
was used. The VGG19 model consists of 19 weight layers, including five stacks of
convolutional layers with each stack containing two or four convolutional layers and a max-
pooling layer, and followed by three fully connected layers. For each lesion, the central slice
(i.e., the slice containing the most lesion voxels) was identified. Since VGG19 takes an RGB
image as an input, an ROI containing the breast lesion extracted from the precontrast, first
postcontrast, and second postcontrast central slice DCE-MR images was input to the three
channels to form an RGB image. Variable sizes of RGB ROIs were resized to 224 x 224 x 3
pixels to conform to the training images used in the pretrained VGG19. CNN features were
extracted from five max-pooling layers and then average-pooled on each max-pooling layer
to reduce the number of features. These CNN features were then normalized to form a final
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CNN feature vector for the subsequent SVM classifier. The analysis was conducted similarly
as we did for the human-engineered radiomic method, i.e., using years 2015 and 2016 cases
for the training and year 2017 cases for the independent testing in the task of distinguishing
malignant from benign lesions. Output from the SVM served as the decision variable for
input to ROC analysis.

C. CNN Fine-Tuning (CNNg7)

For CNN fine-tuning, the pretrained VGG19 was used, with the weights of early layers
being frozen. We replaced the final fully connected layer with a fully connected layer of 100
classes, a fully connected layer of two classes, and a softmax layer, which underwent
training. The output from the softmax layer served as the decision variable for the input to
ROC analysis. The initial learning rate for network training was set at 0.0002 with a drop
factor of 0.1 and drop periods of 5 epochs using stochastic gradient descent as an optimizer.
The training data set, MRI cases from years 2015 and 2016, was split into 80% for training
and 20% for validation, and the year 2017 cases were used for independent testing in the
task of distinguishing malignant from benign lesions.

D. Fusion Classifiers

In addition to human-engineered radiomics and CNN-based classifiers, fusion classifiers
were also evaluated. The fusion classifier was constructed by averaging the outputs from
each of the individual classifiers, with the output of each fusion serving as the decision
variable for input to ROC analysis. Four fusion classifiers were constructed in the study as

follows.

1. FusionA. Fusion of human-engineered radiomics (Radng) and CNN feature
extraction (CNNfgg).

2. FusionB: Fusion of human-engineered radiomics (Radyg) and CNN fine-tuning
(CNNE7).

3. FusionC: Fusion of CNN feature extraction (CNNgg) and CNN fine-tuning
(CNNE).

4, FusionD. Fusion of human-engineered radiomics (Radyg), CNN feature

extraction (CNNgg), and CNN fine-tuning (CNNgT).

E. Statistical Comparisons

All the classification methods were evaluated on all lesions in the independent test set
including both mass and nonmass enhancement (NME), mass lesions only, and NME lesions
only. The performances of the classifiers were evaluated using ROC analysis [38], yielding
AUC (and standard error), which was used as a figure of merit to assess the performance of
each classifier in the task of distinguishing malignant from benign lesions. The statistical
significance for the difference between the performances of classifiers was evaluated using
ROCKIT software [39]. The Bonferroni-Holm method [40] was applied to correct for
multiple comparisons. Sensitivity and specificity for the classification output of each
classifier method were determined by selecting a cutoff value that minimizes m= (1 -
sensitivity)?+ (1 — specificity)? [33] (Table 4).
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For the human-engineered radiomic method, AUC values of 0.89, 0.90, and 0.91 were
obtained in the task of distinguishing between malignant and benign lesions across all
lesions, mass lesions only, and NME lesions only, respectively (Fig. 17 and Table 5, which
includes p-values and confidence intervals of the comparisons). For the CNN feature
extraction method (CNNgg), AUC values of 0.85, 0.90, and 0.90 were obtained in the
classification tasks across all lesions, mass lesions only, and NME lesions, respectively. For
the CNN fine-tuning method (CNNgT), AUC values of 0.89, 0.93, and 0.87 were obtained in
the classification tasks across all lesions, mass lesions only, and NME lesions only,
respectively.

ROC curves for all seven classifiers are shown in Fig. 18 for the group of all lesions.

While the AUCs for these classifiers ranged from 0.85 to 0.91 and are thus slightly less than

the AUC acquired using the radiologists’ BI-RADS alone (described above, AUC = 0.92), it
is important to reiterate that the AUC from ROC analysis of BI-RADS data is not able to be

compared to AUCs determined from ordinal scale data [34], which has been the focus of our
study.

Inspection of Table 2 indicates that classification using BI-RADS data alone shows that BI-
RADS is highly sensitive but not very specific. Table 4 demonstrates that across all
classifiers used in this article, both the sensitivity and specificity are high.

For the two CNN-based methods alone, improved classification performances were observed
from CNN feature extraction to CNN fine-tuning methods, from 0.85 to 0.89 for all lesions,
and from 0.90 to 0.93 for mass lesions only. When only NME lesions were used in this
scenario, AUC values slightly decreased from 0.90 to 0.87. This may be due to the small size
of the training data set of NME lesions used in fine-tuning the VGG19 model.

For the four fusion methods assessed in the study, improved classification performances on
the independent test set were observed for all four fusion classifiers compared with human-
engineered radiomics, CNN feature extraction, or CNN fine-tuning on all lesions, mass
lesions only, NME lesions only, respectively, although sometimes the data failed to show the
statistical significance in terms of the difference of the performance of the classifiers.

IV. DISCUSSION AND CONCLUSION

The goal of our novel study here was to comprehensively summarize and build on our prior
research and evaluate the performance of human-engineered radiomics and deep learning
methods in the task of distinguishing between benign or malignant lesions. The
classification methods used human-engineered radiomic features as well as two variations on
transfer learning: features extracted from pretrained CNNs or features extracted after fine-
tuning of a CNN. Four different associated fusion classifiers formed by combinations of the
three sets of extracted features were also investigated. The work presented here is also novel
in its investigation of these classification performance variations in the context of lesions in
both non mass and mass enhancement forms. Advantages of this article include that all
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images were collected at the same field strength (3T), eliminating possible variation in
feature values due to field strength. The selection of training and testing data sets in terms of
year of acquisition also reduced bias in case selection.

From the literature, our results are mostly comparable and, in some cases, higher than the
classification performances reported by Truhn et a/. [33] in their investigation into using
radiomic and CNN-based methods separately for the classification of breast lesions as
malignant or benign with T2-weighted and DCE-MR images. In their study, CNN-based
methods demonstrated AUC values of 0.83 and 0.88, while methods using radiomic features
yielded AUC values from 0.78 to 0.81 for their data set on which the radiologists’ BI-RADS
AUC was 0.98, indicating a slightly easier discrimination task for the radiologists.

Future work will examine CNN activation maps to understand the vast amount of relevant
and irrelevant information that results from transfer learning, and their role and effect in
dimension reduction, feature extraction, and feature merging. Such investigations will also
assist in understanding the synergistic nature of fusion classification using CNN-based
transfer learning and human-engineered radiomic features, as the results of this article
highlight the improvement in classification performance from using fusion techniques,
compared to using either human-engineered radiomic features or features extracted from
CNN transfer learning alone.
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Fig. 1.
Workflow for extracting human-engineered radiomic features (RADyg) from 4-D DCE-MR

images for use in CADX.
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Transfer learning framework constructed for feature extraction for medical image
classification (from [22]).
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Fig. 3.

Illustration of the collection of layers at which features can be extracted from the pretrained
AlexNet CNN during transfer learning. Right-most column: number of features for a given
image that is used as input to a classifier (in this case, SVM). For each layer, these features
were extracted from outputs from each layer, which were combined and flattened (center
column) from their original image outputs (left column) (from [23]).
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Fig. 4.

Classification performance in the task of classification of mammographic lesions as benign
or cancer, for classifiers based on features from each layer of AlexNet. Fully connected layer
6 (“Fc6” in the figure) was selected as the optimal layer for feature extraction, due to its high
AUC performance and reduced computational cost (from Huynh et al. [23]).
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Fig. 5.

anstruction of an RGB image from ROIs extracted from multiple time points of a DCE-
MR image series. (a) Full MR images of (left) benign lesion and (right) cancerous lesion. (b)
ROIs from the precontrast time point (t0), first postcontrast time point (t1), and second
postcontrast time point (t2) combined as one RGB image and input into the VGG19 CNN
for feature extraction (from [27]).
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. Right

column: associated Bland-Altman plot (from Antropova et al. [27]). (a) FFDM. (b) US. (c)

DCE-MRI.
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Classifier agreement plot for output from conventional features compared to output from

CNN-extracted features (from Antropova et al. [27]).
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Fig. 8.
Classification performance (AUC) in the task of classification of lesions as benign or

malignant using a classifier merged from two different mammography views (CC and
MLO). Error bars represent standard error (from [22]).
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Fig. 9.

Benign lesion image for (a) MIP image of the second postcontrast subtraction MRI, (b)
center slice of the second postcontrast MRI, and (c) central slice of the second postcontrast
subtraction MRI (from [29]).
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Fig. 10.
Cancer image for (a) MIP image of the second postcontrast subtraction MRI, (b) center slice

of the second postcontrast MRI, and (c) central slice of the second postcontrast subtraction
MRI (from [29]).
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Fig. 11.
ROCs and associated AUC for the classification of lesions as benign or malignant using

maximum intensity images (AUCpp), using center slice from second postcontrast images
(AUCcs) and subtracted second postcontrast images (AUC§"™*"*?) (from [29]).
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Fig. 12.
Radiomics pipeline for (a) images constructed from precontrast and first two postcontrast

images, for which the VGG19 network was fine-tuned for the task of classification of
images as benign or malignant. (b) Extraction of features using this pretrained CNN within
LSTM network (from [30]).
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ROC for the classification of lesions as benign or malignant using features extracted using a
fine-tuned VGGnet or using LSTM (from [30]).
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Fig. 14.
Schematic of methods for the classification of ROIs using RTA (a conventional radiomics

method) and CNN-based feature extraction (from [32]).
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Fig. 15.
Classification performance in the task of distinguishing between ROIs extracted from

subjects with BRCAL1/2 gene mutation or from a low-risk population (top) and
distinguishing between ROIs extracted from subjects diagnosed with cancer in the
contralateral breast or from a low-risk population (bottom) (from [32]).
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Assessment of classification methods through ROC analysis (malignant vs. benign

Schematic of various classification methods in the task of differentiating malignant from
benign breast lesions on DCE-MRI, including the classification with human-engineered
radiomic features (Radyg), with CNN-based feature extraction (CNNgg), with CNN-based
fine tuning (CNNEgT), and four fusion classifiers.

Fig. 16.

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2021 May 26.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuely Joyiny

Whitney et al.

Sors
o
07
0.65
0.6
0.55

0.5

Fig. 17.

Page 31

All

Mass

-Human-engineerad radiomics (Rad,
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-FusionB (Conv'bCNNFr)
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I FusionD (Conv+CNN_+CNN__)
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e)

AUC values from various classifiers, including human-engineered radiomics (Radyg), CNN-
based feature extraction (CNNgg), CNN-based fine tuning (CNNgy), FusionA (Radng +
CNNEgg), FusionB (Radyg + CNNgT), FusionC (CNNgg + CNNgT), and FusionD (Radyg +
CNNEgg + CNNEg7) on entire data set including both mass and NME lesions, mass lesions
only, and NME lesions only. Error bars show one standard error.
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Fig. 18.
ROC analysis results on the entire data set, including both mass and NME lesions with cases

from the years 2015 and 2016 as training data set and cases from the year 2017 as testing
data set in the tasking of distinguishing between malignant from benign lesions on DCE-
MRI.
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Table 1

Clinical Characteristics of the Study Population

Training Data

Testing Data

Malignant Benign Malignant Benign

Age (years) . . . .

mean [range] 47.6 [19-77] | 42.2[16-76] | 49.3[25-75] | 41.9 [19-65]

Size (mm)

mean + standard deviation 19.1+86 14.7 +£10.7 185+7.6 129+6.8

Mass (percent of dataset) 716 (75.7%) | 230 (24.3%) | 293 (80.7%) | 70 (19.3%)
Lesion type

Non-mass enhancement (NME) (percent of dataset) | 357 (70.1%) | 152 (29.9%) | 128 (74.4%) | 44 (25.6%)
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Radiologists’ BI-RADS Categorization of the Study Population (Number of Lesions in Each Category)

Table 2

MRI BI-RADS Categorization 3 4 5 6
Malignant 4 472 | 752 | 266
Benign 252 | 230 | 5 0
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