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Abstract

Narcolepsy is a chronic neurological disease characterized by dysfunction of the hypocretin system in brain causing
disruption in the wake-promoting system. In addition to sleep attacks and cataplexy, patients with narcolepsy commonly
report cognitive symptoms while objective deficits in sustained attention and executive function have been observed. Prior
resting-state functional magnetic resonance imaging (fMRI) studies in narcolepsy have reported decreased
inter/intranetwork connectivity regarding the default mode network (DMN). Recently developed fast fMRI data acquisition
allows more precise detection of brain signal propagation with a novel dynamic lag analysis. In this study, we used fast fMRI
data to analyze dynamics of inter resting-state network (RSN) information signaling between narcolepsy type 1 patients
(NT1, n = 23) and age- and sex-matched healthy controls (HC, n = 23). We investigated dynamic connectivity properties
between positive and negative peaks and, furthermore, their anticorrelative (pos-neg) counterparts. The lag distributions
were significantly (P < 0.005, familywise error rate corrected) altered in 24 RSN pairs in NT1. The DMN was involved in 83% of
the altered RSN pairs. We conclude that narcolepsy type 1 is characterized with delayed and monotonic inter-RSN
information flow especially involving anticorrelations, which are known to be characteristic behavior of the DMN regarding
neurocognition.
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Introduction

Narcolepsy is a chronic neurological disease with 2 differentiated
phenotypes and a prevalence of 1/2000 (Scammell 2015; Kor-
num et al. 2017; Sarkanen et al. 2018). Autoimmunity is thought
to underlie large proportion of narcolepsy cases, while other
etiologies are rare (Mahoney et al. 2019). Narcolepsy type 1 is
caused by loss of neuropeptide, hypocretin, producing cells in
the posterolateral hypothalamus that project throughout the
cortex to promote wakefulness and cortical excitation (Scammell
2015; Bassetti et al. 2019). The typical symptoms include daytime
sleepiness with sleep attacks and cataplexy characterized as
transient loss of muscle tone triggered by emotional stimuli.
Narcolepsy type 2 is a less severe form of the condition without
cataplexy.

Moreover, clinically relevant cognitive symptoms are com-
mon in narcolepsy type 1 (Fulda and Schulz 2001). Earlier stud-
ies on attention have shown impairment in monotonous and
long tasks in narcolepsy (Valley and Broughton 1981; Godbout
and Montplaisir 1986). Electroencephalography studies suggest
prolonged information processing and alterations in cognitive
preattentive and attentive processes characterized by prolonged
auditory/visual event-related potential component N2 and P300
latencies with increased P300 amplitude in narcolepsy (Sangal
et al. 1999; Naumann et al. 2001; Saletu et al. 2008). A study
utilizing visual discrimination task found that patients with nar-
colepsy had worse performance than healthy controls in training
and in 2 delayed retrieval sessions indicating lower level of visual
skill consolidation (Cipolli et al. 2009). The same experimental
design revealed worse performance and reduced positive change
in performance across sessions in narcolepsy when investigat-
ing procedural motor skill consolidation (Mazzetti et al. 2012)
suggesting initial lower encoding level (Cellini 2017). Further-
more, patients with narcolepsy have shown generally slower and
more varied responses in cognitive tasks with longer reaction
times compared with healthy controls (Rieger et al. 2003; Bayard
et al. 2012). Taken together, a deficient sustained attention and
a general dysexecutive profile with proposed misallocation and
reduction of available cognitive resources leading to inefficient
cognitive control processes has been suggested (Naumann and
Daum 2003; Naumann et al. 2006; Witt et al. 2018).

The default mode network (DMN) is most active during wake-
ful rest, while externally oriented tasks tend to suppress its activ-
ity. DMN activity is anticorrelated with task-positive networks
including the salience network (SN), dorsal attention network
(DAN), and central executive network (CEN) (Fox et al. 2005;
Fransson 2005; Chen et al. 2013). These networks are thought
to operate hierarchically and causally in cooperation to facilitate
appropriate behavior (Sridharan et al. 2008; Menon 2011; Uddin
2015; Chand and Dhamala 2016; Zhou et al. 2018). Although
structural and functional changes have been reported in task-
and rest-relevant brain areas in narcolepsy (see Wada et al. 2019
for a review), few resting-state functional magnetic resonance
imaging (rs-fMRI) studies have been conducted. These recent
investigations into resting-state network (RSN) connectivity in
narcolepsy have revealed abnormal brain dynamics, as the
patients with narcolepsy were less likely to spend time in an EEG-
derived microstate related to the DMN and had similar but not
identical mappings of the microstates compared with healthy
controls (Drissi et al. 2016). Moreover, within the SN, increased
fractional amplitude of low-frequency fluctuation has been
reported in narcolepsy along with decreased functional connec-
tivity in both the SN and an executive network and, furthermore,

decreased functional connectivity between the DMN and SN/lim-
bic system measured with combined graph theoretical and inde-
pendent component analysis (ICA) (Xiao et al. 2018, 2019, 2020).

Most prior fMRI studies of spontaneous brain activity have
utilized either spatial ICA (sICA) (Kiviniemi et al. 2003; Beckmann
et al. 2005) or seed-based correlation mapping (Biswal et al.
1995, 2010) to chart functional networks. Critically, these analyses
assume that activity within RSNs is exactly synchronous, that is,
zero-lag connectivity. However, recent rs-fMRI studies in humans
and rats suggest that spontaneous brain activity is spatiotempo-
rally structured (Majeed et al. 2009, 2011; Chang and Glover 2010;
Kiviniemi et al. 2011; Hutchison et al. 2013; Liu and Duyn 2013),
and that multiple temporal functional modes in human rs-fMRI
data exist (Smith et al. 2012; Raatikainen et al. 2017).

Temporal lags reflect a time delay in brain activation propa-
gation between brain areas. Some regions are early (sources of
propagation) and some regions are late (destinations of propa-
gation) (Mitra et al. 2014; Mitra, Snyder, Blazey, et al. 2015). The
lag structure of rs-fMRI is highly reproducible (Mitra, Snyder,
Blazey, et al. 2015; Raut et al. 2019), and it has been shown that
these lag-related propagation patterns are altered as a func-
tion of state, whether pathological (Mitra, Snyder, Constantino,
et al. 2017; Shah et al. 2018; Bandt et al. 2019; Raatikainen et al.
2019) or physiological (Mitra, Snyder, Tagliazucchi, et al. 2015).
Thus, propagation can be a more sensitive marker in some
pathologies than conventional functional connectivity analysis
(Mitra, Snyder, Constantino, et al. 2017). However, as lag analyses
greatly benefit from high temporal resolution, there is a need
for faster data acquisition than possible with conventional fMRI
(Lin et al. 2013; Mitra, Snyder, Blazey, et al. 2015; Rajna et al.
2015; Raatikainen et al. 2017; Huotari et al. 2019). A recently
described dynamic lag analysis (DLA) approach, together with
critically sampled data, measures inter-RSN time lag variations
and statistically defines how the lag patterns are altered between
study groups (Raatikainen et al. 2019). Instead of assuming a
single temporal lag over a time epoch as in cross-correlation-
based analysis (e.g., Mitra et al. 2014; Mitra, Snyder, Blazey, et al.
2015; Mitra, Snyder, Constantino, et al. 2017), the DLA approach
determines time lags, peak-by-peak, over the whole time series,
thus offering analysis independent from correlation calculation
between time series with dynamic information on patterns of
information flow, that is, how the time lag and directionality vary
between RSNs over time. To elaborate, DLA accounts for each
peak and nadir of the fMRI time series enabling investigation
of dynamic signal behavior between spatial locations in same
phased (from positive to positive and from negative to negative)
and antiphased (from positive to negative and from negative
to positive) configurations that remain obscured in correlation-
based analyses, for example, sliding-window approach.

In this study, we utilize the DLA concept and fast fMRI
sequence (magnetic resonance encephalography: MREG, TR = 100
ms) imaging to study, for the first time, the temporal fMRI
signal propagation patterns between major RSNs in narcolepsy
type 1 and healthy controls. We further examine time lags in
anticorrelated RSN pairs—when signals are in opposed phases
(positive vs. negative peak and vice versa)—in addition to the
activated (positive peaks) and deactivated RSNs (negative peaks).
The separate analysis of antiphased time signals (positive to
negative and negative to positive) enables investigation of the
inter-RSN lag variability in detail when an activation of one
network leads to deactivation of the other and vice versa.
With the suggested dysfunction of intrinsic RSN dynamics
and cognitive deficits described in the previous research, we
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hypothesize that (1) a dynamic inter-RSN dysfunction exists in
narcolepsy type 1, that (2) it can be accurately quantified with
the lag-based DLA, and that (3) these lag pattern variations help
to explain the observed cognitive deficits in narcolepsy type 1.

Materials and Methods
Participants

A registry run for patients with diagnosis of narcolepsy was
conducted from the Oulu University Hospital’s electronic patient
records, with 66 matching diagnosis codes found. The diagnoses
were based on the codes on the Finnish version of the Interna-
tional Classification of Diseases, 10th edition and the Diagnostic
Criteria on the International Classification of Sleep Disorders
(ICSD), second/third editions. For this study, all the diagnoses
were reassessed with ICSD third edition (American Academy of
Sleep Medicine 2014). Twenty-three patients were interviewed
via phone and the history of cataplexy as a symptom was con-
firmed. The inclusion criteria were (1) a confirmed diagnosis of
narcolepsy type 1 and (2) cataplexy. The lack of confounding
neurological conditions was confirmed by screening the study
population for other neurological diseases and brain diseases/-
trauma. All data were collected between 3/2018 and 3/2019.

Data from 2 patients and their corresponding healthy con-
trols were excluded due to motion during the scan (identified
as outliers, see Supplementary Fig. S6). The final population
consisted of 21 patients with narcolepsy type 1 (NT1, 12 females,
age 28.14 ± 9.16) with 2 unmedicated patients and 19 medically
treated for daytime sleepiness, cataplexy, and/or sleep distur-
bances (Table 1). Twenty-three healthy age- and sex-matched
controls (HC) with no continuous medication were recruited
from general population, and 21 were used as a control group
for this study (12 females, age 28.33 ± 9.22). A written informed
consent was obtained from the participants. The study was
approved by the Ethical Committee of Medical Research in the
Northern Ostrobothnia District of Finland and was conducted
in accordance with the declaration of Helsinki with latest GDPR
regulations taken into account.

Measurements

All subjects were scanned with fast fMRI sequence called MREG
using a Siemens Magnetom Skyra 3 T MRI scanner (Siemens
Healthineers, Germany) with a 32-channel head coil. MREG is
a single-shot three-dimensional (3D) sequence that utilizes a
spherical stack of spiral and undersamples 3D k-space trajec-
tory (Zahneisen et al. 2012; Assländer et al. 2013; Lee et al.
2013). The following parameters were used for the 3D whole
brain MREG sequence: repetition time (TR) = 100 ms, echo time
(TE) = 36 ms, flip angle (FA) = 5◦, field of view (FOV) = (192 mm)3,
voxel size = 3 × 3 × 3 mm3. MREG data were reconstructed by
L2-Tikhonov regularization with lambda = 0.1, with the latter
regularization parameter determined by the L-curve method
(Hugger et al. 2011), the resulting effective spatial resolution
was 4.5 mm. MREG includes a dynamic off-resonance in k-space
method, which corrects the respiration induced dynamic field-
map changes in fMRI using 3D single shot techniques (Zahneisen
et al. 2014). T1-weighted magnetization prepared rapid acqui-
sition with gradient echo (MPRAGE) (TR = 1900 ms, TE = 2.49 ms,
inversion time (TI) = 900 ms, FA 9◦, FOV = 240, and slice thickness
0.9 mm) images were scanned for MREG data registration. During
the 10-min resting-state scan, the subjects were instructed to lie
still and awake in the scanner with their eyes open fixating on a
cross on the screen. Soft pads were fitted over the study subjects’

Table 1. Patients with narcolepsy type 1

Subject Sex Age (y) Duration (y) Medication

1 F 31 3 Mo, SSRI
2 F 40 5 Mo, Me
3 F 27 3 —
4 M 23 1 Mo
5 M 51 16 Mo
6 F 23 9 S
7 F 23 9 Me
8 F 35 3 S, SNRI
9 F 20 2 Me, S
10¤ M 27 0 —
11 F 34 6 —
12 M 24 4 Mo
13 F 23 7 Mo, Me
14 F 20 7 Me
15 F 28 8 Me, S
16 F 21 2 Mo, SNRI
17 M 19 4 Mo
18 M 46 4 Mo, S, SNRI
19 M 17 7 Me
20¤ M 17 8 Me
21 M 33 4 —
22 M 32 0 Mo
23 M 21 8 Me, S

Notes: F = female, M = male, ¤ = excluded for motion, Mo = modafinil,
Me = methylphenidate, S = sodium oxybate, SSRI = selective serotonin reuptake
inhibitor, SNRI = Serotonin–norepinephrine reuptake inhibitor, Age (y) = age in
years at time of imaging, Duration (y) = disease duration in years at time of
imaging.

ears to minimize motion and to protect hearing together with
earplugs.

Preprocessing

MREG data were preprocessed with Oxford Centre for Functional
MRI of the Brain (FMRIB) software library (FSL) pipeline
(Jenkinson et al. 2012) prior to single session ICA. The data were
high-pass filtered with a cut-off frequency of 0.008 Hz (125 s). To
minimize T1-relaxation effects, 180 time points were removed
from the beginning of the data resulting in 5822 brain volumes
in total. Motion correction was carried out using FSL MCFLIRT
(Jenkinson et al. 2012), and all the data were visually inspected
for spurious signal fluctuations. Brain extraction for 3D MPRAGE
volumes was performed with FSL Brain Extraction TOOL (BET)
using the following parameters: fractional intensity = 0.20–0.25,
threshold gradient = 0.05–0.22, neck and bias-field correction.
The extracted brain images were visually inspected to ensure
optimal quality. Images were spatially smoothed with 5 mm
full width and half maximum Gaussian kernel using “fslmaths.”
MREG images were aligned to 3D (MPRAGE) anatomical images
(full-search, 12 degree of freedom (DOF)) and to Montreal Neu-
rological Institute (MNI 152) 4 mm3 standard space (full-search,
12 DOF) as a preprocessing step in FSL multivariate exploratory
linear optimized decomposition into independent components
(MELODIC) tool. Additionally, the advanced ICA FIX (FMRIBs ICA-
based X-noisifier) method (Griffanti et al. 2014; Salimi-Khorshidi
et al. 2014) was utilized to separate artifacts from neural signals
in the rs-fMRI data. FIX was trained with previously collected
control MREG data, and the applied FIX threshold was 10. The
same FIX procedure was applied to each subject.

Global signal is thought to reflect physiological processes,
motion, and other artifacts in addition to neuronal signal.

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa073#supplementary-data
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However, global signal regression was not used in this study as
the high temporal resolution, and thus critically sampled data,
allows for discreet discrimination of cardiorespiratory signal
from very low frequency signal (Huotari et al. 2019). Moreover,
the advantages of global signal regression are still under debate
(Murphy and Fox 2017).

Lag Analysis Using DLA

A group level spatial ICA (multisession temporal concatenation
in FSL) was performed for the FIX-cleaned data with a model
order of 20 (Z-threshold = 2.3), NT1 and HC groups in the same
group ICA analysis. As there are currently no RSN atlases of fast
fMRI data available, we kept the FSL model order low to ease the
RSN identification and to focus on the propagation sequencing
between RSNs with the largest signal variance. In this work, the
DLA approach was utilized for 4 separate analysis groups, that
is, the time lags between RSNs were calculated (1) from positive
to positive signal peak, (2) from negative to negative signal peak,
(3) from positive to negative signal peak, and (4) from negative to
positive signal peak (Fig. 1).

Lag Between Activated RSNs (Between Positive Signal
Peaks, pos-pos)

The same DLA workflow steps as described in a prior DLA paper
(Raatikainen et al. 2019) were applied, with some improvements
to the DLA method. (1) A pair of RSNs is selected. (2) The time
signals were band-pass filtered to very low frequency band (0.01–
0.1 Hz) and detrended, and each positive peak of the time sig-
nals was determined with the “findpeaks” function in MATLAB
(“MinPeakDistance” output argument with the value of 100, that
is, 10 s was used). Although the HC and NT1 groups have separate
concatenated time signals, the filtering, detrending, and peak
detection were applied separately for each subject individual
time signals to avoid incorrect peaks in the signal discontinuities
(as subject changes). (3) The lag vector was formed by calculating
the time lag values between each positive peak (between RSNs) in
the nearest neighbor principle (≤ ±5 s). In this study, the correla-
tion versus anticorrelation was checked, that is, the signal phases
(whether correlated or anticorrelated) of selected RSN pairs was
checked for each peak pair. Therefore, the time lag was filled in
the time lag vector only if the signals were in the same phase,
that is, the positive peak of other RSN time signal was closer
than the negative peak. Prior steps were completed separately
for HC and NT1 data. Additional analysis parameters such as lag
mean, median, and count values were calculated from the lag
vectors. (4) The Kolmogorov–Smirnov test (“kstest2” in MATLAB)
was calculated between HC and NT1 lag vectors to determine
which RSN pairs had statistically significant differences in the
lag patterns between HC and NT1 groups. All the steps (1–4) were
completed separately for each selected RSN pair to construct the
final P-value matrix.

Lag Between Deactivated RSNs (Between Negative Signal
Peaks, neg-neg)

The same DLA workflow steps (1–4) as described in the previous
section were applied with the following exceptions. In step (2),
each negative peak of the time signals was determined with
“findpeaks” function in MATLAB. In the step (3), the lag vector
was formed by calculating the time lag values between each
negative peak (between RSNs) in the nearest neighbor principle
(≤±5 s). Similarly, the signal phase (between RSNs) was checked,

that is, the time lags of corresponding peaks were filled in the lag
vector if the signals were in the same phase, that is, both peaks
were negative.

Lag From Activated RSN to Anticorrelated RSN (Between
Positive and Negative Signal Peak, pos-neg)

Similarly, a given RSN pair was chosen in step (1), and the same
filtering and detrending steps were applied as in the 2 previous
sections. Here, in step (2) each positive peak of a reference
time signal, and each negative peak of the other signal (time
signal of other RSN in the RSN pair) was determined with “find-
peaks” function in MATLAB. (3) The time lag value was calculated
between the positive peak of the reference RSN and the next
negative peak of other signal in the selected RSN pair. All the
lags ≤ 5 s were filled in the corresponding lag vector. Prior steps
were completed similarly for HC and NT1 data. (4) Kolmogorov–
Smirnov test was calculated between HC and NT1 lag vectors. All
steps were done separately for each RSN pair.

Lag from Anticorrelated RSN to Activated RSN (Between
Negative and Positive Signal Peak, neg-pos)

Similarly to the previous section, a given RSN pair was chosen
(step 1) and the same filtering and detrending signal processing
steps were applied (step 2). However, in step (2) each negative
peak of the reference signal and each positive peak of the other
signal in the given RSN pair were determined (“findpeaks” in
MATLAB). (3) The time lag value was calculated between the neg-
ative peak of the reference RSN and the positive peak of the other
signal in the selected RSN pair. All the lags ≤5 s were filled in the
corresponding lag vector. Prior steps were completed similarly
for HC and NT1 data, and finally, (4) Kolmogorov–Smirnov test
was calculated between HC and NT1 lag vectors. All steps were
completed separately for each RSN pair.

Statistical Analysis

Surrogate data with identical preprocessing to the real data
were created to evaluate the possibility of false positives in the
P-value matrix values. Data consisted of 2 groups, both including
20 (equal to the RSN number) surrogate time signals (122 262
samples, i.e., the length of concatenated 10 min signals of 21
subjects) created with the “randi” function in MATLAB. The same
processing steps introduced to real data were applied to sur-
rogate time series including band-pass filtering to 0.01–0.1 Hz
frequency band and signal detrending. Therefore, the spectral
matching of the simulated data reflects the spectral content of
postfiltered real data. The same DLA workflow steps as described
in Raatikainen et al. (2019) were applied to the surrogate data
(two-sided, two-sample Kolmogorov Smirnov test). The smallest
P-value was determined as the threshold for significance. Since
the lag values of antiphased signals were calculated separately
for each direction of information flow, we decided to illustrate all
the lag values as positive values in Figure 4. Finally, relative and
absolute movement mean values were derived from FSL MCFLIRT
and compared between both groups using t-tests.

Results
Summary

Twenty ICs were identified as RSN components by a neuroradiol-
ogist and used for further analysis (Fig. 2). The smallest P-value
in the surrogate P-value matrix was 0.005, which was selected as
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Figure 1. General workflow for DLA approach. (1) A given pair of RSN is selected. (2) Corresponding concatenated band-pass filtered (0.01–0.1 Hz) and detrended 10 min

time signals for HC and NT1 groups. (3) For each of the 4 analysis (pos-pos, neg-neg, pos-neg, neg-pos), the lag values between the ICs are calculated, peak-by-peak, and

separately for both groups. The corresponding P-value (for the given RSN pair) is calculated between the 2 lag vectors (HC and NT1).

a threshold for significance to reject the possibility of false pos-
itives and to declare statistically significant RSN combinations
(P-value < 0.005; see Supplementary Fig. S1).

To summarize, of all statistically significant IC pairs (24), a
pair with a DMN component was found in 20/24 (DMNmpf (medial

prefrontal): 3, DMNvmpf (ventromedial prefrontal): 4, DMNpcc (pos-
terior cingulate cortex): 7, DMNprecuneus: 3, DMNcuneus: 3), a pair
with an executive component in 4/24 (CEN: 3, Executive: 1),
a pair with a salience component in 5/24 (SN1: 3, SN2: 2), a
pair with an attention component in 8/24 (DANRight: 2, fpAN

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa073#supplementary-data
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Figure 2. Group level IC maps. Z-value in the IC-maps is 3.

(frontoparietal attention network): 1, fAN (frontal attention net-
work): 3, DAN: 2), a pair with a visual component in 8/24 (V1
(primary visual): 2, V2 (secondary visual): 0, VisO (visual occip-
ital): 6) and a pair with A1 (primary auditory) in 3/24 pairs. The
DMN group (DMNmpf, DMNvmpf, DMNpcc, DMNprecuneus, DMNcuneus)
has significant pairs with all other IC groups excluding sensori-
motor group [SMN1 (sensorimotor network), SMN2, S1 (primary
somatosensory)]. Four ICs were not included in any of the sig-
nificant pairs: V2, SMN1, SMN2 and S1. The results were concen-
trated to the anticorrelative RSN pairs (20/24 of significant pairs).

Interestingly, the DMN subcomponents did not form significant
pairs with each other.

Lag Distributions Between Activated (pos-pos) and
Deactivated (neg-neg) RSNs

Two RSN-pairs survive the surrogate thresholding for signifi-
cance in pos-pos (Fig. 3, Supplementary Fig. S2). A DMN subcom-
ponent is included in both significant pairs: DMNprecuneus versus
VisO and DMNcuneus versus V1 (both at P = 0.001). In DMNcuneus

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa073#supplementary-data
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Figure 3. Combined significant (P < 0.005) P-value matrix for same phased (pos-pos marked with a black and neg-neg with a white diamond) and anticorrelated (pos-neg

marked with a black and neg-pos with a white square) RSN pairs.

versus V1 the NT1 group has a high density of short lags around
0 s (median 0.1 s in NT1 and 0.4 s in HC, Fig. 4A, Supplemen-
tary Table S1). In DMNprecuneus versus VisO, the NT1 group’s lag
distribution is skewed to the positive side (median 0.4 s in NT1
and −0.3 s in HC), suggesting a higher tendency of VisO being the
source of information flow in NT1.

Two RSN-pairs survive the surrogate thresholding for signifi-
cance in neg-neg (Fig. 3, Supplementary Fig. S3): DMNmpf versus
A1 and SN1 versus fAN (P < 0.001 and P = 0.004 respectively). In
SN1 versus FAN, there is a higher tendency (median 0.3 s in NT1
vs. −0.1 s in HC, see Supplementary Table S2) that FAN deacti-
vates before SN1 in NT1. In DMNmpf versus A1, lag distribution
of NT1 is skewed to the positive side reflected by the difference
in medians (0.6 s in NT1 and −0.3 s in HC, Fig. 4B) and the %-
ratio (39/60), suggesting that on average the deactivation of A1
precedes the deactivation of DMNmpf. The median value of −0.3 s
suggests that DMNmpf has a higher tendency to deactivate before
A1 in HC.

Lag Distributions in Anticorrelative RSNs (pos-neg and
neg-pos)

Eight RSN-pairs survive the surrogate thresholding for signifi-
cance in pos-neg (Fig. 3, Supplementary Fig. S4). A DMN sub-
component is included in all 8 significant pairs: DMNmpf versus
A1 (P = 0.005), DMNpcc versus CEN (P = 0.001), DMNpcc versus A1
(P = 0.001), SN1 versus DMNvmpf (P = 0.005), SN2 versus DMNmpf

(P < 0.001), fAN versus DMNpcc (P = 0.003), DAN versus DMNprecuneus

(P = 0.001), and VisO versus DMNpcc (P = 0.002).

In pos-neg lag histograms (Fig. 4C), the NT1 group has het-
erogenous lag distributions and a wide spread of lags. The HC
group histograms appear slope-like with high density of lags
close to 0 s, that is, shorter median (see Supplementary Table S3)
values in 7/8 pairs suggesting more structured switching from
activated RSN to deactivated RSN.

Twelve RSN-pairs survive the surrogate thresholding for
significance in neg-pos (Fig. 3, Supplementary Fig. S5). 9/12
significant pairs include a DMN subcomponent: DMNvmpf versus
Executive (P < 0.001), DMNpcc versus VisO (P < 0.001), DMNprecuneus

versus CEN (P = 0.004), DMNcuneus versus DANright (P = 0.003),
DMNcuneus versus VisO (P = 0.001), CEN versus DMNpcc (P = 0.003),
SN2 versus DMNvmpf (P = 0.004), fAN versus DMNvmpf (p = 0.004),
and VisO vs. DMNpcc (p < 0.001). Additionally, significant pairs
include SN1 vs. V1 (P = 0.001), DANright versus VisO (P = 0.003),
fpAN versus DAN (P = 0.004).

In neg-pos lag histograms, the NT1 group has heterogenous
lag distributions with wide spread of lags (Fig. 4D). In comparison,
the HC group has slope-like lag distributions with lag counts
concentrated around 0 s, that is, shorter median values in 10/12
pairs (see Supplementary Table S4). These findings suggest that
the switching from activated RSN to deactivated RSN and vice
versa is aberrant in NT1.

Motion

There were no statistically significant differences between HC
and NT1 (see Supplementary Fig. S6) in mean absolute (P = 0.39)
or relative movement (P = 0.34).

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa073#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa073#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa073#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa073#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa073#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa073#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa073#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa073#supplementary-data
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Figure 4. Lag value histograms of same phased (A) pos-pos, (B) neg-neg and anticorrelated (C) pos-neg, (D) neg-pos significant (P < 0.005) RSN pairs. HC group’s lag values

are shown in dark gray and NT1 group’s lag values in white bins.
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Discussion
Summary

In this study, we applied a recently described DLA approach
(Raatikainen et al. 2019) together with fast fMRI MREG imaging
to study lag patterns of intrinsic rs-fMRI signal in individuals
with narcolepsy type 1 and healthy controls. Furthermore, we
extended the analysis in a novel way to study lag pattern varia-
tions between RSNs in anticorrelating phases. To our knowledge,
this is the first study to reveal fast fMRI information from the lag
timings in inter-RSN activity state transitions, from deactivation
to activation and from activation to deactivation, in the human
brain. Notably, our results suggest that (1) DLA reveals abnor-
mal inter-RSN propagation patterns in narcolepsy type 1 that
manifest more robustly as alterations in the lag timings between
activation and deactivation transitions (pos-neg and neg-pos,
83.3% of the significant pairs), (2) when considering the DMN and
its relationship with other RSNs, information signaling is slower
and monotonic in narcolepsy type 1 suggesting delayed transient
coupling between these networks and that taken together (3) we
consider that this slower flow of information between cognitively
relevant RSNs may help to explain the deficits in sustained
attention and executive function in narcolepsy type 1.

RSN Interplay and Cognition

In our results, 83.3% of the significant altered pairs contained
a DMN subcomponent. The high percentage of the DMN
involvement with RSNs important in cognition (SN/DAN/CEN)
and perception (V1, V2, VisO, A1) indicates that the changes
in the dynamic inter-RSN connections concerning the DMN
may be instrumental in narcolepsy type 1. This is further
supported by proposed disease specific DMN finding in another
rs-fMRI study (Drissi et al. 2016). In narcolepsy, sustained
attention deficits have been observed (Fulda and Schulz 2001;
Naumann and Daum 2003; Naumann et al. 2006; Witt et al. 2018).
Interestingly, attentional impairments have been associated
with damage to posterior cingulate cortex, a core node of the
DMN, in the healthy brain (Bonnelle et al. 2011; Leech and Sharp
2014). Moreover, the changes in the DMN-involved connectivity
within and between other networks are thought to underlie the
sustained attention deficits present in schizophrenia, obsessive–
compulsive disorder, and attention deficit hyperactivity disorder
(Norman et al. 2017; Fan et al. 2018). Thus, our results suggest
that the changes in connections concerning the DMN contribute
to the prior reports of deficient sustained attention mechanism
in narcolepsy type 1. Interestingly, we observed no significant
pairs between the DMN subcomponents. This suggests that the
robustness within the DMN is somewhat spared in narcolepsy
type 1. However, the delayed and monotonic communication
between the DMN and other RSNs, for example, the SN/DAN/CEN
suggested by our results may lower the effect of these RSNs’
signaling to the DMN and manifest as a more erratic activa-
tion/deactivation behavior within the DMN.

Volume vice, the DMN is the largest RSN in our 20 IC model
of fast fMRI splitting into 5 components. The high concentration
of results to DMN could thus be confounded by the size of
the DMN in comparison with other RSNs identified. However,
if, for example, 4 of the attention related RSNs (DAN, DANright,
fpAN, and fAN forming a group comparable with the DMN in
number of components, size, and spatial distribution to ventral
and posterior components) were grouped and then compared
with the DMN group, the DMN group would still overshadow
the attention group (7/24 significant pairs in the attention group

against 20/24 in the DMN group). Would the volume of the RSN
have dominating effect on the results, then the 4 attention ICs
should have approximately 16 significant pairs when the DMN
components have 20. Furthermore, we observed no significant
pairs between the DMN components—an improbable finding if
the size of the components confounded the results. We suggest
that rather our results reflect the changes in NT1, importance of
the DNM, and its function as a hub.

Interactions between RSNs are crucial for complex cognition,
as the DMN and SN/DAN/CEN interact to sustain normal cog-
nitive function and attentional processes (Bressler and Menon
2010; Menon 2011; Uddin 2015; Chand et al. 2017). Our results
show that in narcolepsy type 1, the reciprocal dynamic inter-
play between both the DMN/SN and DMN/DAN is delayed as
illustrated by the lag distributions between the significant pairs
including components of these RSNs. Moreover, our results show
that the SN’s and DAN’s ability to suppress the DMN (in pos-
neg DAN vs. DMNprecuneus, SN1 and SN2 vs. DMNvmpf and DMNmpf,
respectively) may be decreased in narcolepsy type 1 compared
with healthy controls. Additionally, the transient activation of
the DMN after SN deactivation (in neg-pos SN2 vs. DMNvmpf)
and the activation of the DAN following DMN deactivation (in
neg-pos DMNcuneus vs. DANright) is atypical, indicating a failure
to properly convey information. This may impair the SN’s and
DAN’s modulation over the activity in the DMN and, moreover,
the DMN’s modulation over the activity in the SN and DAN.
To access attentional resources, the DMN, SN, and DAN form
a causal hierarchically organized system in which the SN and
DAN exert an inhibitory influence on the DMN and the DMN
exerts an excitatory influence on the SN and DAN with the SN at
the apex of the hierarchy modulating the other 2 anticorrelated
networks (Zhou et al. 2018). In 2 rs-fMRI studies, Xiao et al. (2019,
2020) found hypoconnectivity between the DMN and SN/limbic
system in narcolepsy type 1. Our results support findings of
inter-RSN disruption between the DMN and SN. Moreover, the
aberrant dynamic interplay between DMN and DAN may have
a degenerative effect on sustained attention. The robustness of
our results concerning attention is further strengthened by the
fact that significant pairs between the DMN and other attention
related RSNs (in pos-neg fAN vs. DMNpcc and in neg-pos fAN vs.
DMNvmpf) as well as between attention-related RSNs themselves
and the SN (in neg-neg SN1 vs. fAN, in neg-pos fpAN vs. DAN) are
present.

The slow information flow reflected by our lag results
between the DMN and SN may additionally hinder the SN’s ability
to switch between the DMN and CEN/Executive appropriately in
narcolepsy type 1 compared with healthy controls. This may have
an adverse effect on executive functions, as RSNs overlap with
task-driven network identification providing a latent functional
architecture readily engaged in the service of cognition (Smith
et al. 2009; Laird et al. 2011; Spreng et al. 2013). Additionally,
our results show that the information flow between the DMN
and CEN/Executive may be bidirectionally compromised in
narcolepsy type 1 (in pos-neg DMNpcc vs. CEN and in neg-pos CEN
vs. DMNpcc, DMNprecuneus vs. CEN and DMNvmpf vs. Executive).

Interestingly, we observed no significant pairs between the
sensorimotor group and other RSNs indicating fluent inter-RSN
information signaling to and from sensorimotor associated spa-
tial locations. Furthermore, this and the high involvement of
the DMN in our results suggest that the lag related changes in
narcolepsy type 1 are not completely global, but rather some
inter-RSN connections are spared while others are affected.

The complete underlying mechanism of cognitive dysfunc-
tion in narcolepsy remains elusive, yet most prior research
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attributes the observed deficits to reduced efficiency of cognitive
processing due to compensatory misallocation of available
resources between different brain areas (Witt et al. 2018).
Current information processing occurs simultaneously with
the continuous monitoring and maintaining of alertness and
attention in narcolepsy. In narcolepsy type 1, this is thought
to relate to the changes in the vastly connected hypocretin
system through labile cortical activation (Naumann et al.
2006). Our results indicate that in addition to misallocation
of resources, relatively longer lags and thus slow information
signaling between the RSN’s may contribute to the executive
and attentional deficits in narcolepsy type 1. This is supported
by the finding that alterations in brain connectivity have been
associated with neuropsychological symptoms in narcolepsy
type 1 (Xiao et al. 2020). The most probable explanation is that
the hypoactivity of the hypocretin system underlies these lag-
related dynamic changes.

Resting-State Lag Analysis

Viewed from a spatiotemporal perspective, conventional zero-lag
functional connectivity techniques have implicitly assumed that
the involved spatial brain regions are at the same phase of a
propagation pattern, thus leading to a simultaneous activation
(Mitra and Raichle 2016). However, recently published findings
have demonstrated that the rs-fMRI data are composed of multi-
ple temporal sequences (Mitra, Snyder, Blazey, et al. 2015), where
some regions are systematically early with respect to the rest of
brain whereas others are systematically late (Mitra et al. 2014;
Mitra, Snyder, Blazey, et al. 2015). However, these reference stud-
ies have assumed the existence of a single lag value over a given
time epoch. Furthermore, the lag timings have been determined
at a resolution finer than the temporal sampling frequency by
parabolic interpolation.

More recent papers utilizing fast fMRI MREG imaging have
estimated the inter-RSN lag timings dynamically between acti-
vated brain regions without cardiorespiratory aliasing and with-
out need for data interpolation (Raatikainen et al. 2019). In this
study, we further utilized the DLA method, and computed the
mutual lag timings, peak-by-peak, not only between activated
(positive peaks) and deactivated (negative peaks) RSNs but also
between RSNs in their anticorrelating phases (from positive to
negative peak and vice versa). Therefore, our study provides new
insights relating to temporal dynamics of anticorrelated brain
networks (negative associations between brain networks) their
associated regions observed in the static studies (Fox et al. 2005,
2009; Uddin et al. 2009; Allen et al. 2011). Conversely, our results
suggest that anticorrelative connections among brain networks
are transient as opposed to constant across the whole scan, and
this connectome is disrupted in narcolepsy type 1. Interestingly,
the lag-pattern changes in our results are concentrated into the
transiently anticorrelating RSN pairs (pos-neg, neg-pos: 83,3% of
the significant pairs) over the transiently correlating RSN pairs
(pos-pos, neg-neg: 16,7% of the significant pairs) indicating dys-
functionality in the transient activation/deactivation patterns in
narcolepsy type 1 undetectable by conventional static zero-lag
analyses. More generally, each RSN pair has mutual negative
associations with each other for a specific temporal state and
there are moments in which no negative associations exist. Our
findings are in line with a recent study that investigated time-
varying brain functional organizations (Iraji et al. 2019). They
concluded that, anticorrelative relationships identified across
previous default mode static analyses all exist, but in differ-
ing segments of time (Iraji et al. 2019). Therefore, our novel

approach unveils typically overlooked features of brain dynamics
and detects subtle alterations among patients with narcolepsy
type 1 and potentially with other physiological or pathological
conditions.

Strengths and Limitations

All study patients were carefully clinically examined, and nar-
colepsy type 1 diagnosed according to criteria of ICSD third
edition. The study groups were age- and sex-matched. High-
temporal resolution of MREG sequence offered a high statistical
power without the need for data interpolation in lag timings and
enabled the removal of respiratory and cardiac peaks from the
data. This enables accurate peak based lag pattern estimation.
Rigorous motion control was utilized with visual inspection of
the data, exclusion of subjects with excess motion and FIX.
Additionally, no significant difference was observed between the
study groups in relative and absolute motion.

Although all study subjects were instructed to stay eyes open
in the scanner and the vigilance state was checked verbally
between each scan, the propensity of narcolepsy patients to fall
asleep could present a confounding factor in the lag estimation
since the lag structure has been shown to alter between physio-
logical states (Mitra, Snyder, Tagliazucchi, et al. 2015). However,
most of the patients had medication that enhances vigilance
and improves nighttime sleep quality. Since the NT1 group had
heterogeneous drug combinations, it is difficult to evaluate the
effect of medications in the lag metrics in this study, and due to
ethical restrictions, we did not require the participants to refrain
from medication prior to participating in this study. Therefore,
supplementary analyses are needed in the future.

The potential hemodynamic response function (HRF) contri-
bution to our between-group findings was not considered in our
analyses. It has been recently shown that the interregional lags of
BOLD fluctuations are reproducibly present in rs-fMRI data and
are not attributable to hemodynamic factors (Mitra et al. 2014)
and, instead, arise from neurophysiological origin (Lin et al. 2014;
Mitra et al. 2014, 2018; Thompson et al. 2014; Rajna et al. 2015;
Amemiya et al. 2016; Matsui et al. 2016; Vanni et al. 2017) However,
a deeper understanding of potential HRF confounds are needed
and thus the potential effects of HRF to lag dynamics should be
considered in the future lag studies.

As this study was restricted to spatial topographies by the
joined ICA analysis, it would be interesting to widen the lag
metrics analysis to other brain regions relevant to narcolepsy
type 1, for example, brain stem and basal ganglia. Moreover,
a standardized cognition test battery would be important in a
more thorough evaluation of the association of cognition and lag
pattern variations in narcolepsy type 1. Finally, investigation of
the relationship between DLA-based lag values and correlation
values would be interesting in the future. All of the above are
important issues that should be studied in a more detailed
manner in the future and with larger study population.

Conclusion
Understanding the neurobiology of narcolepsy type 1 requires
a critical investigation of brain temporal dynamics. Our results
reveal delayed information flow prominently between the DMN
and other major RSNs in narcolepsy type 1. Our results add to
the evidence of an imbalance in the intrinsic RSN connectivity in
narcolepsy type 1, and help to explain the deficits in sustained
attention and executive function observed in the earlier studies.
This study addresses an essential question regarding the extent
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and nature of dynamic time lag variations between brain regions
by utilizing both fast fMRI imaging and DLA. Our findings are
novel, as the dynamic internetwork lag variations were inves-
tigated, peak-by-peak, both between activated and deactivated
RSNs, and additionally, between anticorrelated networks in crit-
ically sampled data. Finally, this work challenges the notion that
anticorrelative connections to brain networks are constant over
the entire scan, and highlights the importance of exploring inter-
RSN phase transitions as transient events.

Supplementary Material
Supplementary material can be found at Cerebral Cortex Commu-
nications online.

Notes
Thanks to Instrumentarium Science Foundation, North Ostroboth-
nia Regional Fund, Finnish Brain Foundation sr, Finnish Epilepsy
Association, Finnish Medical Foundation, Maire Taponen Foun-
dation, Orion Research Foundation, Walter Ahlström Foundation,
Finnish Foundation for Technology Promotion, Tauno Tönning
Foundation, Radiological Society of Finland, The University of
Oulu Scholarship Foundation, Emil Aaltonen Foundation, and
Medical Research Center Oulu who supported this research
by a personal grant. We thank all the study participants
whose attendance made this study possible. Finally, we wish
to acknowledge CSC — IT Center for Science, Finland, for
computational resources. Conflict of Interest: None declared.

Funding
Academy of Finland (275352, 314497, Profi 3); and Jane and Aatos
Erkko Foundation.

References
Allen EA, Erhardt EB, Damaraju E, Gruner W, Segall JM, Silva RF,

Havlicek M, Rachakonda S, Fries J, Kalyanam R, et al. 2011.
A baseline for the multivariate comparison of resting-state
networks. Front Syst Neurosci. 5:1–23.

Amemiya S, Takao H, Hanaoka S, Ohtomo K. 2016. Global and
structured waves of rs-fMRI signal identified as putative propa-
gation of spontaneous neural activity. NeuroImage. 133:331–340.

American Academy of Sleep Medicine. 2014. International classi-
fication of sleep disorders. Diagnostic and coding manual. 3rd ed.
Darien, IL: American Academy of Sleep Medicine.

Assländer J, Zahneisen B, Hugger T, Reisert M, Lee H-L, LeVan P,
Hennig J. 2013. Single shot whole brain imaging using spherical
stack of spirals trajectories. NeuroImage. 73:59–70.

Bandt SK, Besson P, Ridley B, Pizzo F, Carron R, Regis J, Bartolomei
F, Ranjeva JP, Guye M. 2019. Connectivity strength, time lag
structure and the epilepsy network in resting-state fMRI. Neu-
roImage Clin. 24:102035.

Bassetti CLA, Adamantidis A, Burdakov D, Han F, Gay S, Kallweit
U, Khatami R, Koning F, Kornum BR, Lammers GJ, et al. 2019.
Narcolepsy — clinical spectrum, aetiopathophysiology, diagno-
sis and treatment. Nat Rev Neurol. 15:519–539.

Bayard S, Croisier Langenier M, Cochen De Cock V, Scholz S,
Dauvilliers Y. 2012. Executive control of attention in narcolepsy.
PLoS One. 7:e33525.

Beckmann CF, DeLuca M, Devlin JT, Smith SM. 2005. Investiga-
tions into resting-state connectivity using independent com-
ponent analysis. Philos Trans R Soc B Biol Sci. 360:1001–1013.

Biswal B, Zerrin Yetkin F, Haughton VM, Hyde JS. 1995. Functional
connectivity in the motor cortex of resting human brain using
echo-planar MRI. Magn Reson Med. 34:537–541.

Biswal BB, Mennes M, Zuo X-N, Gohel S, Kelly C, Smith SM,
Beckmann CF, Adelstein JS, Buckner RL, Colcombe S, et al. 2010.
Toward discovery science of human brain function. Proc Natl
Acad Sci. 107:4734–4739.

Bonnelle V, Leech R, Kinnunen KM, Ham TE, Beckmann CF, De
Boissezon X, Greenwood RJ, Sharp DJ. 2011. Default mode net-
work connectivity predicts sustained attention deficits after
traumatic brain injury. J Neurosci. 31:13442–13451.

Bressler SL, Menon V. 2010. Large-scale brain networks in cogni-
tion: emerging methods and principles. Trends Cogn Sci. 14:277–
290.

Cellini N. 2017. Memory consolidation in sleep disorders. Sleep
Med Rev. 35:101–112.

Chand GB, Dhamala M. 2016. Interactions among the brain
default-mode, salience, and central-executive networks dur-
ing perceptual decision-making of moving dots. Brain Connect.
6:249–254.

Chand GB, Wu J, Hajjar I, Qiu D. 2017. Interactions of the salience
network and its subsystems with the default-mode and the
central-executive networks in normal aging and mild cognitive
impairment. Brain Connect. 7:401–412.

Chang C, Glover GH. 2010. Time–frequency dynamics of resting-
state brain connectivity measured with fMRI. NeuroImage.
50:81–98.

Chen AC, Oathes DJ, Chang C, Bradley T, Zhou Z-W, Williams
LM, Glover GH, Deisseroth K, Etkin A. 2013. Causal interactions
between fronto-parietal central executive and default-mode
networks in humans. Proc Natl Acad Sci. 110:19944–19949.

Cipolli C, Campana G, Campi C, Mattarozzi K, Mazzetti M, Tuozzi
G, Vandi S, Vignatelli L, Plazzi G. 2009. Sleep and time course
of consolidation of visual discrimination skills in patients with
narcolepsy-cataplexy. J Sleep Res. 18:209–220.

Drissi NM, Szakács A, Witt ST, Wretman A, Ulander M,
Ståhlbrandt H, Darin N, Hallböök T, Landtblom A-M, Engström
M. 2016. Altered brain microstate dynamics in adolescents with
narcolepsy. Front Hum Neurosci. 10:1–16.

Fan J, Gan J, Liu W, Zhong M, Liao H, Zhang H, Yi J, Chan RCK,
Tan C, Zhu X. 2018. Resting-state default mode network related
functional connectivity is associated with sustained attention
deficits in schizophrenia and obsessive-compulsive disorder.
Front Behav Neurosci. 12:319.

Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle
ME. 2005. From the cover: the human brain is intrinsically
organized into dynamic, anticorrelated functional networks.
Proc Natl Acad Sci. 102:9673–9678.

Fox MD, Zhang D, Snyder AZ, Raichle ME. 2009. The global signal
and observed anticorrelated resting state brain networks. J
Neurophysiol. 101:3270–3283.

Fransson P. 2005. Spontaneous low-frequency BOLD signal fluc-
tuations: an fMRI investigation of the resting-state default
mode of brain function hypothesis. Hum Brain Mapp. 26:
15–29.

Fulda S, Schulz H. 2001. Cognitive dysfunction in sleep disorders.
Sleep Med Rev. 5:423–445.

Godbout R, Montplaisir J. 1986. All-day performance variations in
normal and narcoleptic subjects. Sleep. 9:200–204.

Griffanti L, Salimi-Khorshidi G, Beckmann CF, Auerbach EJ,
Douaud G, Sexton CE, Zsoldos E, Ebmeier KP, Filippini N,
Mackay CE, et al. 2014. ICA-based artefact removal and accel-
erated fMRI acquisition for improved resting state network
imaging. NeuroImage. 95:232–247.

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa073#supplementary-data


12 Cerebral Cortex Communications, 2020, Vol. 1, No. 1

Hugger T, Zahneisen B, LeVan P, Lee KJ, Lee H-L, Zaitsev M,
Hennig J. 2011. Fast undersampled functional magnetic res-
onance imaging using nonlinear regularized parallel image
reconstruction. PLoS One. 6:e28822.

Huotari N, Raitamaa L, Helakari H, Kananen J, Raatikainen V,
Rasila A, Tuovinen T, Kantola J, Borchardt V, Kiviniemi VJ, et al.
2019. Sampling rate effects on resting state fMRI metrics. Front
Neurosci. 13:279.

Hutchison RM, Womelsdorf T, Gati JS, Everling S, Menon RS. 2013.
Resting-state networks show dynamic functional connectivity
in awake humans and anesthetized macaques: dynamic func-
tional connectivity. Hum Brain Mapp. 34:2154–2177.

Iraji A, Deramus TP, Lewis N, Yaesoubi M, Stephen JM, Erhardt E,
Belger A, Ford JM, McEwen S, Mathalon DH, et al. 2019. The spa-
tial chronnectome reveals a dynamic interplay between func-
tional segregation and integration. Hum Brain Mapp. 40:3058–
3077.

Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith
SM. 2012. FSL. NeuroImage. 62:782–790.

Kiviniemi V, Kantola J-H, Jauhiainen J, Hyvärinen A, Tervonen
O. 2003. Independent component analysis of nondeterministic
fMRI signal sources. NeuroImage. 19:253–260.

Kiviniemi V, Vire T, Remes J, Elseoud AA, Starck T, Tervonen O,
Nikkinen J. 2011. A sliding time-window ICA reveals spatial
variability of the default mode network in time. Brain Connect.
1:339–347.

Kornum BR, Knudsen S, Ollila HM, Pizza F, Jennum PJ, Dauvilliers
Y, Overeem S. 2017. Narcolepsy. Nat Rev Dis Primer. 3:16100.

Laird AR, Fox PM, Eickhoff SB, Turner JA, Ray KL, McKay DR, Glahn
DC, Beckmann CF, Smith SM, Fox PT. 2011. Behavioral inter-
pretations of intrinsic connectivity networks. J Cogn Neurosci.
23:4022–4037.

Lee H-L, Zahneisen B, Hugger T, LeVan P, Hennig J. 2013. Tracking
dynamic resting-state networks at higher frequencies using
MR-encephalography. NeuroImage. 65:216–222.

Leech R, Sharp DJ. 2014. The role of the posterior cingulate cortex
in cognition and disease. Brain. 137:12–32.

Lin F-H, Witzel T, Raij T, Ahveninen J, Wen-Kai Tsai K, Chu Y-H,
Chang W-T, Nummenmaa A, Polimeni JR, Kuo W-J, et al. 2013.
fMRI hemodynamics accurately reflects neuronal timing in the
human brain measured by MEG. NeuroImage. 78:372–384.

Lin F-H, Ahveninen J, Raij T, Witzel T, Chu Y-H, Jääskeläinen
IP, Tsai KW-K, Kuo W-J, Belliveau JW. 2014. Increasing fMRI
sampling rate improves granger causality estimates. PLoS One.
9:e100319.

Liu X, Duyn JH. 2013. Time-varying functional network infor-
mation extracted from brief instances of spontaneous brain
activity. Proc Natl Acad Sci. 110:4392–4397.

Mahoney CE, Cogswell A, Koralnik IJ, Scammell TE. 2019. The
neurobiological basis of narcolepsy. Nat Rev Neurosci. 20:83–93.

Majeed W, Magnuson M, Keilholz SD. 2009. Spatiotemporal
dynamics of low frequency fluctuations in BOLD fMRI of the
rat. J Magn Reson Imaging. 30:384–393.

Majeed W, Magnuson M, Hasenkamp W, Schwarb H, Schumacher
EH, Barsalou L, Keilholz SD. 2011. Spatiotemporal dynamics of
low frequency BOLD fluctuations in rats and humans. NeuroIm-
age. 54:1140–1150.

Matsui T, Murakami T, Ohki K. 2016. Transient neuronal coac-
tivations embedded in globally propagating waves under-
lie resting-state functional connectivity. Proc Natl Acad Sci.
113:6556–6561.

Mazzetti M, Plazzi G, Campi C, Cicchella A, Mattarozzi K, Tuozzi G,
Vandi S, Vignatelli L, Cipolli C. 2012. Sleep-dependent consoli-
dation of motor skills in patients with narcolepsy-cataplexy.
Arch Ital Biol. 150:185–193.

Menon V. 2011. Large-scale brain networks and psychopathology:
a unifying triple network model. Trends Cogn Sci. 15:483–506.

Mitra A, Snyder AZ, Hacker CD, Raichle ME. 2014. Lag structure in
resting-state fMRI. J Neurophysiol. 111:2374–2391.

Mitra A, Snyder AZ, Blazey T, Raichle ME. 2015. Lag threads orga-
nize the brain’s intrinsic activity. Proc Natl Acad Sci. 112:E2235–
E2244.

Mitra A, Snyder AZ, Constantino JN, Raichle ME. 2017. The lag
structure of intrinsic activity is focally altered in high function-
ing adults with autism. Cerebral Cortex. 27:1083–1093.

Mitra A, Snyder AZ, Tagliazucchi E, Laufs H, Raichle ME.
2015. Propagated infra-slow intrinsic brain activity reorganizes
across wake and slow wave sleep. eLife. 4:e10781.

Mitra A, Raichle ME. 2016. How networks communicate: propaga-
tion patterns in spontaneous brain activity. Philos Trans R Soc B
Biol Sci. 371:20150546.

Mitra A, Kraft A, Wright P, Acland B, Snyder AZ, Rosenthal Z,
Czerniewski L, Bauer A, Snyder L, Culver J, et al. 2018. Spon-
taneous infra-slow brain activity has unique spatiotemporal
dynamics and laminar structure. Neuron. 98:297–305.e6.

Murphy K, Fox MD. 2017. Towards a consensus regarding global
signal regression for resting state functional connectivity MRI.
NeuroImage. 154:169–173.

Naumann A, Bierbrauer J, Przuntek H, Daum I. 2001. Attentive
and preattentive processing in narcolepsy as revealed by event-
related potentials (ERPs). Neuroreport. 12:2807–2811.

Naumann A, Daum I. 2003. Narcolepsy: pathophysiology and
neuropsychological changes. Behav Neurol. 14:89–98.

Naumann A, Bellebaum C, Daum I. 2006. Cognitive deficits in
narcolepsy. J Sleep Res. 15:329–338.

Norman LJ, Carlisi CO, Christakou A, Cubillo A, Murphy CM, Chan-
tiluke K, Simmons A, Giampietro V, Brammer M, Mataix-Cols
D, et al. 2017. Shared and disorder-specific task-positive and
default mode network dysfunctions during sustained atten-
tion in paediatric attention-deficit/hyperactivity disorder and
obsessive/compulsive disorder. NeuroImage Clin. 15:181–193.

Raatikainen V, Huotari N, Korhonen V, Rasila A, Kananen J,
Raitamaa L, Keinänen T, Kantola J, Tervonen O, Kiviniemi
V. 2017. Combined spatiotemporal ICA (stICA) for continuous
and dynamic lag structure analysis of MREG data. NeuroImage.
148:352–363.

Raatikainen V, Korhonen V, Borchardt V, Huotari N, Helakari H,
Kananen J, Raitamaa L, Joskitt L, Loukusa S, Hurtig T, et al. 2019.
Dynamic lag analysis reveals atypical brain information flow in
autism spectrum disorder. Autism Res. 13:244–258.

Rajna Z, Kananen J, Keskinarkaus A, Seppänen T, Kiviniemi V.
2015. Detection of short-term activity avalanches in human
brain default mode network with ultrafast MR encephalogra-
phy. Front Hum Neurosci. 9:1–12.

Raut RV, Mitra A, Marek S, Ortega M, Snyder AZ, Tanenbaum A,
Laumann TO, Dosenbach NUF, Raichle ME. 2019. Organization
of propagated intrinsic brain activity in individual humans.
Cerebral Cortex. 30:1716–1734.

Rieger M, Mayer G, Gauggel S. 2003. Attention deficits in patients
with narcolepsy. Sleep. 26:36–43.

Saletu M, Anderer P, Saletu-Zyhlarz GM, Mandl M, Zeitl-
hofer J, Saletu B. 2008. Event-related-potential low-resolution
brain electromagnetic tomography (ERP-LORETA) suggests
decreased energetic resources for cognitive processing in nar-
colepsy. Clin Neurophysiol. 119:1782–1794.

Salimi-Khorshidi G, Douaud G, Beckmann CF, Glasser MF,
Griffanti L, Smith SM. 2014. Automatic denoising of func-
tional MRI data: combining independent component anal-
ysis and hierarchical fusion of classifiers. NeuroImage. 90:
449–468.



Lag Analysis of Fast fMRI in Narcolepsy Järvelä et al. 13

Sangal RB, Sangal JM, Belisle C. 1999. Longer auditory and
visual P300 latencies in patients with narcolepsy. Clin Electroen-
cephalogr. 30:28–32.

Sarkanen T, Alakuijala A, Julkunen I, Partinen M. 2018. Narcolepsy
associated with Pandemrix vaccine. Curr Neurol Neurosci Rep.
18:43.

Scammell TE. 2015. Narcolepsy. N Engl J Med. 373:2654–2662.
Shah MN, Mitra A, Goyal MS, Snyder AZ, Zhang J, Shi-

mony JS, Limbrick DD, Raichle ME, Smyth MD. 2018. Rest-
ing state signal latency predicts laterality in pediatric med-
ically refractory temporal lobe epilepsy. Childs Nerv Syst. 34:
901–910.

Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filip-
pini N, Watkins KE, Toro R, Laird AR, et al. 2009. Correspondence
of the brain’s functional architecture during activation and
rest. Proc Natl Acad Sci. 106:13040–13045.

Smith SM, Miller KL, Moeller S, Xu J, Auerbach EJ, Woolrich
MW, Beckmann CF, Jenkinson M, Andersson J, Glasser
MF, et al. 2012. Temporally-independent functional modes
of spontaneous brain activity. Proc Natl Acad Sci. 109:
3131–3136.

Spreng RN, Sepulcre J, Turner GR, Stevens WD, Schacter DL.
2013. Intrinsic architecture underlying the relations among the
default, dorsal attention, and frontoparietal control networks
of the human brain. J Cogn Neurosci. 25:74–86.

Sridharan D, Levitin DJ, Menon V. 2008. A critical role for the right
fronto-insular cortex in switching between central-executive
and default-mode networks. Proc Natl Acad Sci. 105:12569–
12574.

Thompson GJ, Pan W-J, Magnuson ME, Jaeger D, Keilholz SD. 2014.
Quasi-periodic patterns (QPP): large-scale dynamics in resting
state fMRI that correlate with local infraslow electrical activity.
NeuroImage. 84:1018–1031.

Uddin LQ, Clare Kelly AM, Biswal BB, Xavier Castellanos F, Mil-
ham MP. 2009. Functional connectivity of default mode net-
work components: correlation, anticorrelation, and causality.
Hum Brain Mapp. 30:625–637.

Uddin LQ. 2015. Salience processing and insular cortical function
and dysfunction. Nat Rev Neurosci. 16:55–61.

Valley V, Broughton R. 1981. Daytime performance deficits and
physiological vigilance in untreated patients with narcolepsy-
cataplexy compared to controls. Rev DaposElectroencéphalogra-
phie Neurophysiol Clin. 11:133–139.

Vanni MP, Chan AW, Balbi M, Silasi G, Murphy TH. 2017.
Mesoscale mapping of mouse cortex reveals frequency-
dependent cycling between distinct macroscale functional
modules. J Neurosci. 37:7513–7533.

Wada M, Mimura M, Noda Y, et al. 2019. Neuroimaging correlates
of narcolepsy with cataplexy: a systematic review. Neurosci Res.
142:16–29.

Witt ST, Drissi NM, Tapper S, Wretman A, Szakács A, Hallböök
T, Landtblom A-M, Karlsson T, Lundberg P, Engström M. 2018.
Evidence for cognitive resource imbalance in adolescents with
narcolepsy. Brain Imaging Behav. 12:411–424.

Xiao F, Lu C, Zhao D, Zou Q, Zhang W, Zhang J, Han F. 2018.
Recursive partitioning analysis of fractional low-frequency
fluctuations in narcolepsy with cataplexy. Front Neurol. 9:
936.

Xiao F, Lu C, Zhao D, Zou Q, Xu L, Li J, Zhang J, Han F. 2019. Inde-
pendent component analysis and graph theoretical analysis in
patients with narcolepsy. Neurosci Bull. 35:743–755.

Xiao F, Spruyt K, Lu C, Zhao D, Zhang J, Han F. 2020. Resting-state
brain network topological properties and the correlation with
neuropsychological assessment in adolescent narcolepsy. Sleep
43:1–9.

Zahneisen B, Hugger T, Lee KJ, LeVan P, Reisert M, Lee H-L,
Assländer J, Zaitsev M, Hennig J. 2012. Single shot concentric
shells trajectories for ultra fast fMRI. Magn Reson Med. 68:484–
494.

Zahneisen B, Assländer J, LeVan P, Hugger T, Reisert M, Ernst
T, Hennig J. 2014. Quantification and correction of respiration
induced dynamic field map changes in fMRI using 3D sin-
gle shot techniques: respiration induced field map dynamics.
Magn Reson Med. 71:1093–1102.

Zhou Y, Friston KJ, Zeidman P, Chen J, Li S, Razi A. 2018. The
hierarchical organization of the default, dorsal attention and
salience networks in adolescents and young adults. Cerebral
Cortex. 28:726–737.


	Lag Analysis of Fast fMRI Reveals Delayed Information Flow Between the Default Mode and Other Networks in Narcolepsy
	Introduction 
	Materials and Methods
	Participants
	Measurements
	Preprocessing
	Lag Analysis Using DLA
	Lag Between Activated RSNs Between Positive Signal Peaks, pos-pos
	Lag Between Deactivated RSNs Between Negative Signal Peaks, neg-neg
	Lag From Activated RSN to Anticorrelated RSN Between Positive and Negative Signal Peak, pos-neg
	Lag from Anticorrelated RSN to Activated RSN Between Negative and Positive Signal Peak, neg-pos
	Statistical Analysis

	Results
	Summary
	Lag Distributions Between Activated pos-pos and Deactivated neg-neg  RSNs
	Lag Distributions in Anticorrelative RSNs pos-neg and neg-pos
	Motion

	Discussion
	Summary
	RSN Interplay and Cognition
	Resting-State Lag Analysis
	Strengths and Limitations

	Conclusion
	Supplementary Material
	Notes
	Funding


