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Extensive research has examined how information is maintained in working memory (WM), but it remains unknown how
WM is used to guide behavior. We addressed this question by combining human electrophysiology (50 subjects, male and
female) with pattern analyses, cognitive modeling, and a task requiring the prolonged maintenance of two WM items and pri-
ority shifts between them. This enabled us to discern neural states coding for memories that were selected to guide the next
decision from states coding for concurrently held memories that were maintained for later use, and to examine how these
states contribute to WM-based decisions. Selected memories were encoded in a functionally active state. This state was
reflected in spontaneous brain activity during the delay period, closely tracked moment-to-moment fluctuations in the quality
of evidence integration, and also predicted when memories would interfere with each other. In contrast, concurrently held
memories were encoded in a functionally latent state. This state was reflected only in stimulus-evoked brain activity, tracked
memory precision at longer timescales, but did not engage with ongoing decision dynamics. Intriguingly, the two functional
states were highly flexible, as priority could be dynamically shifted back and forth between memories without degrading their
precision. These results delineate a hierarchy of functional states, whereby latent memories supporting general maintenance
are transformed into active decision circuits to guide flexible behavior.
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Significance Statement

Working memory enables maintenance of information that is no longer available in the environment. Abundant neuroscien-
tific work has examined where in the brain working memories are stored, but it remains unknown how they are represented
and used to guide behavior. Our study shows that working memories are represented in qualitatively different formats,
depending on behavioral priorities. Memories that are selected for guiding behavior are encoded in an active state that trans-
forms sensory input into decision variables, whereas other concurrently held memories are encoded in a latent state that sup-
ports precise maintenance without affecting ongoing cognition. These results dissociate mechanisms supporting memory
storage and usage, and open the door to reveal not only where memories are stored but also how.

Introduction
Working memory (WM) refers to the ability to maintain and
manipulate information that is no longer available in the environ-
ment. It provides a flexible mental workspace that scaffolds many
higher cognitive functions such as planning, reasoning, or cogni-
tive control (Oberauer, 2009). Therefore, a long-standing theme in
cognitive neuroscience has been to delineate neural mechanisms
that underpin WM. This research has made great progress in
revealing how the brain maintains information across delay peri-
ods, for example, via persistent activity (Wimmer et al., 2014),
neuronal oscillations (De Vries et al., 2017), or activity-silent brain
states (Rose et al., 2016; Stokes, 2015). At the same time, however,
this work has so far neglected a key aspect of WM, namely, how
its contents are used to guide flexible behavior.

Previous studies have documented dissociations between the
maintenance and use of WM items (Muhle-Karbe et al., 2017).
Patients with frontal lobe damage sometimes exhibit a phenom-
enon termed goal neglect, wherein instructed task components
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are disregarded during performance, although they have been
understood and remembered (Duncan et al., 1996). Studies in
healthy humans furthermore suggest that WM items that will
guide the next decision can bias perception toward memory-
matching stimuli, while other concurrently held items do not
affect ongoing cognition (Olivers et al., 2011). Likewise, in neu-
roimaging studies, immediately task-relevant WM items can be
robustly decoded from brain activity patterns, while concurrently
held items typically exhibit little or no decodability (Lewis-
Peacock et al., 2015). Such findings are commonly thought to
reflect the effects of attention, which may prioritize a single item
in WM by amplifying the corresponding neural patterns (Chun,
2011; LaRocque et al., 2014). This view echoes the tenet of theo-
ries conceiving WM storage as the distribution of a limited cog-
nitive resource (Zhang and Luck, 2008; Ma et al., 2014). From
this perspective, selecting an item for guiding behavior focuses
resources and boosts the strength of the selected item, while
degrading other concurrently held items.

An alternative proposal states that the use of WM does not
rely on attentional selection alone, but also entails a reconfigura-
tion of representational formats from a purely mnemonic state
into an action-ready state that is tuned for efficient task-depend-
ent decision-making (Muhle-Karbe et al., 2017; Myers et al.,
2017). From this perspective, WM representations should exhibit
qualitatively different functional attributes depending on their
momentary task relevance. Immediately task-relevant items
should be encoded in a functionally active state that is optimized
for task-dependent readout. By contrast, items that are only pro-
spectively task relevant should be held in a functionally latent
state that supports maintenance but does not modulate cognition
until behavioral priorities change. This view predicts that active
and latent states both support WM-guided behavior, but at dif-
ferent timescales with latent states supporting maintenance over
the intermediate term and active states biasing moment-to-
moment processing to guide memory-based decisions.

We tested this view using electroencephalography (EEG) and
a novel task that allowed us to compare these two putative func-
tional states. Participants maintained two WM items for an
extended time period, though at any given moment only one
item was immediately task-relevant (cued item), while the other
item was maintained for later use (uncued item). We leveraged a
combination of multivariate decoding analyses and cognitive
modeling to recover representations of cued and uncued WM
items and link variance in decoding strength with variance in
performance. Consistent with our proposal, we find that cued
and uncued items are encoded in largely dissociable neural pat-
terns. Patterns coding for uncued items reflect a functionally
latent state that tracks memory precision at longer timescales but
is unrelated to trial-wise performance variability. By contrast, the
unique pattern component coding for cued items reflects a func-
tionally active state that closely tracks trial-wise variance in the
quality of evidence integration for WM-based decisions.
Together, these findings suggest a hierarchy of functional states
in WM, wherein functionally latent memories supporting gen-
eral maintenance are transformed into functionally active deci-
sion circuits to guide flexible behavior.

Materials and Methods
Participants. Fifty healthy adults participated in two experiments.

Twenty participants took part in experiment 1 (mean age = 28.1 years;
age range= 18–37 years; 10 females, 1 left handed), and 30 participants
took part in experiment 2 (mean age = 26.8 years; age range = 19–41
years; 14 females; 2 left handed). Seven participants took part in both

experiments. Sample sizes were similar to previous studies from our
group (Wolff et al., 2017), but they were not determined based on a for-
mal power analysis. All subjects reported normal or corrected-to-normal
vision and received a monetary compensation for participation. The
study was approved by, and conducted in accordance with, the guide-
lines of the Central University Research Ethics Committee of the
University of Oxford. As we were interested in potential null effects (e.g.,
absence of trial-wise links between the decoding strength of uncued
items and performance), we decided to pool the data across both experi-
ments for several analyses to maximize statistical power and our ability
to detect even subtle effects. In those analyses, we averaged the data from
subjects who participated in both experiments across the two sessions,
resulting in 43 unique datasets for pooled analyses.

Apparatus. Stimulus presentation was controlled in MATLAB using
Psychtoolbox on a 22 inch monitor with a refresh rate of 100Hz. Unless
reported otherwise, stimuli were shown in white font on a gray back-
ground (50% contrast; RGB = 127, 127, 127) at a distance of ;60 cm.
Responses were given with the left and right index fingers on the “B”
and “Y” buttons of a QWERTY keyboard. EEG data were collected using
61 channels that were distributed across the scalp according to the
extended 10–20 positioning system. Data were collected at 1000Hz using
a NeuroScan SynAmps RT Amplifier and Curry 7 software. Impedances
of all channels were kept to ,5 kV. In both studies, eye movements
were recorded via electro-oculography (EOG) using electrodes places
above and below the left eye, to the left of the left eye, and to the right of
the right eye. In study 2, we additionally recorded eye movements using
a remote infrared eye-tracker (Eyelink 1000, SR Research) sampling
both eyes at 1000Hz. We also recorded activity in the first dorsal interos-
seus muscle of the left and right hand via electromyography (EMG) at
1000Hz.

Experimental design and statistical analysis. The experimental task
required the prolonged maintenance of two items in WM and flexible
priority shifts between those items to guide task-dependent decision-
making (see Fig. 2, illustration). Overall, the task was broken into blocks
each consisting of 16 trials. At the beginning of each block, participants
were shown two orientated bars (length, 6° visual angle; width, 0.25° vis-
ual angle; presented at the same location in the center of the screen as
subsequent stimuli) in blue (RGB = 25.5, 25.5, 204) and yellow (RGB =
204, 204, 25.5) color. These two bars served as memory items for the re-
mainder of the block. For each participant, one color was associated with
a high-pitch tone and the other color was associated with a low-pitch
tone (mapping counterbalanced across participants). The two orienta-
tions were drawn randomly from a set of 16 possible orientations
(spaced evenly at 11.25° intervals from 2.8125° to 171.5625°) with the
sole constraints that the orientation of the two items could not be identi-
cal or exactly orthogonal. Participants could encode the two items for a
duration of their choosing and initiated the block via button press.
Within the block, each trial started with a presentation of an auditory
cue (pure sinusoidal tones: low tone, 440Hz; high tone, 880Hz; dura-
tion: 100ms including a 10ms ramp-up and 10ms ramp-down). The
cue identity signaled which memory item should be used as a boundary
for a forthcoming perceptual decision (cued item), while the other item
was maintained merely for later use in the block (uncued item). The cue
was followed by a 700ms delay period within which a black fixation dot
was presented centrally on the screen (diameter, 0.15°). Thereafter,
a randomly oriented Gabor patch was presented (orientation drawn
from a set of 16 possible orientations, spaced evenly at 11.25° intervals
from 8.4375° to 177.1875°; patches: 6° diameter; 50% contrast; 1.75
cycles/°; random phase, Gaussian envelope with 1.2° SD). Participants
were given a maximum time window of 4000 ms to classify the target via
button press as being tilted clockwise or counterclockwise relative to the
cued item. Targets were presented for 100ms and replaced by a fixation
dot for the remainder of the response period. In experiment 1, the target
was presented centrally on the screen on all trials. In experiment 2, the
target was presented laterally at a distance of 6° from the screen center.
The side of target presentation (left vs right) alternated predictably
across blocks. The change in stimulus position in experiment 2 was
implemented to facilitate stable fixation during the target period and
minimize a potential contamination of the EEG signal by eye
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movements toward the target (Mostert et al., 2018). A noise patch
(Gaussian smoothed random white noise using a kernel with 0.13° SD,
convolved with a Gaussian envelope with 1.2° SD) that matched the tar-
get stimulus in luminance, size, contrast, and eccentricity was presented
on the side of the screen at which no target appeared (see Fig. 2B, illus-
tration). Clockwise and counterclockwise decisions were indicated with
the right and left index fingers, respectively. The response period was fol-
lowed by a variable intertrial interval (400–900 ms; drawn from a trun-
cated exponential distribution: mean, 550ms) until the next trial started
with the presentation of a cue. Importantly, participants received feed-
back about their performance only at the end of each block when their
mean accuracy and response time from the preceding block was pre-
sented. Accordingly, they had to maintain precise representations of
both memory items for the whole duration of the block, as they could
not rely on trial-wise feedback to infer the orientation of an item if it was
forgotten. Overall, participants completed 128 blocks, resulting in a total
of 2048 trials and lasting;2 h.

Behavioral data analyses. Performance accuracy and log-trans-
formed reaction time (log-RT) was analyzed using general linear models
(GLMs). Initially, we tested to what extent performance was affected by
the angular distance between the orientation of the target and the orien-
tation of the cuedWM item. We next repeated the analysis, but this time
testing for an effect of the distance between target orientation and the
orientation of the uncued WM item. To visualize these results, we fit the
proportion of clockwise choices with a binomial cumulative distribution
function using a GLM implemented in R with the ggplot2 and the psy-
phy packages (Webster et al., 2019). We fit another GLM to test for the
presence of performance costs as a result of priority shifts withinWM by
comparing accuracy and RT between trials that incurred a shift in prior-
ity (switch trials) and trials that did not (repetition trials). Finally, we
tested the stability of performance within and across experimental blocks
by predicting accuracy and log-RT based on a variable denoting the trial
number within a block (1–16) and another variable denoting the block
number within the experiment (1–128).

Preprocessing. EEG data were initially rereferenced to the average of
both mastoids. EEG, EOG, and EMG data were then downsampled to
250Hz and bandpass filtered, using a high-pass filter of 0.1Hz and a
low-pass filter of 45Hz. Because of recent evidence suggesting that ex-
cessive high-pass filtering can yield temporal displacement of decoded
information (van Driel et al., 2019), we repeated all of our analyses with
a more lenient high-pass filter of 0.01Hz, which yielded nearly identical
results. EEG channels with excessive noise were identified through visual
inspection and replaced via interpolation using a weighted average of the
surrounding electrodes. The continuous time series data were then di-
vided into epochs, corresponding to the experimental trials starting
200ms before to the onset of the cue and terminating 1800ms after the
onset of the target. Each trial was inspected visually for blinks, eye move-
ments, and nonstereotyped artifacts. Trials were rejected if they con-
tained any of those artifacts during the delay and/or target period.
Stereotyped artifacts outside those periods were subsequently removed
from the data via independent component analysis. Unless stated other-
wise, the data were baseline corrected for the decoding analyses using
the average signal from the time window of 200–50ms before cue onset.
Eye-tracking data were downsampled to 250Hz, and we identified and
interpolated blinks using spline interpolation and a time window of
6100 ms around the event (van Ede et al., 2019).

EEG decoding analyses. We conducted a series of multivariate pat-
tern analyses to characterize the neural representations that underpin
performance in our task.

Time-resolved decoding. In a first step, we conducted a time-resolved
decoding analysis to reveal the time courses at which three variables of
our task were explicitly encoded in EEG sensor activity, as follows: (1)
the orientation of the target stimulus; (2) the orientation of the cued and
uncued memory items; and (3) a decision variable that was calculated as
the absolute distance between the orientation of the target and the orien-
tation of the two memory items. To recover parametric information
about these variables from EEG sensor activity with high temporal reso-
lution, we computed Mahalanobis distances between the patterns of sen-
sor activity that were evoked by different stimulus orientations and

measured the extent to which these distances reflected the underlying
circular orientation space (or linear decision variable space; Fig. 1). We
used a leave-one-block-out cross-validation procedure with the data
from each block serving as test data once and all of the remaining data
serving as training data. Training data were subdivided into 16 bins,
according to their orientation relative to the test data, and then averaged.
Mahalanobis distances between the 16 average patterns in the training
data and each test trial data were then computed using the noise covari-
ance from training data. Noise covariance was calculated on the average
residual data after subtracting orientation-specific mean activity from
each trial with the corresponding orientation. Residuals were averaged
over a time window from 0 to 1.8 s relative to the onset of the auditory
cue (and therefore encompassed the cue, delay, target, and decision
phases). The covariance was calculated over the trials-by-sensors matrix
of average residuals, using a shrinkage estimator (Ledoit and Wolf,
2004). This procedure was repeated for every block and for every time
point within the trial using 4ms time bins. We normalized the resulting
pattern distances by subtracting the mean across the 16 distances for
each time point from the activity of each sensor. To simplify interpreta-
tion, we reversed their sign so that positive values reflected pattern simi-
larity rather than distance. This procedure enabled us to compute an
orientation tuning curve for each time point and trial, which expresses
the extent to which pattern similarity decreases as a function of angular
distance. To transform the 16-dimensional tuning curve into a 1-dimen-
sional index of decoding accuracy, we computed the cosine vector mean
of each tuning curve by rescaling the cosine of the center of each orienta-
tion bin to the range from�180 to 180 and multiplying it with the corre-
sponding pattern similarities. The mean of the resulting 16 values served
as an index of decoding accuracy with positive values reflecting the tun-
ing of the EEG signal for stimulus orientation (Sprague et al., 2016;
Wolff et al., 2017). Decoding values were smoothed with a Gaussian ker-
nel (SD= 24 ms) for visualization and significance testing. We tested for
significance using one-sample t tests against 0 at each time point, and
corrected for multiple comparisons in time via cluster-based permuta-
tion testing using 10,000 permutations (Maris and Oostenveld, 2007).
For the decoding of the memory items, cluster correction was applied
for the whole trial. In contrast, for the decoding of the target and the de-
cision variable, cluster correction was only applied for the target period
(i.e., the 1800ms after target onset), because these variables could by def-
inition only be encoded after the onset of the target stimulus. In keeping
with previous work from our group (Wolff et al., 2020a,b), decoding
analyses were conducted only within posterior EEG sensors (P7, P5, P3,
P1, P2, P4, P6, P8, PO7, PO5, PO3, POz, PO4, PO8, O1, Oz, O2). We
selected these channels to be consistent with previous studies and
because orientation signals are typically expressed most strongly in pos-
terior regions (Cichy et al., 2015; Myers et al., 2015; Kok et al., 2017).
Please note, however, that none of the reported results depend on this
channel subselection (i.e., all reported effects remain significant when
using all 61 channels). Moreover, please note that, in experiment 2,
decoding analyses were conducted separately for blocks with target pre-
sentation on the left and right side, and decoding accuracies were subse-
quently averaged across sides. The decision variable (absolute difference
between memory item and target) followed a discrete uniform distribu-
tion between 5.625° and 84.375°, unlike the other variables (memory
items and target stimuli), which had a circular distribution. Our decod-
ing approach therefore needed to be adjusted for decoding of the deci-
sion variable. Instead of reducing the dimensionality of the tuning curve
using a cosine vector mean, we calculated the linear slope of the tuning
curve. Notably, previous studies have reported that decoded memory
signals can be contaminated by stimulus-specific eye movements
(Mostert et al., 2018). We therefore repeated the aforementioned decod-
ing analyses with data from the binocular EOG channels (experiment 1)
or eye-tracker channels (experiment 2) to reveal whether the same task
variables were encoded in participants’ eye positions. We also regressed
the eye channel-based decoding time series against the EEG-based
decoding time series to reveal the extent to which decoded EEG signals
were linked with potential concomitant oculomotor signals.

Spatiotemporal decoding from stimulus-evoked EEG signals. In a sec-
ond step, we used a complementary analysis approach to decode the
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same task variables from longer time windows of stimulus-evoked brain
activity. This approach exploits the dynamic temporal structure of
event-related potentials by pooling multivariate information in time,
thus capturing not only information encoded in spatial activation pat-
terns, but also information that is encoded in the temporal unfolding of
these spatial patterns. A previous study from our group has shown that
such pooling over adjacent time points within trials can increase decod-
ing sensitivity at the expense of temporal precision (Wolff et al., 2020a).
Consequently, the two decoding approaches capture complementary
aspects of neural representations and should be considered mutually in-
formative. In keeping with the previous study, we combined EEG data
from the 17 posterior channels within a time window of 100–400 ms af-
ter target onset, thus treating single trials as discrete events. The time
window was chosen because stimulus-evoked WM signals are largely
confined to this period (Wolff et al., 2017, 2020a,b). The mean activity at
each sensor and time point was removed to normalize voltage fluctua-
tions and isolate dynamic, stimulus-evoked brain states from brain activ-
ity that is stable across the chosen time period. To avoid having more
data features (number of sensors � number of time points in the train-
ing data) than data samples (number of trials in the training set), we also
downsampled the signal at each sensor by a factor of 10 (i.e., from 250 to
25Hz). Following this preparation, we performed decoding analyses via
Mahalanobis distances using the same procedure as detailed above. The
spatiotemporal approach was used to decode the same task variables
(target stimulus, memory items, decision variable), yielding a single
vector of decoding accuracies for each subject and task variable. We eval-
uated the significance of results via one-sample t test against 0 (one-
tailed, testing for above-chance decoding).

Regression analyses. We conducted a series of regression analyses to
establish the behavioral relevance of the decoded memory signals and
test our hypothesis that cued and uncued memory items are encoded in

qualitatively different functional states. In a first step, we regressed log-
RT and accuracy against the trial-wise decoding strength of cued and
uncued memory items. That is, for each trial and item, we calculated the
decoding strength using the spatiotemporal approach described above,
and normalized these scores by subtracting the block average to isolate
across-trial fluctuations from more sustained changes in decoding. We
then used these normalized scores to predict trial-wise variance in per-
formance with general linear models serving to predict log-RT and logis-
tic regression models serving to predict accuracy. We also included
regressors for the block number and the trial within the block to account
for general changes in performance across and within blocks (see
Results; Fig. 2D,E). As we were interested in potential null effects (i.e.,
absence of links between trial-wise variance in performance and trial-
wise variance in the decoding strength of uncued items), we analyzed
regression weights through a combination of frequentist and Bayesian
statistics. Initially, we tested whether regression weights were signifi-
cantly different from 0 using one-sample t tests and also calculated Bayes
factors (BFs) from Bayesian one-sample t tests to quantify the evidence
in favor of the null hypothesis and the alternative hypothesis. Based
on our hypotheses, we used one-tailed tests in the direction of facilitation
(i.e., positive regression weights for accuracy and negative weights for
log-RT) for the cued item and in the direction of interference (i.e., nega-
tive weights for accuracy and positive weights for log-RT) for the uncued
item. These analyses were implemented within JASP software using
default priors for the Bayesian analyses (Keysers et al., 2020). We also
compared regression weights between cued and uncued items using
paired t tests (one-tailed, testing for greater facilitation with cued items)
and calculated Bayes factors resulting from a Bayesian paired-samples t
test.

In a second step, we regressed log-RT and accuracy against the aver-
age block-wise decoding strength of each memory item. That is, we

Figure 1. Illustration of time-resolved and spatiotemporal approaches that were used for the decoding of task variables. Top, Illustration of the time-resolved decoding approach. Here, for
each training set and time point, Mahalanobis distances were computed between activation patterns of posterior sensors of the test data and the training data (binned based on their orienta-
tion relative to the test data). After repeating this procedure for every training set and time point, the resulting distances were sign reversed, so that positive scores reflect pattern similarity,
and were centered around the mean voltage across sensors for each time point. This was used to reconstruct a time-resolved population tuning curve that expresses the extent to which pattern
similarity reflects the similarity of the underlying angular orientation space across time. We estimated the height of this tuning curve for each time point by convolving it with a cosine function
(for details, see Materials and Methods). The resulting vector served as an index of time-resolved decoding accuracy. Bottom, Illustration of the spatiotemporal decoding approach. Here, the
data entering the decoders were pooled over multiple time points, so as to exploit not only information that is encoded in spatial activation patterns, but also information that is encoded in
their temporal structure. We focused on the time window from 100 to 400 ms after target onset and treated individual trials as discrete events. Tuning curves were estimated based on mean-
centered and sign-reversed Mahalanobis distances, as in the time-resolved approach, yielding a single index of decoding strength for each trial as final output.
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predicted performance on each trial (test trial) based on the average
decoding strength across all remaining trials within the same block on
which the respective memory item was cued or based on the average
decoding strength across all trials on which the respective memory item
was uncued. Analogously to the trial-wise analyses, we calculated fre-
quentist and Bayesian statistics to analyze the resulting regression
weights.

Finally, we repeated the trial-wise analysis with the output from a
cross-item decoder that was trained with data sorted by the cued item
and tested with data sorted by the uncued item. This analysis aimed to
reveal whether interference from uncued items scales with the extent to
which these items are encoded in neural patterns that resemble their
functionally active state. Initially, regression weights were tested against
chance level using one-sample t tests (one-tailed testing for above-
chance decoding) and compared with the regular decoder of the uncued
item using paired samples t tests and Bayes factors (two-tailed, based on
the lack of a priori predictions). Thereafter, the regression weights of the
cross-item decoder were tested against 0 using one-sample t tests and
Bayes factors (one-tailed testing for interference effects). We repeated
this analysis separately for trials that demanded a priority shift between
WM items (switch trials), relative to the previous trial, and trials that did
not (repetition trials). Regression weights were compared between trial
types via paired-samples t tests (one-tailed, testing for greater interfer-
ence effects on switch trials). We also conducted a control analysis to
match the cross-item decoder and the regular decoder of the uncued
item in terms of mean and SD. To this end, we first mean centered the
two vectors that denoted trial-wise scores of each decoder. Mean-cen-
tered vectors were then scaled by the SD of the cross-item decoding vec-
tor. We then calculated the SD of the noise that was required to match
the scaled cross-item decoder with the scaled regular decoder of the
uncued item and added random noise with the estimated properties to
the output of the cross-item decoder. The noise-matched decoder was
then used to predict performance using the method described above for
trial-wise regression analyses. This procedure was repeated with 1000
noise injections and regression weights were averaged across all
iterations.

Drift diffusion modeling. In the next set of analyses, we aimed to
characterize functionally active WM states in more detail by delineating
how they influenced WM-guided decisions in our task. To this end, we
fit a set of drift diffusion models (DDMs) to our behavioral data and
regressed variance in model parameters against variance in decoding
strength. DDMs characterize decisions as the accumulation of noisy evi-
dence between two competing options, whereby one option is chosen
once a sufficient amount of evidence has been accumulated (Ratcliff and
McKoon, 2008; Shepherdson et al., 2018). DDMs decompose perform-
ance in two-alternative choice tasks into latent decision parameters
based on RT distributions and choice probabilities. The most parsimoni-
ous version of the DDM has the following three parameters: drift rate,
non-decision time, and decision threshold. First, the drift rate reflects
the quality or strength of decision-relevant information and scales nega-
tively with categorization difficulty (i.e., lower drift rate with more diffi-
cult discriminations). Second, the non-decision time is thought to reflect
the time needed for processes that are not directly related to evidence
accumulation such as the encoding of a stimulus or the execution of a
response. Finally, the decision threshold (or boundary separation)
reflects the amount of evidence that is needed to commit to a behavioral
choice. This parameter is thought to be under strategic control and to
regulate speed–accuracy tradeoffs (e.g., higher thresholds will result in
slower but more accurate responses).

After observing that trial-wise variance in the decoding strength of
cued, but not uncued, memory items tracked variance in task perform-
ance (see Results), the central aim of this analysis was to identify which
decision parameter could account for this benefit. This enabled us to
compare the following two hypotheses that have previously been pro-
posed in the literature: (1) the matched filter hypothesis; and (2) the re-
trieval head-start hypothesis. Under the matched filter hypothesis,
variance in decoding strength should track the ease with which sensory
input is interpreted and transformed into a decision variable. This would
be the case, for example, if the same neuronal population that encodes
cued items also processes incoming stimuli and computes a signal
reflecting their match/mismatch (Sugase-Miyamoto et al., 2008; Hayden
and Gallant, 2013). This view predicts that variance in decoding strength

Figure 2. Illustration of the task design and behavioral results of experiment 1 (top) and experiment 2 (bottom). A, At the beginning of each block, two randomly oriented bars were shown suc-
cessively in blue and yellow. These two items served as memory items for the remainder of the block and were associated with a high-pitch tone and a low-pitch tone, respectively (mapping coun-
terbalanced across subjects). Please note that the items were successively presented at the center of the screen. B, During the block, each trial started with the presentation of an auditory cue that
signalled which item should be used as the decision criterion on the current trial (cued item), while the other item had to be maintained for later use in the block (uncued item). After a brief delay,
a randomly oriented Gabor patch was presented as the target, and participants were required to indicate whether the target was oriented clockwise or counterclockwise relative to the cued item.
In experiment 1, the target was shown centrally on the screen. In experiment 2, the target was shown peripherally on the left or right side of the fixation dot, while a noise patch was presented
on the other side. The noise patch matched the target in luminance, size, contrast, and eccentricity. Note that the location of the target was indicated to participants at the beginning of each block.
C, Probability of clockwise responses as a function of the angular difference between target stimulus and the currently cued item (shown in red) and from the currently uncued item (shown in
blue). Data are shown in dots, and the lines represent a fitted binomial cumulative distribution function. Responses were strongly modulated by the angular distance between the orientation of the
target and the orientation of the cued item, whereas the distance between the target and uncued item had only minimal impact on performance (for details, see Materials and Methods, and
Results). D, E, Performance stability across and within experimental blocks. Overall, participants completed 128 blocks, each containing 16 trials. Plots on the left display performance as a function
of block number. While accuracy was stable across blocks, RT continuously declined with increasing block numbers. Conversely, within blocks, accuracy continuously declined, whereas RT was stable,
with the exception of the first trial, which exhibited longer RT than subsequent trials. Shadings indicate SEMs.
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across trials should be positively associated with variance in drift rate (see
Fig. 8A). Alternatively, under the retrieval head-start hypothesis, prioritiza-
tion of WM items primarily affects their accessibility for decision-making,
thus reducing the latency at which evidence accumulation can start. This
view predicts that variance in decoding strength across trials should scale
negatively with variance in non-decision time (see Fig. 8B).

To test these hypotheses, we conducted a series of analyses using the
HDDM python toolbox in version 0.6 (Wiecki et al., 2013). HDDM
implements a hierarchical Bayesian version of the DDM, wherein model
fits for individual participants are constrained by the group distribution.
It applies Markov Chain Monte Carlo sampling methods to estimate
posterior distributions over DDM parameters. Each parameter was mod-
eled to be normally distributed and centered around the group mean.
Moreover, the prior distribution for each parameter was informed by a
collection of 23 empirical studies documenting decision parameters with
optimal fit across a range of decision paradigms (Wiecki et al., 2013).
Five thousand samples were taken from each distribution, from which
the first 1000 were discarded as burn-in. This was done because the ini-
tial samples are likely to be unreliable because of the random selection of
a starting point. To establish links between trial-wise fluctuations of the
decision parameters and trial-wise fluctuations in the decoding strength
of the cued memory item, we fit a set of linear regression models using
the patsy library. Separate analyses were run for drift rate and non-deci-
sion time. We evaluated results statistically via the posterior distribution
of the estimated regression weights. Effects were considered significant if
at least 95% of the posterior probability mass was above or below 0,
and in the predicted direction (positive for drift rate and negative for
non-decision time; see explanation above).

Effects of priority shifts on memory precision. In the final set of analy-
ses, we aimed to characterize the format of functionally latent WM states
in more detail by testing whether shifting priority away from a WM item
would degrade its precision, relative to maintaining the same item in a
prioritized state. Such shift-dependent degradation is predicted by
resource theories of WM, which assume that items receive fewer mne-
monic resources when they are maintained in a nonprioritized state.
This prediction contrasts with state-based theories, which assume that
prioritized and nonprioritized WM items are represented with different
functional attributes but similar precision. Hence, by probing the poten-
tial effects of priority shifts on memory precision, we could compare dif-
ferent accounts of WM prioritization that are based on the distribution
of mnemonic resources or the reconfiguration of functional states.

To examine this question, we conducted a series of behavioral and
EEG analyses. Initially, we performed another regression analysis to test
whether the number of priority shifts that had preceded a given trial
within a block would predict a decline in performance above and beyond
a purely time-dependent decline (as measured by the trial number
within the blocks). We predicted accuracy and log-RT using a GLM that
contained predictor variables for the trial number within the current
block (block trial) and the number of cue switches preceding the current
trial within the block (cue sequence; see Fig. 9A). The block trial variable
indexes time-dependent degradation, whereas the cue sequence variable
indexes shift-dependent degradation. As for the previous analyses, we
evaluated regression weights of each predictor variable using one-sample
t tests (one-tailed in the direction of degradation) and Bayes factors from
Bayesian one-sample t tests.

In a second step, we tested whether shifting priority away from an
item would increase categorical biases, whereby items are encoded with
respect to their closest cardinal boundary. We therefore calculated a vari-
able reflecting the angular distance between the cued WM item on each
trial and the closest cardinal axis (vertical or horizontal; see Fig. 9B).
This variable was used as a predictor for accuracy and log-RT, separately
for each cue sequence. Regression weights were again evaluated using
one-sample t test (one-tailed in the direction of categorical biases) and
Bayes factors, and compared between cue sequences using paired-sam-
ples t tests and Bayes factors. Paired-samples t tests were one-tailed test-
ing for shift-dependent degradation (i.e., larger effects of cardinal
distance with later cue sequences).

Finally, we also tested effects of priority shifts on WM representa-
tions using EEG-based decoding strength as an index of WM precision.

We therefore divided decoder outputs based on the first four cue
sequences within each block (see Fig. 9A). To test for differences in
decoding time course, we compared the time-resolved decoding strength
between the four cue sequences using the cluster correction described
above. We also compared the spatiotemporal decoding strength (see
description above) between the first four cue sequences using paired-
samples t test and Bayes factors (one-tailed, testing for shift-dependent
degradation). Last, we also conducted regression analyses, predicting
log-RT and accuracy from spatiotemporal decoding strength, separately
for each cue sequence. As for the previous analyses, regression weights
were tested against chance using one-sample t tests and Bayes factors,
and compared using paired-samples t tests and Bayes factors (one-tailed,
testing for decreases in performance prediction with larger cue
sequences).

Data availability. The data, task, and analysis scripts from this study
will be made publicly available at https://osf.io/v28fm/?view_only=
b8ebb32d8242455c9f9c37ccaceab76b.

Results
Behavior
Participants were able to perform the task well above chance
(experiment 1: accuracy = 79.5%; reaction time= 573 ms; experi-
ment 2: accuracy = 80.1%; reaction time= 679 ms). As shown in
Figure 2C, performance was strongly modulated by the angular
distance between the target orientation and the orientation of the
cued WM item. RT decreased with greater distances (experiment
1: t(19) = 10.078; p, 0.001; Cohen’s d= 2.253; experiment 2: t(29)
= 10.462; p, 0.001; d= 1.910), while accuracy increased (experi-
ment 1: t(19) = 12.677; p, 0.001; d= 2.835; experiment 2: t(29) =
18.426; p, 0.001; d= 3.364). By contrast, the angular distance
between the target and the uncued WM item had only marginal
impact on RT (experiment 1: t(19) = 2.49; p= 0.069; d= 0.441;
experiment 2: t(29) = 2.125; p=0.103; d= 0.325), and a modest
effect on accuracy (experiment 1: t(19) = 2.751; p=0.013;
d= 0.615; experiment 2: t(29) = 0.205; p= 0.839; d= 0.037). In
addition, we observed a reliable effect of priority shifts, whereby
performance was slower (experiment 1: t(19) = 7.097; p, 0.001;
d= 1.587; experiment 2: t(29) = 12.864; p, 0.001; d= 2.349) and
more error prone (experiment 1: t(19) = �2.704, p= 0.014, d =
�0.605; experiment 2: t(29) = �2.711, p=0.011, d = �0.495) on
trials that incurred a shift in priority between the two WM items
(experiment 1: RT=631 ms; accuracy = 78.9%; experiment 2:
RT=772 ms; accuracy = 79.5%), relative to the previous trial,
than on trials in which the item priority repeated (experiment 1:
RT=551 ms; accuracy = 79.7%; experiment 2: RT=646 ms;
accuracy= 80.3%). We also found that accuracy was stable across
experimental blocks (experiment 1: t=1.214; p=0.240; d= 0.271;
experiment 2: t(29) = 0.080; p= 0.937; d= 0.015), but declined
continuously across trials within blocks (experiment 1: t(19) =
�13.841; p, 0.001; d= 3.095; experiment 2: t(29) = �6.242;
p, 0.001; d = �1.140). Conversely, RT decreased with increas-
ing block numbers (experiment 1: t = �7.227; p, 0.001; d =
�1.616; experiment 2: t = �7.129; p, 0.001; d= 1.302), but was
stable within blocks except for the first block trial (experiment 1:
t(19) = �0.432; p=0.671; d = �0.097; experiment 2: t(29) =
�2.528; p= 0.017; d =�0.462; Fig. 2D,E)

Time-resolved decoding of task variables
We conducted a series of multivariate pattern analyses to charac-
terize the neural representations that underpin performance in
our task. In a first step, we conducted a time-resolved decoding
analysis to reveal the time courses within which the following
three task variables were explicitly encoded in EEG sensor activ-
ity: (1) the orientation of the target stimulus; (2) the orientation

4466 • J. Neurosci., May 19, 2021 • 41(20):4461–4475 Muhle-Karbe et al. · Functional States in Working Memory

https://osf.io/v28fm/?view_only=b8ebb32d8242455c9f9c37ccaceab76b
https://osf.io/v28fm/?view_only=b8ebb32d8242455c9f9c37ccaceab76b


of the memory item, separately for cued and uncued conditions;
and (3) a decision variable that was calculated as the absolute dis-
tance between the orientation of the target and the orientation of
the WM item, again separately for cued and uncued conditions.
To recover information about these variables from EEG sensor ac-
tivity with high temporal resolution, we computedMahalanobis dis-
tances between the patterns of sensor activity that were evoked by
different stimulus orientations and measured the extent to which
these distances reflected the underlying circular orientation space or
linear decision variable space (Fig. 1, illustration; for details, see
Materials andMethods).

Information about the orientation of the target stimulus
started to be encoded in EEG sensor patterns briefly after target
onset, and decoding remained significant for the remainder of
the selected time window (Fig. 3; experiment 1: from 72ms after
the target; cluster-corrected p, 0.0001; experiment 2: from
68ms after the target; cluster-corrected p, 0.0001). Cued and
uncued memory items were both decodable, but with clear dif-
ferences in their respective time courses. Decoding of the cued
item started to rise during delay period and was further magni-
fied after target onset (experiment 1: first cluster: 208–376 ms af-
ter the cue; cluster-corrected p=0.011; second cluster = 400–
2000 ms after the cue; cluster-corrected p, 0.00,001; experiment
2: 420–2000 ms after the cue; cluster-corrected p, 0.0001). In
contrast, the uncued item was not decodable during the delay pe-
riod, but there was a time window of significant decoding after
the onset of the target stimulus (experiment 1: 192–528 ms after
the target; cluster-corrected p=0.0005; experiment 2: 272–316

ms after the target; cluster-corrected p= 0.048). Slightly later dur-
ing the target period, we could decode a decision variable for the
cued item (experiment 1: 244–1000 ms after the target; cluster-
corrected p=0.0002; experiment 2: 388–1000 ms after the target;
cluster-corrected p=0.001), whereas no decision variable was
decodable for the uncued item. Finally, for all three task varia-
bles, we also validated that eye movements could not explain the
pattern of EEG decoding results (Fig. 4).

Spatiotemporal decoding
In a second step, we used a complementary analysis approach to
decode the same task variables from longer time windows of
stimulus-evoked brain activity (Fig. 1; see Materials and
Methods). Previous work has shown that such pooling over adja-
cent time points within trials can increase decoding sensitivity at
the expense of temporal precision (Wolff et al., 2020a,b). In
keeping with these studies, we pooled data points over a time pe-
riod from 100 to 400 ms after target onset and treated individual
trials as discrete events. As seen in Figure 3, this approach clearly
enhanced decoding sensitivity. Specifically, we could reliably
decode the orientation of the target (experiment 1: t(19) = 11.606;
p, 0.001; d= 2.533; experiment 2: t(29) = 11.465; p, 0.001;
d= 2.093), the orientation of the cued item (experiment 1: t(19) =
5.443; p, 0.001; d= 1.217; experiment 2: t(29) = 7.631; p, 0.001;
d= 1.393), and the orientation of the uncued item (experiment 1:
t(19) = 4.237; p, 0.001; d= 0.947; experiment 2: t(29) = 2.122;
p= 0.021; d= 0.387). Interestingly, using the spatiotemporal
approach, we could not only decode a decision variable for the

Figure 3. Time-resolved and spatiotemporal decoding of task variables for experiment 1 (first row), experiment 2 (second row), and the pooled data across experiments (third row). Panels
on the left display the decoding results for the orientation of the target stimulus, middle panels display the decoding results for the orientation for the cued and uncued memory items, and
panels on the right display the decoding results for the absolute value of the decision variable, calculated separately with respect to the cued and uncued memory item. For each experiment
and task variable, plots on the left display time-resolved decoding results from 200 ms before cue onset until 800 ms after target onset. Colored lines represent cluster-corrected time periods
within which decoding was significantly greater than chance. Black lines in the middle and bottom rows indicate cluster-corrected time periods within which decoding strength of the cued
and uncued WM items differed significantly. Shading indicates SEM. Plots on the right display results of the spatiotemporal decoding approach where data entered into the decoder were
pooled within a time window from 100 to 400 ms following target onset (for details, see text). Boxplots, Center lines indicate the median, the box outlines indicate the 25th and 75th percen-
tiles, and the whiskers indicate 1.5 times the interquartile range. pppp, 0.005; ppp, 0.01; pp, 0.05.
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cued item (experiment 1: t(19) = 5.632; p, 0.001; d= 1.259;
experiment 2: t(29) = 5.482; p, 0.001; d=1.001), but also for the
uncued item (experiment 1: t(19) = 2.712; p=0.008; d= 0.606,;
experiment 2: t(29) = 2.151; p=0.020; d= 0.393).

Regression analyses. Active, but not latent, WM states predict
trial-wise variance in task performance
We next conducted a series of regression analyses to establish the
relevance of the decoded memory signals for task performance
and test our hypothesis that cued and uncued items are encoded
in qualitatively different functional states. To reiterate, we
expected that the cued item would be encoded in a decision-ori-
ented state that directly predicts the variance in performance,
whereas the uncued item should be held in a functionally latent
state that has minimal impact on current performance. To test
this prediction, we regressed log-RT and accuracy against the
trial-wise decoding strength of cued and uncued WM items using
the spatiotemporal classifier (see Materials andMethods). As shown
in Figure 5, we observed that higher trial-wise decoding of the cued
item reliably predicted faster log-RT [experiment 1: t(19) = �4.362;
p, 0.001; d = �0.975; BF in favor of the alternative hypothesis
(BFH1)=190.357; experiment 2: t(29) = �2.895; p=0.004; d=0.529;
BFH1 = 11.950; pooled data: t(42) = �4.637; p, 0.001; d = �0.707;
BFH1 = 1271.980] and tended to predict higher accuracy (experi-
ment 1: t(19) = 2.207; p=0.020; d=0.493; BFH1 = 3.239; experiment
2: t(29) = 1.504; p=0.072; d=0.275; BFH1 = 0.985; pooled data:
t(42) = 1.596; p=0.059; d=0.243; BFH1 = 0.994). By contrast, trial-
wise variance in decoding of the uncued item predicted neither log-
RT [experiment 1: t(19) = 0.622; p=0.271; d=0.139; BF in favor of
the null hypothesis (BFH0)=2.515; experiment 2: t(29) = �0.713;
p=0.759; d = �0.130; BFH0 = 8.172; pooled data: t(42) = 0.391;
p = 0.349; d = 0.060; BFH0 = 4.356] nor accuracy (experiment
1: t(19) = �0.410; p = 0.343; d = �0.092; BFH0 = 3.072; experi-
ment 2: t(29) = 1.186; p = 0.877; d = 0.216; BFH0 = 10.324;
pooled data: t(42) = 0.986; p = 0.835; d = 0.150; BFH0 =
11.199), with Bayes factors indicating substantial evidence in
favor of the respective null hypotheses. Regression weights of
the cued and the uncued items differed significantly in the
prediction of log-RT (experiment 1: t(19) = �2.452; p = 0.012;
d = �0.548; BFH1 = 4.903; experiment 2: t(29) = �1.360;
p = 0.092; d = �0.248; BFH1 = 0.805; pooled data: t(42) =
�2.669; p = 0.005; d = �0.407; BFH1 = 7.413). Together, these

results support our prediction that cued items are encoded in
a functionally active state that guides WM-based decisions,
whereas uncued items are held in a functionally latent state
that has minimal impact on ongoing cognition.

Functionally active and latent WM states both track memory
precision over longer timescales
After establishing that the decoding strength of uncued items is
unrelated to performance on the current trial, we next tested the
extent to which these signals nonetheless capture behaviorally
relevant variance by examining their contribution to general
maintenance. Although a strong representation of the uncued
item is not advantageous on the current trial, it is nonetheless
crucial for performance on other trials in the same block when
priorities differ, and the same item becomes task relevant.
Therefore, maintaining an accurate representation of the uncued
memory item reflects a minimal requirement for solving the task
as a whole. Accordingly, we reasoned that the overall quality
with which a memory item is encoded throughout the block
when it is uncued may track performance in the same block on
those trials when the same item is cued. We tested this assump-
tion by regressing log-RT and accuracy against the decoding
strength of the two memory items averaged over the remaining
trials of the block. Assuming that block-wise decoding tracks dif-
ferences in the general quality with which items are encoded
throughout the block, we reasoned that the strength of both cued
and uncued items should scale positively with performance.

As shown in Figure 6, accuracy was indeed predicted by
the block-wise decoding strength of the cued item (experi-
ment 1: t(19) = 3.034; p, 0.003; d = 0.678; BFH1 = 14.020;
experiment 2: t(29) = 2.526; p = 0.009; d =0.461; BFH1 =
5.633; pooled data: t(42) = 3.797; p, 0.001; d = 0.579; BFH1 =
177.778) and the uncued item (experiment 1: t(19) = 2.005;
p, 0.030; d = 0.448; BFH1 = 2.341; experiment 2: t(29) =
1.656; p = 0.054; d = 0.302; BFH1 = 1.233; pooled data: t(42) =
�2.318; p, 0.013; d = 0.354; BFH1 = 5.725). Differences
between the regression weights for the cued and the uncued
items were nonsignificant, with Bayes factors providing evi-
dence in favor of the null hypothesis (experiment 1: t(19) =
0.045; p = 0.964; d = 0.010; BFH0 = 4.300; experiment 2:
t(29) = 0.826; p = 0.415; d = 0.151; BFH0 = 3.760; pooled data:

Figure 4. A, B, Time-resolved decoding of task variables using EOG channels in experiment 1 (A, top row) and the high-resolution eye-tracker in experiment 2 (B). These data show that
eye channels did not contain reliable information about the task variables that were decoded from EEG sensor patterns. Each plot displays time-resolved decoding results from 200 ms before
cue onset until 800 ms after target onset. Colored lines represent cluster-corrected time periods within which decoding was significantly greater than chance. Shading indicates the SEM. C, D,
To rule out that the signals decoded from EEG activity were not caused by subtle eye movements, we also regressed decoding time series obtained with the eye channels against the respective
time series obtained with the EEG. Plots indicate the residual EEG signal after regressing out variance that could be explained by eye-channel signals in experiment 1 (A) and experiment 2 (B).
No qualitative changes were observed compared with the original EEG decoding analysis, corroborating that eye movements did not explain the observed decoding results.
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t(42) = 0.514; p = 0.695; d = 0.078; BFH0 = 5.796). In addition,
block-wise decoding of the cued item also predicted log-RT
(experiment 1: t(19) = �4.093; p, 0.001; d = �0.915; BFH1 =
111.097; experiment 2: t(29) = �1.812; p = 0.040; d = �0.331;
BFH1 = 1.575; pooled data: t(42) = �4.253; p, 0.001; d =
�0.648; BFH1 = 155.046), which was not the case for the
uncued item (all p. 0.299; all d, 0.140; all BFH0 . 3.253).
Together, these results show that although functionally
latent WM states do not engage with decision dynamics on
the current trial, they nonetheless support performance at
longer timescales.

Similarity to the functionally active state predicts interference
from uncued items
The previous sections established that uncued items are encoded
in a format that supports memory maintenance but has minimal
impact on ongoing processing. Nonetheless, we had observed the
following two behavioral signatures of interference between the
two memory items: a subtle but reliable effect of the angular dis-
tance between the uncued item and the target stimulus on deci-
sion accuracy; and a performance cost on trials demanding a
priority shift between items. Given our previous finding that the
strength of functionally active, but not functionally latent, WM

Figure 5. Regression of task performance based on trial-wise variance in decoding strength of the cued and uncued WM items, separately for experiment 1 and experiment 2, and the
pooled data across experiments. The top row displays the distribution of regression weights across participants for the prediction of reaction time, and the bottom row displays the prediction
of accuracy. Boxplots, Center lines indicate the median, the box outlines indicate the 25th and 75th percentiles, and the whiskers indicate 1.5 times the interquartile range. pppp, 0.005;
ppp, 0.01; pp, 0.05. Plots on the right display sequential Bayes factors for the respective regression weights (based on the pooled dataset).

Figure 6. Regression of task performance based on block-wise decoding accuracy of the cued and uncued WM items, separately for experiment 1, experiment 2, and the pooled data across
experiments. The top row displays the distribution of regression weights across participants for the prediction of reaction time, and the bottom row displays the same for the prediction of accu-
racy. Boxplots, Center lines indicate the median, the box outlines indicate the 25th and 75th percentiles, and the whiskers indicate 1.5 times the interquartile range. pppp, 0.005; ppp,
0.01; pp, 0.05. Plots on the right display sequential Bayes factors for the respective regression weights (based on the pooled dataset).
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states tracks fluctuations in performance, we reasoned that inter-
ference may reflect the extent to which uncued memory items are
encoded in patterns resembling their functionally active state. To
test this idea, we repeated the trial-wise regression analyses used
above with a cross-item decoder that was trained on data sorted
by the cued item and tested on data sorted by the uncued item.

The cross-item decoder successfully classified uncued items
with above-chance accuracy (experiment 1: t(19) = 4.719;
p, 0.001; d=1.055; experiment 2: t(29) = 2.751; p=0.010;
d= 0.502). Decoding magnitude was enhanced in comparison to
the regular decoder of the uncued item in experiment 1 (t(19) =
2.821; p=0.011; d=0.631), but not in experiment 2 (t(29) = 0.605;
p=0.550; d=0.110). Critically, higher trial-wise cross-item
decoding indeed predicted slower log-RT (Fig. 7; experiment 1:
t(19) = 3.497; p= 0.001; d=0.782; BFH1 = 34.074; experiment
2: t(29) = 1.996; p=0.028; d= 0.364; BFH1 = 2.135; pooled data:
t(42).= 3.685; p, 0.001; d= 0.562; BFH1 = 87.960) and tended to
predict reduced accuracy (experiment 1: t(19) =�1.980; p=0.031;

d = �0.443; BFH1 = 2.250; experiment 2: t(29) = �0.772;
p= 0.223; d= 0.102; BFH0 = 2.545; pooled data: t(42). = 1.619;
p= 0.056; d = �0.247; BFH1 = 1.032). Notably, the regression
weights for log-RT were significantly larger than those
of the regular decoder of the uncued item (experiment 1: t(19) =
3.037; p= 0.003; d= 0.679; BFH1 = 14.102; experiment 2:
t(29) = 1.907; p=0.033; d=0.348; BFH1 = 1.837; pooled data:
t(42) = 3.201; p= 0.001; d= 0.488; BFH1 = 25.515). We tested
whether the difference between the two decoders could be attrib-
uted to differences in signal strength by adding noise to the cross-
item decoder to match it with the regular decoder in terms of
mean and SD (Materials and Methods). Importantly, the interfer-
ence effects with log-RT remained significant after noise matching
(experiment 1: t(19) = �2.818; p=0.011; d=0.630; BFH1 = 4.741;
experiment 2: t(29) = �1.889; p=0.034; d=0.345; BFH1 = 1.786;
pooled data: t(42) = �3.158; p=0.001; d=0.482; BFH1 = 22.922),
emphasizing that differences in signal strength do not account for
differences between functional states (Fig. 7A,B).

Figure 7. Regression of task performance based on trial-wise variance in the decoding strength of a cross-item decoder that was trained on the data sorted by the cued WM item and tested
on the data sorted by the uncued WM item. Results are shown separately for experiment 1, experiment 2, and the pooled data across experiments. A, B, The cross-item decoder reliably pre-
dicted slower reaction time (A, green plots), but was unrelated to accuracy (B, green plots). Notably, the RT effect remained significant after adding noise to cross-item decoder output to match
it in signal strength with the regular decoder of the uncued item by adding noise to the decoder output (purple plots; see Materials and Methods). C, Reaction time effects of the cross-item de-
coder were observed only on trials that required a priority shift between WM items relative to the previous trial (switch trials), but not on trials in which the item priority was repeated (repeti-
tion trials). Plots display the distribution of regression weights across participants. Boxplots, Center lines indicate the median, the box outlines indicate the 25th and 75th percentiles, and the
whiskers indicate 1.5 times the interquartile range. Plots on the right display sequential Bayes factors for the respective regression weights (based on the pooled dataset of the cross-item de-
coder). pppp, 0.005, ppp, 0.01, pp, 0.05.
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We reasoned that instances of cross-item interference might
be expressed most strongly on trials demanding priority shifts
between items, and therefore repeated the foregoing analysis sep-
arately for trials incurring priority shifts, relative to the pre-
vious trial (switch trials), and trials that did not (repetition
trials). Indeed, the negative prediction of log-RT was signif-
icant only on switch trials (experiment 1: t(19) = 3.259;
p = 0.002; d = 0.729; BFH1 = 21.499; experiment 2: t(29) =
2.774; p = 0.005; d = 0.506; BFH1 = 9.270; pooled data: t(42) =
3.790; p, 0.001; d = 0.578; BFH1 = 116.313), but not on rep-
etition trials (experiment 1: t(19) = 1.127; p = 0.137; d =
0.252; BFH0 = 1.450; experiment 2: t(29) = 0.961; p = 0.172;
d = 0.175; BFH0 = 2.060; pooled data: t(42) = 1.347; p = 0.093;
d = 0.205; BFH0 = 1.452), and the difference between trial types was
significant (experiment 1: t(19) = 2.034; p=0.028; d=0.455; BF=
2.450; experiment 2: t(29) = 1.966; p=0.029; d=0.359; BF=2.028;
pooled data: t(42) = 2.675; p=0.005; d=0.408; BFH1 = 7.513).
Collectively, these results show that interference betweenWM items
arises because of lingering neural patterns coding for previously
acted upon, but no longer immediately task-relevant, items.

Drift diffusion modeling
We conducted another set of analyses to further characterize the
format of functionally active WM states and obtain more
detailed insights into the mechanisms by which they influenced
decisions in our task by comparing two different explanations
for the link between decoding strength and performance (Fig. 8,
illustration). First, the strength of the functionally active state
may determine the ease with which sensory input is interpreted.

This would be the case if the functionally active WM item acts as
a matched filter that directly feeds in the accumulation of deci-
sion-related evidence (Hayden and Gallant, 2013; matched filter
hypothesis). Second, the strength of the functionally active state
may determine the ease with which the item can be retrieved for
decision-making (Souza et al., 2016); thus, providing a head start
for decisions on trials with a strong representation of the cued
item (retrieval head-start hypothesis).

To evaluate these possibilities, we fit a set of DDMs to our
behavioral data and related variance in model parameters to
variance in decoding. We focused on the following two pa-
rameters of the DDM: drift rate and non-decision time. The
drift rate reflects the quality with which decision-relevant in-
formation is integrated, and scales negatively with categoriza-
tion difficulty. The non-decision time reflects the time needed
for processes that are not directly related to evidence accumu-
lation such as the encoding of a stimulus or the execution of a
response. To test the accounts outlined above, we fit a set of
linear regression models predicting trial-wise changes in the
two decision parameters based on trial-wise changes in decod-
ing strength of the cued memory item (see Materials and
Methods). The matched filter hypothesis predicts that stron-
ger decoding is associated with higher drift rates, whereas the
retrieval head-start hypothesis predicts that stronger decoding
is associated with reduced non-decision time (Fig. 8A,B). In
support of the matched filter hypothesis, we observed reliable
positive regression weights for predictions of drift rate in both
experiments (experiment 1: pBeta . 0 = 0.99; experiment 2:
pBeta . 0 = 0.97; pooled data: pBeta . 0 = 0.99), whereas

Figure 8. Drift diffusion modeling of task performance as a function of decoding strength of the active WM item. A, B, Illustration of the two hypotheses under investigation that predict
that trial-wise variance in decoding of the cued item tracks either changes in drift rate (matched filter hypothesis) or non-decision time (retrieval head-start hypothesis). The plots display simu-
lated RT distributions and exemplary single-trial diffusion patterns under the two accounts. C, D, Results of the DDM regression analysis that predicted trial-wise changes in drift rate (C) and
non-decision time (D) based on trial-wise changes in decoding strength of the cued item. Plots display the posterior distribution of estimated regression weights, resulting from 5000 iterations
from which the initial 1000 iterations were discarded as burn-in. The significance of effects was evaluated by quantifying the amount of the posterior probability mass that was in the predicted
direction (positive for drift rate and negative for non-decision time; for details, see Materials and Methods, and Results). As indicated on the plots, decoding of the cued item reliably predicted
changes in drift rate, but it was not associated with changes in non-decision time.
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regression weights for the non-decision time were indistin-
guishable from 0 (experiment 1: pBeta , 0 = 0.46; experiment 2:
pBeta , 0 = 0.54, pooled data: pBeta , 0 = 0.51).

Priority shifts andWM precision
In the final analyses, we aimed to further characterize the format
of functionally latent WM states by testing whether shifting

priority away from an item would perturb its precision. As out-
lined above, several WM theories assume that uncued items are
degraded versions of cued items (e.g., because they may receive a
smaller part of a limited cognitive resource for WM mainte-
nance; Zhang and Luck, 2008; Ma et al., 2014). In contrast, state-
based theories assume that cued and uncued items differ only
with regard to their functional properties but not with regard to

Figure 9. Representational quality of WM items as a function of priority shifts. A, Illustration of a hypothetical trial sequence within a task block and the resulting cue sequences that
describe periods within the block, wherein an item was used before and after a priority shift. B, Illustration of cardinal distances of WM items. For each WM item, we calculated the angular dis-
tance to the closest cardinal axis (vertical or horizontal). Note that this visualization displays a simplified case with only two different distances, whereas our stimulus set contained a total of
eight different cardinal distances. C, Performance was regressed against the trial number within the current block and the cue sequence within the current block to index time-dependent and
shift-dependent degradation of WM items, respectively. The plots display sequential Bayes factors of the respective regression weights for log-RT (left) and accuracy (right). Our results revealed
robust effects of time-dependent degradation, but no effects for shift-dependent degradation with Bayes factors lending support for the null hypotheses. D, Performance accuracy was also
regressed against the angular distance between the cued WM item and the closest cardinal axis (see B), separately for each cue sequence. The left and the middle plot display mean accuracy
for the respective conditions, and the right plot displays the regression weights for each cue sequence. As shown on the plots, we observed robust cardinal distance effects, whereby accuracy
decreased with larger distances, but these cardinal bias effects did not differ between cue sequences. E–G, We also compared decoding time courses (E), spatiotemporal decoding strength (F),
and the strength of performance regression (G) of cued WM items among the first four cue sequences. No significant differences were observed. All of these results converge on the notion that
priority shifts did not degrade the quality of WM representations. Please note that results are shown for the pooled data across both experiments.
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their precision (Oberauer, 2009; Myers et al., 2017). Importantly,
the block structure of our task, with multiple sequences of item
priority (i.e., cue sequences; Fig. 9A), provided a unique window
to adjudicate between these models by examining the precision
of WM items before and after priority shifts. Whereas resource
theories predict that shifting priority away from an item will de-
grade its precision, state-based theories predict that memory pre-
cision should be unaffected by priority shifts.

Initially, we used multiple regression to test whether the num-
ber of priority shifts within a block would predict declines in ac-
curacy beyond the aforementioned time-dependent decline (see
Materials and Methods). As seen in Figure 9C, accuracy declined
only as a function of the number of trials within the block
(experiment 1: t(19) = �7.212; p, 0.001; d = �1.613; BFH1 =
46386.592; experiment 2: t(29) = 5.382; p, 0.001; d = �0.983;
BFH1 = 4761.628; pooled data: t(42) = �7.833; p, 0.001; d =
�1.194; BFH1 = 1.179ep7), but not as a function of the number
of priority shifts (experiment 1: t(19) = �0.799; p= 0.217; d =
�0.179; BFH0 = 2.100; experiment 2: t(29) = 1.768; p=0.956;
d= 0.323; BFH0 = 12.961; pooled data: t(42) = 0.505; p=0.616;
d= 0.077; BFH0 = 5.374).

We next examined whether priority shifts would enhance cat-
egorical biases, whereby WM items are encoded with respect to
the closest cardinal axis (Bae and Luck, 2019; Fig. 9B; see
Materials and Methods). Accuracy indeed decreased with larger
cardinal distances (experiment 1: t(19) = �5.801; p, 0.001; d =
�1.297; BFH1 = 3307.866; experiment 2: t(29) = �6.762; p, 0.001;
d = �1.235; BFH1 = 156142.464; pooled data: t(42) = 8.475;
p, 0.001; d =�1.292; BFH1 = 8.336ep7), consistent with the pres-
ence of categorical biases. Importantly, however, the magnitude of
cardinal distance effects did not differ among the first four cue
sequences (Fig. 9D; all p. 0.441; all d, 0.165; all BFH0
. 3.263), corroborating that priority shifts did not degrade WM
precision.

Last, we compared the EEG-based decoding strength of WM
items for the first four cue sequences of each block (see Materials
and Methods). Consistent with the foregoing sections, we
observed no significant differences among cue sequences in
terms of decoding time courses (Fig. 9E; all cluster-corrected
p. 0.353; all d, 0.145; all BFH0. 2.213), spatiotemporal decod-
ing strength (Fig. 9F; all p. 0.144; all d, 0.241; all BFH0 .
1.929), or in the link between decoding strength and perform-
ance (Fig. 9G; all p. 0.508; all d, 0.124; all BFH0 . 2.354).
Altogether, these results show that priority shifts did not degrade
memory precision, providing convergent evidence for state-
based theories of WM.

Discussion
Our results show that the use of WM for guiding behavior relies
on an active reconfiguration that transforms purely mnemonic
states into an action-oriented format. This view aligns with neu-
ropsychological dissociations between WMmaintenance and use
(Duncan et al., 1996), and with behavioral evidence that cued,
but not uncued, WM items can bias perception toward memory-
matching stimuli (Olivers et al., 2011). However, previous
attempts to characterize WM representations functionally
through neuroimaging have been hindered by the fact that neu-
ral signals coding for uncued items are typically very subtle and
therefore difficult to examine. Here, we were able to recover neu-
ral traces of cued and uncued items from stimulus-evoked EEG
signals, permitting us to characterize their functional contribu-
tions to WM-based behavior. Uncued items were encoded in a

functionally latent state that did not engage with ongoing proc-
essing but was predictive of performance accuracy at a block-
wise timescale. This highlights a contribution to decision-making
by providing a storage format that protects memories from
decay, while minimizing interference with currently prioritized
cognition. Such a coding scheme is critical for many complex
and time-extended behaviors incurring multiple nested compo-
nents and priority shifts among them (Holroyd et al., 2018).
Understanding how the brain structures cognition over such in-
termediate timescales will be key for developing more integrative
theories of memory-guided behavior (Hasson et al., 2015;
Kami�nski, 2017), and we anticipate that such research may reveal
maintenance contributions by structures in the medial temporal
lobe that have classically been associated with long-termmemory
(Olsen et al., 2009).

In contrast to the functionally latent state, cued items were
encoded in a functionally active state that predicted dynamic
trial-wise changes in performance, especially reaction time.
Interestingly, these effects were specifically tied to changes in
drift rate, while leaving the non-decision time unaffected. This
suggests that functionally active WM items act as matched filters
that directly transform sensory information into task-dependent
decision variables (e.g., by weighting the target-evoked patterns
by mnemonic patterns coding for the cued WM item; Sugase-
Miyamoto et al., 2008). Conversely, this result is at odds with
proposals attributing the benefits of prioritization within WM to
the facilitation of retrieval processes, which may give decisions a
head start, compared with decisions without prioritization
(Souza et al., 2016). Notably, the similarity of uncued items to
their functionally active state also tracked the amount of interfer-
ence from those items after priority shifts. This interference was
transient and did not cause the degradation or forgetting of WM
items on subsequent trials, consistent with proposals that the
updating of WM contents reflects an active and time-consuming
process (Oberauer, 2003), and that failure to complete it ahead of
time leads to interference during target processing (Monsell,
2003).

Importantly, conceiving prioritization within WM as a transi-
tion from functionally latent mnemonic states toward function-
ally active task-oriented states provides a new perspective on
other established experimental phenomena such as the effects of
retrospective cuing. These effects have most commonly been
explained by assuming a finite cognitive resource for WMmain-
tenance that can be continuously distributed among different
items (Ma et al., 2014). From this perspective, a more selective
focus improves memory for cued items, but at the cost of
degraded memory for uncued items. The account we propose
offers an alternative explanation, whereby the benefits of retro-
spective cues reflect, at least in part, the reformatting of purely
mnemonic states into a prospective action rule that enforces
task-relevant stimulus–response mappings. From this perspec-
tive, capacity limitations also concern behavioral readout, in
addition to basic maintenance, when assuming that only a single
item can be encoded as an action rule at any given moment
(Olivers et al., 2011). It also implies that selecting an item for
guiding behavior should not necessarily impede the maintenance
of other concurrently held items, because once the selected item
is encoded in a rule-like state, it is no longer necessary to sustain
selective attention to the corresponding mnemonic representa-
tion. This view of state transitions as transient events mirrors the
time course of lateralized alpha band suppression during the pri-
oritization of spatially separated WM items (de Vries et al.,
2020), and could also explain previous findings that the
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beneficial effects of retrospective cues can sometimes prevail
even when attention is diverted from the cued item (Rerko et al.,
2014) or that they can occur in the absence of reliable perform-
ance costs for uncued items (Gunseli et al., 2015; Myers et al.,
2018).

A central question for future research will be to delineate the
precise neurophysiological mechanisms that underpin functional
WM states. One possibility is that functionally active and latent
WM states directly map onto corresponding activity states: neu-
rally active and “activity-silent” (Manohar et al., 2019; Kami�nski
and Rutishauser, 2020). Our results are consistent with this view,
as spontaneous delay activity encoded only the cued item, but we
identified traces of both items in the target-evoked EEG signal,
consistent with an impulse response uncovering hidden neural
states (Wolff et al., 2017). However, we note that our current
study was not designed to test this specific question but instead
focused on dissociating WM states functionally. As we have dis-
cussed in detail previously, it is theoretically possible for ac-
tivity states, or activity-silent states, to support functionally
active or latent cognitive states (Stokes et al., 2020). The
only formal requirement is that their representational for-
mat differs qualitatively. This could be achieved through a
division of labor between activity-based and activity-silent
mechanisms, but also through qualitative differences in the
exact patterns (van Loon et al., 2018), or brain areas
(Christophel et al., 2018), for the respective functional
states. In any case, we assert that future research should
shift from focusing merely on the presence or absence of
decodable memory signals toward characterizing their
functional properties and the mechanisms that permit their
transformation.

One such topic for future inquiry will be to compare the func-
tional states we identified with different mnemonic coding
schemes, especially the possibility that cued and uncued items
could be represented in inverted activation patterns in the same
cortical regions. Two recent fMRI studies manipulated priority
states within individual trials and observed negative cross-decod-
ing between cued and uncued items (van Loon et al., 2018; Yu et
al., 2020), suggestive of opponent coding. At first blush, our find-
ings are inconsistent with this proposal, as we observed positive
rather than negative cross-item decoding in our task. There are
numerous differences between the two studies and ours, so we
can only speculate about the source of this discrepancy. For
example, the different brain recording methods may have cap-
tured different aspects of the underlying neural signals with EEG
being more sensitive to rapid stimulus-evoked signals and fMRI
being more sensitive to tonic and regionally specific signals. It is
also possible that sensory impulses, such as our target stimuli,
change the similarity between patterns coding for cued and
uncued WM items. Notably, inverted coding has also been
observed in target-evoked brain signals (van Loon et al., 2018);
so, this factor alone is unlikely to account for the differences
between studies. Nonetheless, it will be incumbent for the field to
develop methods capable of measuring spontaneous neural states
coding for uncued WM items in the absence of sensory stimula-
tion. We generally assume that independent coding schemes for
cued and uncued items confer general advantages over inverted
schemes, as they permit robust maintenance of both items while
minimizing mutual interference. However, task demands may
alter the optimality of different formats. For instance, inverted
representations might become advantageous when simultane-
ously maintained items are encoded in nonoverlapping neural
populations, when response contingencies are not explicit before

probe onset, or when readout demands require maximal disam-
biguation between memory items (Geng et al., 2017). Therefore,
more research will be necessary to establish the boundary condi-
tions of different mnemonic coding schemes.

In conclusion, our results delineate a hierarchical model of
WM wherein a single item is stored in a qualitatively different
format to concurrently held items. The prioritized format is
functionally active and implements a task-relevant transforma-
tion of sensory input into decision evidence, whereas other items
are stored in a functionally latent format that does not interact
with ongoing processing. Importantly, prioritization is highly
flexible and dynamic, whereby latent states form the basic neural
substrate for maintenance and can be used to implement the
active representation when needed.
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