Skip to main content
. Author manuscript; available in PMC: 2021 May 26.
Published in final edited form as: Proc IEEE Inst Electr Electron Eng. 2019 Nov 21;108(1):163–177. doi: 10.1109/jproc.2019.2950187

Table 5.

Classification Performance in the Task of Distinguishing Malignant From Benign Breast Lesions for the Human-Engineered Radiomics, CNN Feature Extraction, CNN Fine-Tuning, and Fusion Classifiers on Entire Data Set (Both Mass and NME), Mass Lesion Only, and NME Only. The Multiple Comparison Corrections Were Performed Using the Bonferroni–Holm Method

All Mass NME
AUC [95% CI] p-value for ΔAUC (significance level) [95% CI of ΔAUC] AUC [95% CI] p-value for ΔAUC (significance level) [95% CI of ΔAUC] AUC [95% CI] p-value for ΔAUC (significance level) [95% CI of ΔAUC]
Human-engineered radiomics (RadHE) 0.89 [0.8582, 0.9221] ... 0.90 [0.8546, 0.9348] ... 0.91 [0.8579, 0.9488] ...
CNN feature extraction (CNNFE) 0.85 [0.8158, 0.8903] ... 0.90 [0.8520, 0.9307] ... 0.90 [0.8423, 0.9466] ...
FusionA (RadHE + CNNFE) 0.91 [0.8732, 0.9352] ... 0.94 [0.9032, 0.9648] ... 0.94 [0.8808, 0.9650] ...
RadHE vs CNNFE ... 0.0619 (0.025) [−0.0019, 0.0780] ... 0.8722 (0.05) [−0.0426, 0.0502) ... 0.7933 (0.05) [−0.0468, 0.0613]
RadHE vs FusionA ... 0.2499 (0.05) [−0.0297, 0.0077] ... 0.0057 (0.025) [−0.0637, −0.0109] ... 0.1703 (0.025) [−0.0452, 0.0080]
CNNFE vs FusionA ... 0.0002 (0.017) [−0.0735, −0.0228] ... 0.0039 (0.017) [−0.0650, −0.0124] ... 0.1663 (0.017) [−0.0596, 0.0103]
Human-engineered radiomics (RadHE) 0.89 [0.8582, 0.9221] ... 0.90 [0.8546, 0.9348] ... 0.91 [0.8579, 0.9488] ...
CNN fine-tuning (CNNFT) 0.89 [0.8582, 0.9245] ... 0.93 [0.8971, 0.9547] ... 0.87 [0.8075, 0.9169] ...
FusionB (RadHE + CNNFT) 0.90 [0.8659, 0.9334] ... 0.93 [0.8961, 0.9625] ... 0.93 [0.8776, 0.9604] ...
RadHE vs CNNFT ... 0.9955 (0.05) [−0.0281, 0.0279] ... 0.1001 (0.025) [−0.0630, 0.0055] ... 0.1469 (0.05) [−0.0145, 0.0968]
RadHE vs FusionB ... 0.1490 (0.017) [−0.0244, 0.0037] ... 0.0002 (0.017) [−0.0500, −0.0153] ... 0.1259 (0.025) [−0.0437, 0.0054]
CNNFT vs FusionB ... 0.1671 (0.025) [−0.0289, 0.0050] ... 0.7357 (0.05) [−0.0235, 0.0166] ... 0.0037 (0.017) [−0.1018, −0.0197]
CNN feature extraction (CNNFE) 0.85 [0.8158, 0.8903] ... 0.90 [0.8520, 0.9307] ... 0.90 [0.8423, 0.9466] ...
CNN fine-tuning (CNNFT) 0.89 [0.8582, 0.9245) ... 0.93 [0.8971, 0.9547] ... 0.87 [0.8075, 0.9169] ...
FusionC (CNNFE + CNNFT) 0.90 [0.8737, 0.9319] 0.94 [0.9020, 0.9584] ... 0.92 [0.8769, 0.9583] ...
CNNFE vs CNNFT ... 0.0481 (0.025) [−0.0761, −0.0003] ... 0.0886 (0.025) [−.0708, 0.0050] ... 0.2441 (0.025) [−0.0237, 0.0933]
CNNFE vs FusionC ... <0.0001 (0.017) [−0.0651, −0.0255] ... 0.0006 (0.017) [−0.0534, −0.0145] ... 0.2448 (0.05) [−0.0463, 0.0118]
CNNFT vs FusionC ... 0.4302 (0.05) [−0.0286, 0.0122] ... 0.7327 (0.05) [−0.0251, 0.0177] ... 0.0034 (0.017) [−0.0887, −0.0176]
Human-engineered radiomics (RadHE) 0.89 [0.8582, 0.9221] ... 0.90 [0.8546, 0.9348] ... 0.91 [0.8579, 0.9488] ...
CNN feature extraction (CNNFE) 0.85 [0.8158, 0.8903] ... 0.90 [0.8520, 0.9307] ... 0.90 [0.8423, 0.9466] ...
CNN fine-tuning (CNNFT) 0.89 [0.8582, 0.9245) ... 0.93 [0.8971, 0.9547] ... 0.87 [0.8075, 0.9169] ...
FusionD (RadHE + CNNFE+CNNFT) 0.91 [0.8840, 0.9431] ... 0.94 [0.9122, 0.9678] ... 0.95 [0.9066, 0.9735] ...
RadHE vs FusionD ... 0.0448 (0.025) [−0.0381, −0.0004] ... 0.0018 (0.025) [−0.0697, −0.0160] ... 0.0171 (0.025) [−0.0643, −0.0063]
CNNFE vs FusionD ... 0.0001 (0.017) [−0.0842, −0.0285] ... 0.0015 (0.017) [−0.0737, −0.0175) ... 0.0337 (0.05) [−0.0829, −0.0033]
CNNFT vs FusionD ... 0.0509 (0.05) [−0.0393, 0.0001] ... 0.1724 (0.05) [−0.0345, 0.0062] ... 0.0004 (0.017) [−0.1186, −0.0344]