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Abstract

Digital image-based signatures of breast tumors may ultimately contribute to the design of patient-

specific breast cancer diagnostics and treatments. Beyond traditional human-engineered computer 

vision methods, tumor classification methods using transfer learning from deep convolutional 

neural networks (CNNs) are actively under development. This article will first discuss our 

progress in using CNN-based transfer learning to characterize breast tumors for various 

diagnostic, prognostic, or predictive image-based tasks across multiple imaging modalities, 

including mammography, digital breast tomosynthesis, ultrasound (US), and magnetic resonance 

imaging (MRI), compared to both human-engineered feature-based radiomics and fusion 

classifiers created through combination of such features. Second, a new study is presented that 

reports on a comprehensive comparison of the classification performances of features derived from 
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human-engineered radiomic features, CNN transfer learning, and fusion classifiers for breast 

lesions imaged with MRI. These studies demonstrate the utility of transfer learning for computer-

aided diagnosis and highlight the synergistic improvement in classification performance using 

fusion classifiers.
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I. INTRODUCTION

Breast cancer is the second leading cause of death among women [1], making the 

development of clinical medical practice to detect and diagnose disease, as well as predict 

response to treatment, a high-impact area of research. Currently, medical imaging 

contributes to these efforts in several capacities, including detection through screening 

programs and staging when a cancer is found. Over the course of many decades, much 

research has been conducted in identifying imaging modalities that provide information to 

radiologists in their efforts to detect lesions and distinguish between benign lesions and 

malignant tumors. The various modalities currently in clinical use, including mammography, 

ultrasound (US), and magnetic resonance (MR), are sensitive to different contrast 

mechanisms in breast tissue, providing several ways to detect and diagnose disease.

Radiologists use a range of descriptors in their work in viewing medical images and in 

identifying and describing lesions. The Breast Imaging Reporting and Data System (BI-

RADS) [2] is a standardized nomenclature, which was developed to describe categories of 

various image-based features commonly characterized in breast images, such as 

calcifications in mammographic and US images or kinetic curve assessment features in 

dynamic contrast-enhanced MR (DCE-MR) images. With BI-RADS, radiologists can give a 

single malignancy descriptor for a given lesion.

During the past several decades, efforts have been made by researchers in medical imaging 

to develop features that can be automatically extracted from images of lesions using 

analytical expressions. For this reason, these features are called human-engineered radiomic 

features (RADHE). Some of these, such as the largest dimension of the lesion, are geometric 

in basis [3]. Others describe texture using gray-level co-occurrence matrices, a method used 

to analyze images in many different applications in addition to medical imaging analysis [4]. 

When a contrast agent that changes the contrast of the tissue with respect to the biological 

basis of the imaging modality is injected into the subject, the dynamic response of the tissue 

to the uptake and washout of the agent can be measured quantitatively [5]. Features can also 

be extracted from apparent diffusion coefficient images [6], T2-weighted images [7], and 

diffusion MR images [8]. The investigation of features in the context of specific types of 

lesions, such as breast lesions that are less than 1 cm in diameter [9] or of specific molecular 

subtypes [10]–[13], can also be relevant. These features can collectively describe computer-

extracted image phenotypes of a lesion. Fig. 1 shows an example workflow for extracting 

RADHE features from DCE-MR images of breast lesions.
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The development of these human-engineered features based upon analytical expressions has 

contributed to the rise of the field of computer-aided diagnosis (CADx). CADx is a field of 

investigation in which extracted features are investigated for their relationship to a medical 

diagnosis, prognosis, or prediction question [14], [15]. At a basic level, regression analysis 

methods may be used, but machine learning methods, typically supervised in nature, have 

shown the strongest promise for investigating how such features may be used to predict 

disease or response to therapy. Classifiers, such as linear discriminant analysis or support 

vector machines (SVM), have been used to predict the class of lesions. Consequently, 

receiver operating characteristic curve (ROC) analysis is used to compare the predicted class 

of the lesions to the actual class (i.e., ground truth) and determine the true-positive fraction 

and the false-positive fraction across a range of thresholds [16]. The area under the ROC 

curve (AUC) is frequently used as a metric of performance, where AUC = 1 represents a 

classifier with perfect classification, and AUC = 0.5 represents classification no better than 

random guessing.

Artificial neural networks are computing systems designed to identify and merge features 

useful for distinguishing between classes of information using computing structures 

modeled after how neurons pass information among themselves. Convolutional neural 

networks (CNNs) are a subset of artificial neural networks. A given CNN is made up of an 

input and an output layer, with different possibilities of layers in between, called in total the 

architecture. These layers may be convolutional, pooling, or fully connected. While CNNs 

were initially introduced to medical image analysis in the 1980s [17], their rapid use was 

limited by computational power. Subsequent gains in computational power and the broader 

availability of graphical processing units have contributed to the use of CNNs for medical 

image analysis in the 21st century [18], [19].

The development of a CNN for image-based classification requires a very high number of 

images (on the order of millions) to learn what features may be useful for various 

classification questions. AlexNet [20] and VGG19 [21] are two networks that have been 

trained to identify several different classes within images, such as those of dogs or cats, 

which are called natural images. The development of custom CNNs trained from scratch for 

medical image classification tasks is a focus of ongoing investigation, but the needed 

collection of a large number of images in medical imaging classification questions is 

difficult to acquire. However, properties of a CNN pretrained for natural image classification 

can be used for other classification tasks, such as the classification of lesions as benign or 

malignant. This practice is called transfer learning, allowing neural network settings that 

were learned for one task to be transferred to another classification task.

Two different types of transfer learning have been applied to medical imaging classification 

tasks. In fine-tuning, transfer learning involves the fine-tuning of weights that were 

developed from the initial training of the network using a large number of natural images for 

nonmedical classification tasks (CNNFT). The network is intercepted at the latter layers and 

training is revised in the context of the medical images and the specific classification task. In 

feature extraction, after input of a medical image to a CNN, which had been previously 

trained on the nonmedical images, the outputs from different layers of the CNN serve as 

features to conventional classifiers (CNNFE) (Fig. 2).
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Each of these transfer learning methods involves several variables that must be investigated 

for the optimization of classification performance. For example, the outputs from several 

layers are available for feature extraction when CNNs are used, and the selection of them 

can be optimized [23]. The use of a CNN in CADx, whether trained from scratch or from 

transfer learning, can be referred to as CNN-based CADx.

Radiomics-based CADx (RADHE) and CNN-based CADx (CNNFT or CNNFE) both 

contribute to classification tasks in which they can yield a probability that a lesion, or some 

other general region of interest (ROI) in a medical image, is part of a certain class. However, 

between these CADx methods, there are differences that can influence their utility to a given 

classification question. For example, in radiomics-based CADx, the lesion is required to be 

segmented from its surrounding environment, and the extracted features represent the lesion 

itself. This, of course, places substantial dependence of later steps of the radiomics pipeline 

onto the segmentation method. Conversely, in CNN-based CADx, the features are extracted 

from images of an ROI that includes the lesion. Lesion segmentation or feature extraction 

using analytical expressions is not required. However, the selection of ROI around the lesion 

is relevant: inherently, some degree of background must be included, and it has been shown 

that the classification performance can depend upon the size of the ROI with respect to the 

tumor. If the ROI includes too much information, it hinders the classification of the lesion as 

there are essentially competing classification tasks.

The application of both radiomics- and CNN-based CADx to classification tasks in medical 

imaging, particularly in breast imaging [23]–[27], has shown promise. An additional area of 

investigation seeks to determine if these methods can be merged to improve classification 

performance, i.e., fusion CADx.

II. EXAMPLES OF TRANSFER LEARNING AND FUSION CLASSIFICATION 

IN CADx AND PROGNOSIS

While this is not a review article, an overview of our lab’s progress in transfer learning and 

fusion classification is described in the following to provide insight into the methodology 

presented in our newly reported study. While the new study uses MR images for the task of 

classification of lesions as malignant or benign, the methodology has been developed from 

our experience in using breast images from other modalities as well applied to classification 

tasks for cancer diagnosis and risk assessment. The various studies demonstrate, within this 

range of modalities and classification tasks, comparisons of performance using transfer 

learning and fusion methods to that achieved using human-engineered radiomic features.

A. Transfer Learning Using CNN-Feature Extraction (CNNFE) From Full-Field Digital 
Mammography of the Breast

Transfer learning using CNN-based features was demonstrated in 2016 for the classification 

of 219 full-field digital mammography (FFDM) images of breast lesions as benign or cancer 

and compared to the classification performance using radiomics-based features from 

segmented lesions [23]. CNN-based features were extracted using AlexNet [20], a CNN 

model that has been pretrained on the ImageNet data set [28], comprised of over one million 

Whitney et al. Page 4

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2021 May 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



images and describing one thousand classes. The use of a CNN provided several layers from 

which features could be extracted (Fig. 3).

The study investigated the classification performance of features extracted at the different 

fully connected, convolutional, and max-pooling layers and selected an optimal layer (in this 

case, fully connected layer 6) due to its high predictive performance and relatively low 

dimensionality (Fig. 4).

Next, the radiomics-based and CNN-based methods were merged through a fusion classifier, 

constructed using soft voting to combine the outputs from the individual classifiers. While 

classification performance as measured by AUC was similar for the radiomics-based 

features (0.81 ± 0.03) and CNN-based features (0.81 ± 0.04) used separately for 

classification of lesions as benign or malignant, the fusion classifier produced statistically 

significant improvement in performance (0.86 ± 0.01), indicating that both RADHE and 

CNNFE each provide unique information for the classification of the images.

B. Transfer Learning Using CNN-Feature Extraction (CNNFE) and Fusion Classification 
Using Full-Field Digital Mammography, US, and MR Imaging of the Breast

Transfer learning methods have been extended to other modalities [US and MR imaging 

(MRI)] and other pretrained CNNs (VGG19) for evaluation of classification performance in 

the task of distinguishing between breast lesions as benign or malignant [27]. The study 

investigated various methods within the transfer learning analysis pipeline, including 

preprocessing of ROIs and using features extracted from fully connected layers compared to 

those from max-pool layers. Another variation of image input was developed by using 

images from temporal 3-D image acquisition methods (DCE-MRI) into the three color 

channels of red-green-blue (RGB) images (Fig. 5).

The study found moderate improvement in performance using pooled features extracted 

from the original size ROIs compared to using the fully connected features extracted from 

preprocessed ROIs. In addition, for each of the three modalities, the use of a fusion 

radiomics-based and CNN-based classifier in the task of classification of lesions as 

malignant or benign yielded performance better than either classifier on its own (Figs. 6 and 

7), indicating that the use of fusion classifiers is valuable across multiple modalities.

C. Transfer Learning Using CNN-Feature Extraction (CNNFE) From Digital Breast 
Tomosynthesis

Transfer learning has also been applied to classification using FFDM and digital breast 

tomosynthesis (DBT), including associated synthesized 2-D images and key slices [22]. 

Within the consideration of modality and prepared images, classification performance was 

assessed for subsets of lesions that were mass/architectural distortion (ARD) or 

calcifications. Using VGG19, CNN features were extracted from craniocaudal (CC) and 

medial–lateral oblique (MLO) images and used as inputs to corresponding separate 

classifiers and, in addition, the outputs of the two classifiers were fused using soft voting to 

create a merged-view output. Classification performance was superior in both views for 

synthesized 2-D, for merged views for DBT, and for DBT when lesions were analyzed 

separately by mass/ARD and calcifications (Fig. 8).
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D. Transfer Learning Using CNN-Feature Extraction (CNNFE) From Maximum Intensity 
Projection DCE-MR Images of the Breast

Further work in feature extraction using transfer learning investigated the use of images that 

incorporate spatial information. Maximum intensity projections (MIP) images were used for 

feature extraction using ConvNet VGGNet [29]. An MIP image is made by analyzing the 

gray-level values of each voxel in a stack of postcontrast subtraction images and assigning to 

that voxel in the MIP the maximum voxel value from the stack. The classification 

performance of CNN feature extraction from MIP images generated from the second 

postcontrast images was compared to that obtained using second postcontrast central slice 

and the second postcontrast subtraction central slice (Figs. 9 and 10).

The MIP CNN demonstrated superior classification performance compared to using the 

second postcontrast images in either nonsubtraction or subtraction form (Fig. 11).

E. Transfer Learning Using CNN Fine-Tuning (CNNFT) and Long Short-Term Memory 
Networks on Breast DCE-MR Images

Temporal information from DCE-MRIs can be incorporated into deep learning methods 

using pretrained CNNs and long short-term memory (LSTM) networks. In a recent study, 

the VGG19 network was fine-tuned for the task of distinguishing between benign and 

malignant images by constructing RGB images from the precontrast and two postcontrast 

images via the three channels [30]. This architecture was compared to that when, instead of 

the RGB arrangement, various time-point MRIs were directly input to a CNNFE with the 

subsequent outputs going to an LSTM architecture (Fig. 12). Classification performance was 

measured using AUC. Classification performance in the task of distinguishing between 

benign and malignant lesions was superior when using the LSTM, compared to using the 

fine-tuned VGG network (Fig. 13).

F. Transfer Learning Using CNN-Feature Extraction (CNNFE) From Full-Field Digital 
Mammography of the Breast for Cancer Risk Assessment

The studies described above involve the use of transfer learning for the task of diagnosing 

lesions as benign or malignant using images acquired from a variety of modalities. Risk 

assessment is an additional task for which transfer learning can be used. The analysis model 

for using transfer learning for risk assessment builds upon previous work, in which 

conventional radiographic texture analysis (RTA) was used to classify images of the breast 

according to risk. In that prior study, it was found that women at high risk tended to have 

dense breasts with parenchymal patterns that were coarse and of low contrast [31]. In a 

subsequent study [32], there two high-risk groups were involved: one of women with the 

BRCA1/2 gene mutation (36 with BRCA1 gene mutation and 17 with BRCA2 gene 

mutation) and one of 75 women with unilateral breast cancer. The low-risk group was 

comprised of 328 women undergoing screening mammography and who were considered to 

be at usual risk for developing breast cancer. For each case, features were extracted using 

either human-engineered RTA or a pretrained CNN for input to an SVM classifier (Fig. 14). 

ROC analysis was performed on the output from the classifiers as well as a fusion classifier 

created from the average of the classifier outputs.
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Two risk assessment tasks were investigated, where performance in the classification of 

ROIs as predictive of each of the high-risk groups as compared to the low-risk group was 

conducted for RTA, CNNFE, and the fusion method. In the task of classification of ROIs as 

being from BRCA1/2 subjects versus low-risk subjects, classification performance using 

RTA or CNNFE was comparable, while the fusion classifier resulted in a statistically 

significant improvement in performance. However, CNNFE performed statistically 

significantly better than RTA in the task of distinguishing between ROIs from the 

contralateral breast in breast cancer cases versus those from the low-risk group (Fig. 15). It 

may be that the parenchymal patterns of women with the BRCA1/2 gene mutation have 

unique architecture compared to low-risk populations for which both RTA and CNNFE 

yielded helpful distinguishing information.

III. COMPARISON OF HUMAN-ENGINEERED RADIOMICS VERSUS FINE - 

TUNING VERSUS FEATURE EXTRACTION

Our previously described studies involved focused investigations into the use of transfer 

learning in either its fine-tuning and feature-extraction forms compared to and fused with 

human-engineered radiomics. Another recent study, that by Truhn et al. [33], compared 

performance in the task of classification of breast lesions as malignant or benign using T2-

weighted and DCE-MR images, separately for human-engineered radiomic features 

(extracted after manual segmentation of the lesions) and with a pretrained neural network. 

However, it would be useful to comprehensively investigate the different possibilities for the 

use of transfer learning, as well as the fusion of the classifiers that result from using them, 

compared to classification performance using human-engineered radiomics. Our study 

described below offers insight into understanding the methods and possibilities for the 

contributions of human-engineered radiomics, transfer learning, and fusion methods to 

CADx of breast cancer.

The breast DCE-MRI data set included in this article was retrospectively collected under a 

Health Insurance Portability and Accountability Act of 1996 (HIPAA)-compliant, 

Institutional Review Board-approved protocol with the waiver of consent. These MR 

imaging examinations were performed between 2015 and 2017 and included 1494 malignant 

lesions and 496 benign lesions based on the histopathology. There were 1494 malignant 

lesions from 1483 cancer patients, including eight bilateral and three bifocal cancer patients 

and 496 benign lesions from 496 benign patients. The clinical characteristics of the study 

population are listed in Tables 1 and 2. MR images were acquired with 3T GE scanners 

using a dedicated eight-channel phased-array breast coil with T1-weighted spoiled gradient 

sequence and gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) as a contrast 

agent. Because our study made use of images commonly used by radiologists in their 

clinical interpretations, the images were not corrected for magnetic field inhomogeneity, and 

intrapatient standardization of image intensities was not conducted. However, it is important 

to note that the evaluation was conducted on an independent testing set, as described in the 

following.
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The radiologists’ classification performance in the task of distinguishing between lesions as 

malignant or benign may be approximated using their clinically reported BI-RADS scores as 

the decision variable for input to ROC analysis to calculate AUC. For this data set, evaluated 

by patients, AUC = 0.92 when utilizing the radiologists’ BI-RADS scores. However, it is 

important to note that an AUC calculated from BI-RADS data should be cautiously used to 

estimate radiologists’ performance due to the necessity in ROC analysis that the input 

decision variable be on an ordinal scale, which BI-RADS is not [34].

In order to minimize the bias in case selection for the computerized image analysis, the data 

set was divided into a training data set and an independent testing data set. The training data 

set included cases from the years 2015 and 2016, and the testing data set included cases 

from year 2017. There was one lesion per patient in the testing data set. Three different 

primary types of classification were performed in this article: human-engineered radiomics 

(RadHE), CNN-based feature extraction (CNNFE), and CNN-based fine-tuning (CNNFT). In 

addition, four different types of fusion classifiers were used. All are described in the 

following. Fig. 16 shows a schematic of the seven various classification methods.

A. Human-Engineered Radiomics (RadHE)

Human-engineered radiomic features (RadHE) were collected using the following methods. 

The lesion location on each MR image was indicated by an expert radiologist. Each lesion 

was then automatically segmented from the DCE-MR images for each lesion, in 3-D, from 

the surrounding parenchyma using a fuzzy c-means clustering method [35] using the 

radiologist-indicated lesion location. Thirty-eight human-engineered 3-D radiomic features 

were automatically extracted from the 3-D lesion volume for each lesion to characterize 

lesion size, shape, morphology, enhancement texture, kinetics, and enhancement-variance 

kinetics [3], [5], [36], [37] (Table 3). All time-point images were used to calculate the 

kinetic-related radiomic features. The 3-D texture features of each computer-extracted lesion 

volume were calculated on the first post contrast images, using a 32-binned co-occurrence 

matrix [36]. An SVM classifier was trained on the cases from the years 2015 and 2016 

(training data set), while the year 2017 cases served as the independent testing data set in the 

task of distinguishing between malignant and benign lesions. Output from the SVM served 

as the decision variable for input to ROC analysis.

B. CNN Feature Extraction (CNNFE)

For CNN feature extraction, the VGG19 model [21] pretrained on the ImageNet [28] data set 

was used. The VGG19 model consists of 19 weight layers, including five stacks of 

convolutional layers with each stack containing two or four convolutional layers and a max-

pooling layer, and followed by three fully connected layers. For each lesion, the central slice 

(i.e., the slice containing the most lesion voxels) was identified. Since VGG19 takes an RGB 

image as an input, an ROI containing the breast lesion extracted from the precontrast, first 

postcontrast, and second postcontrast central slice DCE-MR images was input to the three 

channels to form an RGB image. Variable sizes of RGB ROIs were resized to 224 × 224 × 3 

pixels to conform to the training images used in the pretrained VGG19. CNN features were 

extracted from five max-pooling layers and then average-pooled on each max-pooling layer 

to reduce the number of features. These CNN features were then normalized to form a final 
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CNN feature vector for the subsequent SVM classifier. The analysis was conducted similarly 

as we did for the human-engineered radiomic method, i.e., using years 2015 and 2016 cases 

for the training and year 2017 cases for the independent testing in the task of distinguishing 

malignant from benign lesions. Output from the SVM served as the decision variable for 

input to ROC analysis.

C. CNN Fine-Tuning (CNNFT)

For CNN fine-tuning, the pretrained VGG19 was used, with the weights of early layers 

being frozen. We replaced the final fully connected layer with a fully connected layer of 100 

classes, a fully connected layer of two classes, and a softmax layer, which underwent 

training. The output from the softmax layer served as the decision variable for the input to 

ROC analysis. The initial learning rate for network training was set at 0.0002 with a drop 

factor of 0.1 and drop periods of 5 epochs using stochastic gradient descent as an optimizer. 

The training data set, MRI cases from years 2015 and 2016, was split into 80% for training 

and 20% for validation, and the year 2017 cases were used for independent testing in the 

task of distinguishing malignant from benign lesions.

D. Fusion Classifiers

In addition to human-engineered radiomics and CNN-based classifiers, fusion classifiers 

were also evaluated. The fusion classifier was constructed by averaging the outputs from 

each of the individual classifiers, with the output of each fusion serving as the decision 

variable for input to ROC analysis. Four fusion classifiers were constructed in the study as 

follows.

1. FusionA: Fusion of human-engineered radiomics (RadHE) and CNN feature 

extraction (CNNFE).

2. FusionB: Fusion of human-engineered radiomics (RadHE) and CNN fine-tuning 

(CNNFT).

3. FusionC: Fusion of CNN feature extraction (CNNFE) and CNN fine-tuning 

(CNNFT).

4. FusionD: Fusion of human-engineered radiomics (RadHE), CNN feature 

extraction (CNNFE), and CNN fine-tuning (CNNFT).

E. Statistical Comparisons

All the classification methods were evaluated on all lesions in the independent test set 

including both mass and nonmass enhancement (NME), mass lesions only, and NME lesions 

only. The performances of the classifiers were evaluated using ROC analysis [38], yielding 

AUC (and standard error), which was used as a figure of merit to assess the performance of 

each classifier in the task of distinguishing malignant from benign lesions. The statistical 

significance for the difference between the performances of classifiers was evaluated using 

ROCKIT software [39]. The Bonferroni–Holm method [40] was applied to correct for 

multiple comparisons. Sensitivity and specificity for the classification output of each 

classifier method were determined by selecting a cutoff value that minimizes m = (1 − 

sensitivity)2+ (1 − specificity)2 [33] (Table 4).
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F. Results

For the human-engineered radiomic method, AUC values of 0.89, 0.90, and 0.91 were 

obtained in the task of distinguishing between malignant and benign lesions across all 

lesions, mass lesions only, and NME lesions only, respectively (Fig. 17 and Table 5, which 

includes p-values and confidence intervals of the comparisons). For the CNN feature 

extraction method (CNNFE), AUC values of 0.85, 0.90, and 0.90 were obtained in the 

classification tasks across all lesions, mass lesions only, and NME lesions, respectively. For 

the CNN fine-tuning method (CNNFT), AUC values of 0.89, 0.93, and 0.87 were obtained in 

the classification tasks across all lesions, mass lesions only, and NME lesions only, 

respectively.

ROC curves for all seven classifiers are shown in Fig. 18 for the group of all lesions.

While the AUCs for these classifiers ranged from 0.85 to 0.91 and are thus slightly less than 

the AUC acquired using the radiologists’ BI-RADS alone (described above, AUC = 0.92), it 

is important to reiterate that the AUC from ROC analysis of BI-RADS data is not able to be 

compared to AUCs determined from ordinal scale data [34], which has been the focus of our 

study.

Inspection of Table 2 indicates that classification using BI-RADS data alone shows that BI-

RADS is highly sensitive but not very specific. Table 4 demonstrates that across all 

classifiers used in this article, both the sensitivity and specificity are high.

For the two CNN-based methods alone, improved classification performances were observed 

from CNN feature extraction to CNN fine-tuning methods, from 0.85 to 0.89 for all lesions, 

and from 0.90 to 0.93 for mass lesions only. When only NME lesions were used in this 

scenario, AUC values slightly decreased from 0.90 to 0.87. This may be due to the small size 

of the training data set of NME lesions used in fine-tuning the VGG19 model.

For the four fusion methods assessed in the study, improved classification performances on 

the independent test set were observed for all four fusion classifiers compared with human-

engineered radiomics, CNN feature extraction, or CNN fine-tuning on all lesions, mass 

lesions only, NME lesions only, respectively, although sometimes the data failed to show the 

statistical significance in terms of the difference of the performance of the classifiers.

IV. DISCUSSION AND CONCLUSION

The goal of our novel study here was to comprehensively summarize and build on our prior 

research and evaluate the performance of human-engineered radiomics and deep learning 

methods in the task of distinguishing between benign or malignant lesions. The 

classification methods used human-engineered radiomic features as well as two variations on 

transfer learning: features extracted from pretrained CNNs or features extracted after fine-

tuning of a CNN. Four different associated fusion classifiers formed by combinations of the 

three sets of extracted features were also investigated. The work presented here is also novel 

in its investigation of these classification performance variations in the context of lesions in 

both non mass and mass enhancement forms. Advantages of this article include that all 
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images were collected at the same field strength (3T), eliminating possible variation in 

feature values due to field strength. The selection of training and testing data sets in terms of 

year of acquisition also reduced bias in case selection.

From the literature, our results are mostly comparable and, in some cases, higher than the 

classification performances reported by Truhn et al. [33] in their investigation into using 

radiomic and CNN-based methods separately for the classification of breast lesions as 

malignant or benign with T2-weighted and DCE-MR images. In their study, CNN-based 

methods demonstrated AUC values of 0.83 and 0.88, while methods using radiomic features 

yielded AUC values from 0.78 to 0.81 for their data set on which the radiologists’ BI-RADS 

AUC was 0.98, indicating a slightly easier discrimination task for the radiologists.

Future work will examine CNN activation maps to understand the vast amount of relevant 

and irrelevant information that results from transfer learning, and their role and effect in 

dimension reduction, feature extraction, and feature merging. Such investigations will also 

assist in understanding the synergistic nature of fusion classification using CNN-based 

transfer learning and human-engineered radiomic features, as the results of this article 

highlight the improvement in classification performance from using fusion techniques, 

compared to using either human-engineered radiomic features or features extracted from 

CNN transfer learning alone.
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Fig. 1. 
Workflow for extracting human-engineered radiomic features (RADHE) from 4-D DCE-MR 

images for use in CADx.
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Fig. 2. 
Transfer learning framework constructed for feature extraction for medical image 

classification (from [22]).
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Fig. 3. 
Illustration of the collection of layers at which features can be extracted from the pretrained 

AlexNet CNN during transfer learning. Right-most column: number of features for a given 

image that is used as input to a classifier (in this case, SVM). For each layer, these features 

were extracted from outputs from each layer, which were combined and flattened (center 

column) from their original image outputs (left column) (from [23]).
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Fig. 4. 
Classification performance in the task of classification of mammographic lesions as benign 

or cancer, for classifiers based on features from each layer of AlexNet. Fully connected layer 

6 (“Fc6” in the figure) was selected as the optimal layer for feature extraction, due to its high 

AUC performance and reduced computational cost (from Huynh et al. [23]).
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Fig. 5. 
Construction of an RGB image from ROIs extracted from multiple time points of a DCE-

MR image series. (a) Full MR images of (left) benign lesion and (right) cancerous lesion. (b) 

ROIs from the precontrast time point (t0), first postcontrast time point (t1), and second 

postcontrast time point (t2) combined as one RGB image and input into the VGG19 CNN 

for feature extraction (from [27]).
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Fig. 6. 
Left column: comparison of classification performance for use of all three classifiers. Right 

column: associated Bland–Altman plot (from Antropova et al. [27]). (a) FFDM. (b) US. (c) 

DCE-MRI.
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Fig. 7. 
Classifier agreement plot for output from conventional features compared to output from 

CNN-extracted features (from Antropova et al. [27]).
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Fig. 8. 
Classification performance (AUC) in the task of classification of lesions as benign or 

malignant using a classifier merged from two different mammography views (CC and 

MLO). Error bars represent standard error (from [22]).
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Fig. 9. 
Benign lesion image for (a) MIP image of the second postcontrast subtraction MRI, (b) 

center slice of the second postcontrast MRI, and (c) central slice of the second postcontrast 

subtraction MRI (from [29]).
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Fig. 10. 
Cancer image for (a) MIP image of the second postcontrast subtraction MRI, (b) center slice 

of the second postcontrast MRI, and (c) central slice of the second postcontrast subtraction 

MRI (from [29]).
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Fig. 11. 
ROCs and associated AUC for the classification of lesions as benign or malignant using 

maximum intensity images (AUCMIP), using center slice from second postcontrast images 

(AUCCS) and subtracted second postcontrast images AUCCS
subtracted  (from [29]).
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Fig. 12. 
Radiomics pipeline for (a) images constructed from precontrast and first two postcontrast 

images, for which the VGG19 network was fine-tuned for the task of classification of 

images as benign or malignant. (b) Extraction of features using this pretrained CNN within 

LSTM network (from [30]).
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Fig. 13. 
ROC for the classification of lesions as benign or malignant using features extracted using a 

fine-tuned VGGnet or using LSTM (from [30]).
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Fig. 14. 
Schematic of methods for the classification of ROIs using RTA (a conventional radiomics 

method) and CNN-based feature extraction (from [32]).
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Fig. 15. 
Classification performance in the task of distinguishing between ROIs extracted from 

subjects with BRCA1/2 gene mutation or from a low-risk population (top) and 

distinguishing between ROIs extracted from subjects diagnosed with cancer in the 

contralateral breast or from a low-risk population (bottom) (from [32]).
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Fig. 16. 
Schematic of various classification methods in the task of differentiating malignant from 

benign breast lesions on DCE-MRI, including the classification with human-engineered 

radiomic features (RadHE), with CNN-based feature extraction (CNNFE), with CNN-based 

fine tuning (CNNFT), and four fusion classifiers.
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Fig. 17. 
AUC values from various classifiers, including human-engineered radiomics (RadHE), CNN-

based feature extraction (CNNFE), CNN-based fine tuning (CNNFT), FusionA (RadHE + 

CNNFE), FusionB (RadHE + CNNFT), FusionC (CNNFE + CNNFT), and FusionD (RadHE + 

CNNFE + CNNFT) on entire data set including both mass and NME lesions, mass lesions 

only, and NME lesions only. Error bars show one standard error.
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Fig. 18. 
ROC analysis results on the entire data set, including both mass and NME lesions with cases 

from the years 2015 and 2016 as training data set and cases from the year 2017 as testing 

data set in the tasking of distinguishing between malignant from benign lesions on DCE-

MRI.
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Table 1

Clinical Characteristics of the Study Population

Training Data Testing Data

Malignant Benign Malignant Benign

Age (years)
mean [range] 47.6 [19–77] 42.2 [16–76] 49.3 [25–75] 41.9 [19–65]

Size (mm)
mean ± standard deviation 19.1 ± 8.6 14.7 ± 10.7 18.5 ± 7.6 12.9 ± 6.8

Lesion type
Mass (percent of dataset) 716 (75.7%) 230 (24.3%) 293 (80.7%) 70 (19.3%)

Non-mass enhancement (NME) (percent of dataset) 357 (70.1%) 152 (29.9%) 128 (74.4%) 44 (25.6%)
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Table 2

Radiologists’ BI-RADS Categorization of the Study Population (Number of Lesions in Each Category)

MRI BI-RADS Categorization 0 1 2 3 4 5 6

Malignant 0 0 0 4 472 752 266

Benign 2 3 4 252 230 5 0
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