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Abstract: Approaches to the estimation of the full state vector of a larger epidemiological
model for the spread of Covid-19 in Sweden at the initial time instant from available data
and with a simplified dynamical model are proposed and evaluated. The larger epidemiological
model is based on a time-continuous Markov chain and captures the demographic composition
of and the transport flows between the counties of Sweden. Its intended use is to predict the
outbreak development in temporal and spatial coordinates as well as across the demographic
groups. It can also support evaluations and comparisions of prospective intervention strategies
in terms of, e.g., lockdown in certain areas or isolation of specific age groups. The simplified
model is a discrete time-invariant linear system that has cumulative infectious incidence, infected
population, asymptomatic population, exposed population, and infectious pressure as the state
variables. Since the system matrix of the model depends on a number of transition rates,
structural properties of the model are investigated for suitable parameter ranges. It is concluded
that the model becomes unobservable for some parameter values. Two contrasting approaches to
the initial state estimation are considered. One is a version of Rauch–Tung–Striebel smoother
and another is based on solving a batch nonlinear optimization problem. The benefits and
shortcomings of the considered estimation techniques are analyzed and compared.
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1. INTRODUCTION

This paper makes use of publicly available epidemiolog-
ical data for estimating suitable initial conditions for a
large mechanistic general Susceptible-Exposed-Infectious-
Recovered (SEIR) model of the Swedish Covid-19 out-
break. The model incorporates spatial communication be-
tween the Swedish municipalities and also includes the
Swedish demographics. Following Widgren et al. (2018);
Engblom et al. (2020), the viral contraction is driven by
an infectious pressure. Fig. 1 provides an overview of the
modeling approach and included compartments.

The dynamics of the disease transmission are modeled by
a discrete-state continuous-time Markov chain (MC) im-
plemented in SimInf, Widgren et al. (2019). A continuous
state variable, the environmental compartment, is included
to model the infectious pressure. A Bayesian approach is
utilized to infer the model parameters since it allows for
the use of empirical measures as prior knowledge.

The problem of estimating the state vector of a dynam-
ical system backwards in time is known as smoothing.
A minimal variance fixed-interval smoother for a linear
time-invariant (LTI) model under additive Gaussian noise
assumption was derived in Rauch et al. (1965), followed
up by various generalizations including state-dependent
Gaussian noise (Aravkin and Burke (2012)) and non-
Gaussian noise sources (Wang et al. (2020)). In the present

� This work is funded by the PhD program at the Centre for Interdis-
ciplinary Mathematics, Uppsala University, Sweden, by the Swedish
Research Council, under grant 2019-04451, and by Vinnova grant
2020-03173,“Model-based data-driven tools for the optimization of
pro-active epidemiological interventions”.

Fig. 1. (a) Illustration of the compartment model of the
Swedish COVID-19 outbreak. Arrows denote the flows
of individuals between the compartments: susceptible
(S), exposed (E), asymptomatic (A), symptomatic (I),
hospitalized (H), intensive care (W), post-intensive
care (P), deceased (D), recovered (R). (b) The full
model is a network of compartment models emulating
the commuting network between the Swedish munic-
ipalities. The yellow rectangle shows a zoom-in view
of the network within the greater Stockholm region.

work, the latter two circumstances occur combined, as the
process noise is Poisson-distributed rather than Gaussian,
and also dependent on the plant state. Therefore, none of
the approaches found in in the literature is readily appli-
cable here. Instead, empirical initialization algorithms are
developed and compared performance-wise on synthetic
data produced by models of increasing complexity.

The rest of the paper is organized as follows. First, the
model initialization problem is formulated and the prop-
erties of the LTI model that is used to calculate the
initial condition are explored. Then, three model-based
approaches to solving the initialization problem are pre-

Initialization of a Disease Transmission
Model �

H̊akan Runvik ∗ Alexander Medvedev ∗ Robin Eriksson ∗

Stefan Engblom ∗

∗ Information Technology, Uppsala University, Uppsala, SWEDEN,
e-mail: {hakan.runvik, alexander.medvedev, robin.eriksson,

stefan.engblom}@it.uu.se.

Abstract: Approaches to the estimation of the full state vector of a larger epidemiological
model for the spread of Covid-19 in Sweden at the initial time instant from available data
and with a simplified dynamical model are proposed and evaluated. The larger epidemiological
model is based on a time-continuous Markov chain and captures the demographic composition
of and the transport flows between the counties of Sweden. Its intended use is to predict the
outbreak development in temporal and spatial coordinates as well as across the demographic
groups. It can also support evaluations and comparisions of prospective intervention strategies
in terms of, e.g., lockdown in certain areas or isolation of specific age groups. The simplified
model is a discrete time-invariant linear system that has cumulative infectious incidence, infected
population, asymptomatic population, exposed population, and infectious pressure as the state
variables. Since the system matrix of the model depends on a number of transition rates,
structural properties of the model are investigated for suitable parameter ranges. It is concluded
that the model becomes unobservable for some parameter values. Two contrasting approaches to
the initial state estimation are considered. One is a version of Rauch–Tung–Striebel smoother
and another is based on solving a batch nonlinear optimization problem. The benefits and
shortcomings of the considered estimation techniques are analyzed and compared.

Keywords: Mathematical models, initial states, linear systems, smoothing filters, Markov
models, model approximation.

1. INTRODUCTION

This paper makes use of publicly available epidemiolog-
ical data for estimating suitable initial conditions for a
large mechanistic general Susceptible-Exposed-Infectious-
Recovered (SEIR) model of the Swedish Covid-19 out-
break. The model incorporates spatial communication be-
tween the Swedish municipalities and also includes the
Swedish demographics. Following Widgren et al. (2018);
Engblom et al. (2020), the viral contraction is driven by
an infectious pressure. Fig. 1 provides an overview of the
modeling approach and included compartments.

The dynamics of the disease transmission are modeled by
a discrete-state continuous-time Markov chain (MC) im-
plemented in SimInf, Widgren et al. (2019). A continuous
state variable, the environmental compartment, is included
to model the infectious pressure. A Bayesian approach is
utilized to infer the model parameters since it allows for
the use of empirical measures as prior knowledge.

The problem of estimating the state vector of a dynam-
ical system backwards in time is known as smoothing.
A minimal variance fixed-interval smoother for a linear
time-invariant (LTI) model under additive Gaussian noise
assumption was derived in Rauch et al. (1965), followed
up by various generalizations including state-dependent
Gaussian noise (Aravkin and Burke (2012)) and non-
Gaussian noise sources (Wang et al. (2020)). In the present

� This work is funded by the PhD program at the Centre for Interdis-
ciplinary Mathematics, Uppsala University, Sweden, by the Swedish
Research Council, under grant 2019-04451, and by Vinnova grant
2020-03173,“Model-based data-driven tools for the optimization of
pro-active epidemiological interventions”.

Fig. 1. (a) Illustration of the compartment model of the
Swedish COVID-19 outbreak. Arrows denote the flows
of individuals between the compartments: susceptible
(S), exposed (E), asymptomatic (A), symptomatic (I),
hospitalized (H), intensive care (W), post-intensive
care (P), deceased (D), recovered (R). (b) The full
model is a network of compartment models emulating
the commuting network between the Swedish munic-
ipalities. The yellow rectangle shows a zoom-in view
of the network within the greater Stockholm region.

work, the latter two circumstances occur combined, as the
process noise is Poisson-distributed rather than Gaussian,
and also dependent on the plant state. Therefore, none of
the approaches found in in the literature is readily appli-
cable here. Instead, empirical initialization algorithms are
developed and compared performance-wise on synthetic
data produced by models of increasing complexity.

The rest of the paper is organized as follows. First, the
model initialization problem is formulated and the prop-
erties of the LTI model that is used to calculate the
initial condition are explored. Then, three model-based
approaches to solving the initialization problem are pre-

Initialization of a Disease Transmission
Model �

H̊akan Runvik ∗ Alexander Medvedev ∗ Robin Eriksson ∗

Stefan Engblom ∗

∗ Information Technology, Uppsala University, Uppsala, SWEDEN,
e-mail: {hakan.runvik, alexander.medvedev, robin.eriksson,

stefan.engblom}@it.uu.se.

Abstract: Approaches to the estimation of the full state vector of a larger epidemiological
model for the spread of Covid-19 in Sweden at the initial time instant from available data
and with a simplified dynamical model are proposed and evaluated. The larger epidemiological
model is based on a time-continuous Markov chain and captures the demographic composition
of and the transport flows between the counties of Sweden. Its intended use is to predict the
outbreak development in temporal and spatial coordinates as well as across the demographic
groups. It can also support evaluations and comparisions of prospective intervention strategies
in terms of, e.g., lockdown in certain areas or isolation of specific age groups. The simplified
model is a discrete time-invariant linear system that has cumulative infectious incidence, infected
population, asymptomatic population, exposed population, and infectious pressure as the state
variables. Since the system matrix of the model depends on a number of transition rates,
structural properties of the model are investigated for suitable parameter ranges. It is concluded
that the model becomes unobservable for some parameter values. Two contrasting approaches to
the initial state estimation are considered. One is a version of Rauch–Tung–Striebel smoother
and another is based on solving a batch nonlinear optimization problem. The benefits and
shortcomings of the considered estimation techniques are analyzed and compared.

Keywords: Mathematical models, initial states, linear systems, smoothing filters, Markov
models, model approximation.

1. INTRODUCTION

This paper makes use of publicly available epidemiolog-
ical data for estimating suitable initial conditions for a
large mechanistic general Susceptible-Exposed-Infectious-
Recovered (SEIR) model of the Swedish Covid-19 out-
break. The model incorporates spatial communication be-
tween the Swedish municipalities and also includes the
Swedish demographics. Following Widgren et al. (2018);
Engblom et al. (2020), the viral contraction is driven by
an infectious pressure. Fig. 1 provides an overview of the
modeling approach and included compartments.

The dynamics of the disease transmission are modeled by
a discrete-state continuous-time Markov chain (MC) im-
plemented in SimInf, Widgren et al. (2019). A continuous
state variable, the environmental compartment, is included
to model the infectious pressure. A Bayesian approach is
utilized to infer the model parameters since it allows for
the use of empirical measures as prior knowledge.

The problem of estimating the state vector of a dynam-
ical system backwards in time is known as smoothing.
A minimal variance fixed-interval smoother for a linear
time-invariant (LTI) model under additive Gaussian noise
assumption was derived in Rauch et al. (1965), followed
up by various generalizations including state-dependent
Gaussian noise (Aravkin and Burke (2012)) and non-
Gaussian noise sources (Wang et al. (2020)). In the present

� This work is funded by the PhD program at the Centre for Interdis-
ciplinary Mathematics, Uppsala University, Sweden, by the Swedish
Research Council, under grant 2019-04451, and by Vinnova grant
2020-03173,“Model-based data-driven tools for the optimization of
pro-active epidemiological interventions”.

Fig. 1. (a) Illustration of the compartment model of the
Swedish COVID-19 outbreak. Arrows denote the flows
of individuals between the compartments: susceptible
(S), exposed (E), asymptomatic (A), symptomatic (I),
hospitalized (H), intensive care (W), post-intensive
care (P), deceased (D), recovered (R). (b) The full
model is a network of compartment models emulating
the commuting network between the Swedish munic-
ipalities. The yellow rectangle shows a zoom-in view
of the network within the greater Stockholm region.

work, the latter two circumstances occur combined, as the
process noise is Poisson-distributed rather than Gaussian,
and also dependent on the plant state. Therefore, none of
the approaches found in in the literature is readily appli-
cable here. Instead, empirical initialization algorithms are
developed and compared performance-wise on synthetic
data produced by models of increasing complexity.

The rest of the paper is organized as follows. First, the
model initialization problem is formulated and the prop-
erties of the LTI model that is used to calculate the
initial condition are explored. Then, three model-based
approaches to solving the initialization problem are pre-

Initialization of a Disease Transmission
Model �

H̊akan Runvik ∗ Alexander Medvedev ∗ Robin Eriksson ∗

Stefan Engblom ∗

∗ Information Technology, Uppsala University, Uppsala, SWEDEN,
e-mail: {hakan.runvik, alexander.medvedev, robin.eriksson,

stefan.engblom}@it.uu.se.

Abstract: Approaches to the estimation of the full state vector of a larger epidemiological
model for the spread of Covid-19 in Sweden at the initial time instant from available data
and with a simplified dynamical model are proposed and evaluated. The larger epidemiological
model is based on a time-continuous Markov chain and captures the demographic composition
of and the transport flows between the counties of Sweden. Its intended use is to predict the
outbreak development in temporal and spatial coordinates as well as across the demographic
groups. It can also support evaluations and comparisions of prospective intervention strategies
in terms of, e.g., lockdown in certain areas or isolation of specific age groups. The simplified
model is a discrete time-invariant linear system that has cumulative infectious incidence, infected
population, asymptomatic population, exposed population, and infectious pressure as the state
variables. Since the system matrix of the model depends on a number of transition rates,
structural properties of the model are investigated for suitable parameter ranges. It is concluded
that the model becomes unobservable for some parameter values. Two contrasting approaches to
the initial state estimation are considered. One is a version of Rauch–Tung–Striebel smoother
and another is based on solving a batch nonlinear optimization problem. The benefits and
shortcomings of the considered estimation techniques are analyzed and compared.

Keywords: Mathematical models, initial states, linear systems, smoothing filters, Markov
models, model approximation.

1. INTRODUCTION

This paper makes use of publicly available epidemiolog-
ical data for estimating suitable initial conditions for a
large mechanistic general Susceptible-Exposed-Infectious-
Recovered (SEIR) model of the Swedish Covid-19 out-
break. The model incorporates spatial communication be-
tween the Swedish municipalities and also includes the
Swedish demographics. Following Widgren et al. (2018);
Engblom et al. (2020), the viral contraction is driven by
an infectious pressure. Fig. 1 provides an overview of the
modeling approach and included compartments.

The dynamics of the disease transmission are modeled by
a discrete-state continuous-time Markov chain (MC) im-
plemented in SimInf, Widgren et al. (2019). A continuous
state variable, the environmental compartment, is included
to model the infectious pressure. A Bayesian approach is
utilized to infer the model parameters since it allows for
the use of empirical measures as prior knowledge.

The problem of estimating the state vector of a dynam-
ical system backwards in time is known as smoothing.
A minimal variance fixed-interval smoother for a linear
time-invariant (LTI) model under additive Gaussian noise
assumption was derived in Rauch et al. (1965), followed
up by various generalizations including state-dependent
Gaussian noise (Aravkin and Burke (2012)) and non-
Gaussian noise sources (Wang et al. (2020)). In the present

� This work is funded by the PhD program at the Centre for Interdis-
ciplinary Mathematics, Uppsala University, Sweden, by the Swedish
Research Council, under grant 2019-04451, and by Vinnova grant
2020-03173,“Model-based data-driven tools for the optimization of
pro-active epidemiological interventions”.

Fig. 1. (a) Illustration of the compartment model of the
Swedish COVID-19 outbreak. Arrows denote the flows
of individuals between the compartments: susceptible
(S), exposed (E), asymptomatic (A), symptomatic (I),
hospitalized (H), intensive care (W), post-intensive
care (P), deceased (D), recovered (R). (b) The full
model is a network of compartment models emulating
the commuting network between the Swedish munic-
ipalities. The yellow rectangle shows a zoom-in view
of the network within the greater Stockholm region.

work, the latter two circumstances occur combined, as the
process noise is Poisson-distributed rather than Gaussian,
and also dependent on the plant state. Therefore, none of
the approaches found in in the literature is readily appli-
cable here. Instead, empirical initialization algorithms are
developed and compared performance-wise on synthetic
data produced by models of increasing complexity.

The rest of the paper is organized as follows. First, the
model initialization problem is formulated and the prop-
erties of the LTI model that is used to calculate the
initial condition are explored. Then, three model-based
approaches to solving the initialization problem are pre-

Initialization of a Disease Transmission
Model �

H̊akan Runvik ∗ Alexander Medvedev ∗ Robin Eriksson ∗

Stefan Engblom ∗

∗ Information Technology, Uppsala University, Uppsala, SWEDEN,
e-mail: {hakan.runvik, alexander.medvedev, robin.eriksson,

stefan.engblom}@it.uu.se.

Abstract: Approaches to the estimation of the full state vector of a larger epidemiological
model for the spread of Covid-19 in Sweden at the initial time instant from available data
and with a simplified dynamical model are proposed and evaluated. The larger epidemiological
model is based on a time-continuous Markov chain and captures the demographic composition
of and the transport flows between the counties of Sweden. Its intended use is to predict the
outbreak development in temporal and spatial coordinates as well as across the demographic
groups. It can also support evaluations and comparisions of prospective intervention strategies
in terms of, e.g., lockdown in certain areas or isolation of specific age groups. The simplified
model is a discrete time-invariant linear system that has cumulative infectious incidence, infected
population, asymptomatic population, exposed population, and infectious pressure as the state
variables. Since the system matrix of the model depends on a number of transition rates,
structural properties of the model are investigated for suitable parameter ranges. It is concluded
that the model becomes unobservable for some parameter values. Two contrasting approaches to
the initial state estimation are considered. One is a version of Rauch–Tung–Striebel smoother
and another is based on solving a batch nonlinear optimization problem. The benefits and
shortcomings of the considered estimation techniques are analyzed and compared.

Keywords: Mathematical models, initial states, linear systems, smoothing filters, Markov
models, model approximation.

1. INTRODUCTION

This paper makes use of publicly available epidemiolog-
ical data for estimating suitable initial conditions for a
large mechanistic general Susceptible-Exposed-Infectious-
Recovered (SEIR) model of the Swedish Covid-19 out-
break. The model incorporates spatial communication be-
tween the Swedish municipalities and also includes the
Swedish demographics. Following Widgren et al. (2018);
Engblom et al. (2020), the viral contraction is driven by
an infectious pressure. Fig. 1 provides an overview of the
modeling approach and included compartments.

The dynamics of the disease transmission are modeled by
a discrete-state continuous-time Markov chain (MC) im-
plemented in SimInf, Widgren et al. (2019). A continuous
state variable, the environmental compartment, is included
to model the infectious pressure. A Bayesian approach is
utilized to infer the model parameters since it allows for
the use of empirical measures as prior knowledge.

The problem of estimating the state vector of a dynam-
ical system backwards in time is known as smoothing.
A minimal variance fixed-interval smoother for a linear
time-invariant (LTI) model under additive Gaussian noise
assumption was derived in Rauch et al. (1965), followed
up by various generalizations including state-dependent
Gaussian noise (Aravkin and Burke (2012)) and non-
Gaussian noise sources (Wang et al. (2020)). In the present

� This work is funded by the PhD program at the Centre for Interdis-
ciplinary Mathematics, Uppsala University, Sweden, by the Swedish
Research Council, under grant 2019-04451, and by Vinnova grant
2020-03173,“Model-based data-driven tools for the optimization of
pro-active epidemiological interventions”.

Fig. 1. (a) Illustration of the compartment model of the
Swedish COVID-19 outbreak. Arrows denote the flows
of individuals between the compartments: susceptible
(S), exposed (E), asymptomatic (A), symptomatic (I),
hospitalized (H), intensive care (W), post-intensive
care (P), deceased (D), recovered (R). (b) The full
model is a network of compartment models emulating
the commuting network between the Swedish munic-
ipalities. The yellow rectangle shows a zoom-in view
of the network within the greater Stockholm region.

work, the latter two circumstances occur combined, as the
process noise is Poisson-distributed rather than Gaussian,
and also dependent on the plant state. Therefore, none of
the approaches found in in the literature is readily appli-
cable here. Instead, empirical initialization algorithms are
developed and compared performance-wise on synthetic
data produced by models of increasing complexity.

The rest of the paper is organized as follows. First, the
model initialization problem is formulated and the prop-
erties of the LTI model that is used to calculate the
initial condition are explored. Then, three model-based
approaches to solving the initialization problem are pre-

Initialization of a Disease Transmission
Model �

H̊akan Runvik ∗ Alexander Medvedev ∗ Robin Eriksson ∗

Stefan Engblom ∗

∗ Information Technology, Uppsala University, Uppsala, SWEDEN,
e-mail: {hakan.runvik, alexander.medvedev, robin.eriksson,

stefan.engblom}@it.uu.se.

Abstract: Approaches to the estimation of the full state vector of a larger epidemiological
model for the spread of Covid-19 in Sweden at the initial time instant from available data
and with a simplified dynamical model are proposed and evaluated. The larger epidemiological
model is based on a time-continuous Markov chain and captures the demographic composition
of and the transport flows between the counties of Sweden. Its intended use is to predict the
outbreak development in temporal and spatial coordinates as well as across the demographic
groups. It can also support evaluations and comparisions of prospective intervention strategies
in terms of, e.g., lockdown in certain areas or isolation of specific age groups. The simplified
model is a discrete time-invariant linear system that has cumulative infectious incidence, infected
population, asymptomatic population, exposed population, and infectious pressure as the state
variables. Since the system matrix of the model depends on a number of transition rates,
structural properties of the model are investigated for suitable parameter ranges. It is concluded
that the model becomes unobservable for some parameter values. Two contrasting approaches to
the initial state estimation are considered. One is a version of Rauch–Tung–Striebel smoother
and another is based on solving a batch nonlinear optimization problem. The benefits and
shortcomings of the considered estimation techniques are analyzed and compared.

Keywords: Mathematical models, initial states, linear systems, smoothing filters, Markov
models, model approximation.

1. INTRODUCTION

This paper makes use of publicly available epidemiolog-
ical data for estimating suitable initial conditions for a
large mechanistic general Susceptible-Exposed-Infectious-
Recovered (SEIR) model of the Swedish Covid-19 out-
break. The model incorporates spatial communication be-
tween the Swedish municipalities and also includes the
Swedish demographics. Following Widgren et al. (2018);
Engblom et al. (2020), the viral contraction is driven by
an infectious pressure. Fig. 1 provides an overview of the
modeling approach and included compartments.

The dynamics of the disease transmission are modeled by
a discrete-state continuous-time Markov chain (MC) im-
plemented in SimInf, Widgren et al. (2019). A continuous
state variable, the environmental compartment, is included
to model the infectious pressure. A Bayesian approach is
utilized to infer the model parameters since it allows for
the use of empirical measures as prior knowledge.

The problem of estimating the state vector of a dynam-
ical system backwards in time is known as smoothing.
A minimal variance fixed-interval smoother for a linear
time-invariant (LTI) model under additive Gaussian noise
assumption was derived in Rauch et al. (1965), followed
up by various generalizations including state-dependent
Gaussian noise (Aravkin and Burke (2012)) and non-
Gaussian noise sources (Wang et al. (2020)). In the present

� This work is funded by the PhD program at the Centre for Interdis-
ciplinary Mathematics, Uppsala University, Sweden, by the Swedish
Research Council, under grant 2019-04451, and by Vinnova grant
2020-03173,“Model-based data-driven tools for the optimization of
pro-active epidemiological interventions”.

Fig. 1. (a) Illustration of the compartment model of the
Swedish COVID-19 outbreak. Arrows denote the flows
of individuals between the compartments: susceptible
(S), exposed (E), asymptomatic (A), symptomatic (I),
hospitalized (H), intensive care (W), post-intensive
care (P), deceased (D), recovered (R). (b) The full
model is a network of compartment models emulating
the commuting network between the Swedish munic-
ipalities. The yellow rectangle shows a zoom-in view
of the network within the greater Stockholm region.

work, the latter two circumstances occur combined, as the
process noise is Poisson-distributed rather than Gaussian,
and also dependent on the plant state. Therefore, none of
the approaches found in in the literature is readily appli-
cable here. Instead, empirical initialization algorithms are
developed and compared performance-wise on synthetic
data produced by models of increasing complexity.

The rest of the paper is organized as follows. First, the
model initialization problem is formulated and the prop-
erties of the LTI model that is used to calculate the
initial condition are explored. Then, three model-based
approaches to solving the initialization problem are pre-

Initialization of a Disease Transmission
Model �

H̊akan Runvik ∗ Alexander Medvedev ∗ Robin Eriksson ∗

Stefan Engblom ∗

∗ Information Technology, Uppsala University, Uppsala, SWEDEN,
e-mail: {hakan.runvik, alexander.medvedev, robin.eriksson,

stefan.engblom}@it.uu.se.

Abstract: Approaches to the estimation of the full state vector of a larger epidemiological
model for the spread of Covid-19 in Sweden at the initial time instant from available data
and with a simplified dynamical model are proposed and evaluated. The larger epidemiological
model is based on a time-continuous Markov chain and captures the demographic composition
of and the transport flows between the counties of Sweden. Its intended use is to predict the
outbreak development in temporal and spatial coordinates as well as across the demographic
groups. It can also support evaluations and comparisions of prospective intervention strategies
in terms of, e.g., lockdown in certain areas or isolation of specific age groups. The simplified
model is a discrete time-invariant linear system that has cumulative infectious incidence, infected
population, asymptomatic population, exposed population, and infectious pressure as the state
variables. Since the system matrix of the model depends on a number of transition rates,
structural properties of the model are investigated for suitable parameter ranges. It is concluded
that the model becomes unobservable for some parameter values. Two contrasting approaches to
the initial state estimation are considered. One is a version of Rauch–Tung–Striebel smoother
and another is based on solving a batch nonlinear optimization problem. The benefits and
shortcomings of the considered estimation techniques are analyzed and compared.

Keywords: Mathematical models, initial states, linear systems, smoothing filters, Markov
models, model approximation.

1. INTRODUCTION

This paper makes use of publicly available epidemiolog-
ical data for estimating suitable initial conditions for a
large mechanistic general Susceptible-Exposed-Infectious-
Recovered (SEIR) model of the Swedish Covid-19 out-
break. The model incorporates spatial communication be-
tween the Swedish municipalities and also includes the
Swedish demographics. Following Widgren et al. (2018);
Engblom et al. (2020), the viral contraction is driven by
an infectious pressure. Fig. 1 provides an overview of the
modeling approach and included compartments.

The dynamics of the disease transmission are modeled by
a discrete-state continuous-time Markov chain (MC) im-
plemented in SimInf, Widgren et al. (2019). A continuous
state variable, the environmental compartment, is included
to model the infectious pressure. A Bayesian approach is
utilized to infer the model parameters since it allows for
the use of empirical measures as prior knowledge.

The problem of estimating the state vector of a dynam-
ical system backwards in time is known as smoothing.
A minimal variance fixed-interval smoother for a linear
time-invariant (LTI) model under additive Gaussian noise
assumption was derived in Rauch et al. (1965), followed
up by various generalizations including state-dependent
Gaussian noise (Aravkin and Burke (2012)) and non-
Gaussian noise sources (Wang et al. (2020)). In the present

� This work is funded by the PhD program at the Centre for Interdis-
ciplinary Mathematics, Uppsala University, Sweden, by the Swedish
Research Council, under grant 2019-04451, and by Vinnova grant
2020-03173,“Model-based data-driven tools for the optimization of
pro-active epidemiological interventions”.

Fig. 1. (a) Illustration of the compartment model of the
Swedish COVID-19 outbreak. Arrows denote the flows
of individuals between the compartments: susceptible
(S), exposed (E), asymptomatic (A), symptomatic (I),
hospitalized (H), intensive care (W), post-intensive
care (P), deceased (D), recovered (R). (b) The full
model is a network of compartment models emulating
the commuting network between the Swedish munic-
ipalities. The yellow rectangle shows a zoom-in view
of the network within the greater Stockholm region.

work, the latter two circumstances occur combined, as the
process noise is Poisson-distributed rather than Gaussian,
and also dependent on the plant state. Therefore, none of
the approaches found in in the literature is readily appli-
cable here. Instead, empirical initialization algorithms are
developed and compared performance-wise on synthetic
data produced by models of increasing complexity.

The rest of the paper is organized as follows. First, the
model initialization problem is formulated and the prop-
erties of the LTI model that is used to calculate the
initial condition are explored. Then, three model-based
approaches to solving the initialization problem are pre-

Initialization of a Disease Transmission
Model �

H̊akan Runvik ∗ Alexander Medvedev ∗ Robin Eriksson ∗

Stefan Engblom ∗

∗ Information Technology, Uppsala University, Uppsala, SWEDEN,
e-mail: {hakan.runvik, alexander.medvedev, robin.eriksson,

stefan.engblom}@it.uu.se.

Abstract: Approaches to the estimation of the full state vector of a larger epidemiological
model for the spread of Covid-19 in Sweden at the initial time instant from available data
and with a simplified dynamical model are proposed and evaluated. The larger epidemiological
model is based on a time-continuous Markov chain and captures the demographic composition
of and the transport flows between the counties of Sweden. Its intended use is to predict the
outbreak development in temporal and spatial coordinates as well as across the demographic
groups. It can also support evaluations and comparisions of prospective intervention strategies
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model is a discrete time-invariant linear system that has cumulative infectious incidence, infected
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variables. Since the system matrix of the model depends on a number of transition rates,
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1. INTRODUCTION

This paper makes use of publicly available epidemiolog-
ical data for estimating suitable initial conditions for a
large mechanistic general Susceptible-Exposed-Infectious-
Recovered (SEIR) model of the Swedish Covid-19 out-
break. The model incorporates spatial communication be-
tween the Swedish municipalities and also includes the
Swedish demographics. Following Widgren et al. (2018);
Engblom et al. (2020), the viral contraction is driven by
an infectious pressure. Fig. 1 provides an overview of the
modeling approach and included compartments.

The dynamics of the disease transmission are modeled by
a discrete-state continuous-time Markov chain (MC) im-
plemented in SimInf, Widgren et al. (2019). A continuous
state variable, the environmental compartment, is included
to model the infectious pressure. A Bayesian approach is
utilized to infer the model parameters since it allows for
the use of empirical measures as prior knowledge.

The problem of estimating the state vector of a dynam-
ical system backwards in time is known as smoothing.
A minimal variance fixed-interval smoother for a linear
time-invariant (LTI) model under additive Gaussian noise
assumption was derived in Rauch et al. (1965), followed
up by various generalizations including state-dependent
Gaussian noise (Aravkin and Burke (2012)) and non-
Gaussian noise sources (Wang et al. (2020)). In the present
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Fig. 1. (a) Illustration of the compartment model of the
Swedish COVID-19 outbreak. Arrows denote the flows
of individuals between the compartments: susceptible
(S), exposed (E), asymptomatic (A), symptomatic (I),
hospitalized (H), intensive care (W), post-intensive
care (P), deceased (D), recovered (R). (b) The full
model is a network of compartment models emulating
the commuting network between the Swedish munic-
ipalities. The yellow rectangle shows a zoom-in view
of the network within the greater Stockholm region.

work, the latter two circumstances occur combined, as the
process noise is Poisson-distributed rather than Gaussian,
and also dependent on the plant state. Therefore, none of
the approaches found in in the literature is readily appli-
cable here. Instead, empirical initialization algorithms are
developed and compared performance-wise on synthetic
data produced by models of increasing complexity.

The rest of the paper is organized as follows. First, the
model initialization problem is formulated and the prop-
erties of the LTI model that is used to calculate the
initial condition are explored. Then, three model-based
approaches to solving the initialization problem are pre-
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work, the latter two circumstances occur combined, as the
process noise is Poisson-distributed rather than Gaussian,
and also dependent on the plant state. Therefore, none of
the approaches found in in the literature is readily appli-
cable here. Instead, empirical initialization algorithms are
developed and compared performance-wise on synthetic
data produced by models of increasing complexity.

The rest of the paper is organized as follows. First, the
model initialization problem is formulated and the prop-
erties of the LTI model that is used to calculate the
initial condition are explored. Then, three model-based
approaches to solving the initialization problem are pre-
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sented. Finally, performance of the considered approaches
is evaluated on synthetic data and conclusions are drawn.

2. MODEL INITIALIZATION PROBLEM

The MC model inputs are the parameters inferred from
data and an initial chain state. The latter consists of the
epidemiological states in all compartments, including the
hidden ones. The estimation of the infected, exposed, and
asymptomatic populations at a given point in time (model
initialization point) is therefore investigated, based on the
data for cumulative incidence measured over a fixed time
horizon. Thus, the problem at hand constitutes a fixed-
interval smoothing problem. The remaining MC model
compartments do not influence the infected, exposed or
asymptomatic populations and are therefore not included
at present in the considered estimation problem.

2.1 Initialization data

Epidemiological mathematical models are typically de-
signed in terms of populations and face difficulties in cap-
turing situations when only a few individuals are infected.
This is logically the case in the beginning of an outbreak.
Besides, an epidemic is not readily recognized until the
number of patients in the healthcare system becomes sig-
nificant, thus making initial data scarce and unreliable.
In stochastic epidemiological modeling, simulations are
conventionally started when the system has reached some
(fairly large) threshold number (Allen, 2017; Giordano
et al., 2020). A threshold of a 100 reported cases reached
in Sweden on March 6 is applied here whereas the data up
until March 12 have been used for smoothing.

As there were no deaths from the disease and very few in-
dividuals were in intensive care prior to the chosen point of
initialization, the measurements that are used as input to
the MC model cannot be used for its initialization. Instead,
to obtain a county-wise initialization, the cumulative in-
fected cases data reported by the Swedish public health
agency were employed (Folkhälsomyndigheten, 2020a). A
full disease testing strategy was in effect until March
12 in Sweden, after which testing was heavily restricted
(Folkhälsomyndigheten, 2020b). The reported cases during
full testing are thus assumed to hold the true number
of cumulative infected cases, while incidence data from
later times are significantly less reliable and therefore not
utilized.

2.2 Initialization model

Since direct inversion of a continuous Markov chain is
not easily apprehended, the following linear time-invariant
approximation is utilized for the initialization of the model
for each county, whereas the model states are lumped
over the considered age groups. The latter simplification is
introduced since the cases were few in the beginning of the
outbreak and patient age was not specified in the data.

The model is derived as a normal approximation of the
Poisson distributed forward steps and written as

xk+1 = Fxk + wk, (1)

where

F =




1 0 γAF1 σF0 0
0 1− γI γAF1 σF0 0
0 0 1− γA σ(1− F0) 0
0 0 0 1− σ β
0 1− e−ρ θA(1− e−ρ) θE(1− e−ρ) e−ρ


 ,

k = 0, 1, . . . corresponds to daily sampling and wk is the
process noise sequence, whose properties are clarified in
Section 2.3. The state vector elements

xk = [Ic(k) I(k) A(k) E(k) φ(k)]
ᵀ

stand for the populations of the model compartments
according to:

Ic cumulative infectious incidence,
I infected,
A asymptomatic,
E exposed,
φ infectious pressure.

The parameters of the model are specified below

σ expected rate of transition from the exposed state,
γA expected rate of transition from asymptomatic

state,
γI expected rate of transition from infected state,
F0 fraction of transition from exposed reaching the

infected state; the remaining fraction reaches the
asymptomatic state,

F1 fraction of transition from asymptomatic state
reaching the infected state, The remaining fraction
corresponds to the recovery from the disease (not
included in (1)),

β indirect transmission rate of the environmental
infectious pressure,

ρ infections pressure decay rate,
θA asymptomatic viral shedding rate,
θE exposed viral shedding rate.

The parameters are positive and so are the elements of the
state matrix F . Therefore, model (1) is also positive, i.e.
the state vector belongs to the positive quadrant provided
the initial condition x0 and wk, k = 0, 1, . . . do. The latter
condition restricts the distribution of the process noise.

To obtain the parameter values for model (1), prior distri-
butions for the Bayesian parameter estimation algorithm
of the Markov chain model are utilized. The prior distribu-
tions are based on empirical data or published estimates.

For parameter values from these distributions, the matrix
F tends to have one eigenvalue with magnitude larger
than one and is therefore unstable. This is expected, since
exponential growth is observed during the early phase of
a disease outbreak.

Since the cumulative incidence is the only measured signal,
the output of the model is

yk = Hxk + vk, (2)

where
H = [1 0 0 0 0] ,

and vk is the measurement noise with zero mean and
variance Rk. The introduction of measurement noise is
a matter of complying with the standard assumptions of
Kalman filtering and not an actual model property.

Model (1), (2) does not possess structural observability
for the whole range of the parameter values. Some param-
eter values sampled from the prior distribution make the
observability matrix

Oᵀ =
[
Hᵀ F ᵀHᵀ F 2ᵀHᵀ F 3ᵀHᵀ F 4ᵀHᵀ

]
.

lose rank.

2.3 Process noise covariance

In order to evaluate the process noise covariance, the
vector wk is separated into two terms:

wk = w1k + w0k,

where w1k describes the error of approximating the
stochasticity of the full MC model by the linear dynamics
of (1), and w0k captures any other model uncertainty,
including both differences between the models (e.g. the
spread between counties) and differences between the com-
plete model and the true outbreak dynamics. The process
noise covariance matrix Qk is split accordingly as

Qk = Q1k +Q0.

The model uncertainty is assumed to be additive, inde-
pendent of k, and uncorrelated between the components.
Therefore, Q0 is diagonal and constant.

The evaluation of the approximation error covariance Q1k
is more challenging. When the MC model is sampled, the
distribution of an element of w1k is given by a sum of
Poisson processes that are shifted to have zero mean, and
with variance that depends on the population size in the
corresponding compartment. The matrix Q1k is thus state-
dependent and evaluated to (3). To avoid confusion with
pure time-varying case, the explicit notation is utilized

Qk = Q(xk).

3. SMOOTHING PROBLEM

Let ID = [0, d] define a finite interval of discrete time
instants corresponding to the measurements yk, k ∈ ID,
and m ∈ ID be the point of the MC model initialization.

An estimate x̂m|d of xk, k = m defined by (1) is then
sought from the output data yk, k ∈ ID. The problem at
hand was approached in three ways presented next.

3.1 Rauch-Tung-Striebel smoother

The Rauch-Tung-Striebel (RTS) smoother (Rauch et al.,
1965) is a recursive method for solving fixed-interval
smoothing problems. Being an optimal smoother when the
noise sources are Gaussian and independent of the system
states, the RTS smoother lacks theoretical justification
in the present case and even its stability is not readily
guaranteed. However, as the results of Section 4 demon-
strate, it can nonetheless be used empirically. The stability
concerns are not critical as the estimation is performed
with a discrete LTI model and on a finite time interval.

The RTS smoother is a two-pass algorithm consisting of
a Kalman filter (KF) that is run for the full interval in
a forward pass, followed by a backwards pass, when the
state estimates are smoothed. The KF equations are solved
recursively from the initial conditions x̂0 and P0|0

x̂k|k−1 = Fx̂k−1|k−1,

Pk|k−1 = FPk−1|k−1F
ᵀ +Qk,

ỹk = yk −Hx̂k|k−1,

Sk = HPk|k−1H
ᵀ +Rk,

Kk = Pk|k−1H
ᵀS−1

k ,

x̂k|k = x̂k|k−1 +Kkỹk

Pk|k = (I −KkH)Pk|k−1,

where x̂k|k−1 and x̂k|k are the a priori and a posteriori
state estimates, Pk|k−1 and Pk|k are the a priori and a
posteriori estimate covariances, ỹk is the innovation, Sk is
the innovation covariance, and Kk is the Kalman gain.

Notice that the KF requires knowledge of the covariance
matrix Qk for 1 ≤ k ≤ d. Here, the covariance matrix
depends on the unknown states of the system and is not
available. Therefore, the plant state is replaced by its
estimate, and the covariance matrix is approximated as

Q̂k = Q(x̂k|k−1).

The a priori and a posteriori state and covariance esti-
mates at each time are are saved and the algorithm pro-
ceeds backwards from the last time point d. The smoothed
estimate x̂k|d is calculated recursively according to

x̂k|d = x̂k|k + Ck(x̂k+1|d − x̂k+1|k),

Pk|d = Pk|k + Ck(Pk+1|d + Pk+1|k)C
ᵀ
k ,

where Ck = Pk|kF
ᵀP−1

k+1|k and Pk|d is the smoothed

estimate covariance.

3.2 Ordinary least squares

The problem of estimating x̂m|d can be approached as
an optimization problem and solved once, rather than
recursively. The simplest setup is based on the linear
relation between the measurement and the state (i.e.
backcasting) and leads to the algebraic system

yd = HF k−dxk + w̃k,

where the properties of the noise w̃k will be elaborated
upon in Section 3.3. The state estimation problem is then
formulated as

x̂m|d = argmin
xm

||Y − Φxm||2, (4)

where
Y = [y1 y2 . . . yd]

ᵀ
,

Φᵀ =
[
(F 1−m)

ᵀ
Hᵀ (F 2−m)

ᵀ
Hᵀ . . . (F d−m)

ᵀ
Hᵀ

]
.

Optimization problem (4) can be solved by standard least
squares. Furthermore, positivity of the state estimation
can be enforced by using constrained least squares.

3.3 Nonlinear least squares

The method of Section 3.2 can be refined by taking into
account the correlation of w̃k. Let SQ = {Qk}dk=0, and
define the matrix Ω(SQ) by specifying its elements

ωk,l =

r1−1∑
n=0

HF r2Qr3F
ᵀñHᵀ + δklRk,

where

ñ =

{
n, k < m
−n− 1, k ≥ m

,

r1 =

{
min(|k −m|, |l −m|), (k −m)(l −m) ≥ 0
0, (k −m)(l −m) < 0

,

Q1k =




γAF1A(k) + σF0E(k) γAF1A(k) + σF0E(k) −γAF1A(k) −σF0E(k) 0
γAF1A(k) + σF0E(k) γAF1A(k) + σF0E(k) + γII(k) −γAF1A(k) −σF0E(k) 0

−γAF1A(k) −γAF1A(k) γAA(k) + σ(1− F0)E(k) −σ(1− F0)E(k) 0
−σF0E(k) −σF0E(k) −σ(1− F0)E(k) σE + βφ(k) 0

0 0 0 0 0


 (3)
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where w1k describes the error of approximating the
stochasticity of the full MC model by the linear dynamics
of (1), and w0k captures any other model uncertainty,
including both differences between the models (e.g. the
spread between counties) and differences between the com-
plete model and the true outbreak dynamics. The process
noise covariance matrix Qk is split accordingly as

Qk = Q1k +Q0.

The model uncertainty is assumed to be additive, inde-
pendent of k, and uncorrelated between the components.
Therefore, Q0 is diagonal and constant.

The evaluation of the approximation error covariance Q1k
is more challenging. When the MC model is sampled, the
distribution of an element of w1k is given by a sum of
Poisson processes that are shifted to have zero mean, and
with variance that depends on the population size in the
corresponding compartment. The matrix Q1k is thus state-
dependent and evaluated to (3). To avoid confusion with
pure time-varying case, the explicit notation is utilized

Qk = Q(xk).
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Let ID = [0, d] define a finite interval of discrete time
instants corresponding to the measurements yk, k ∈ ID,
and m ∈ ID be the point of the MC model initialization.

An estimate x̂m|d of xk, k = m defined by (1) is then
sought from the output data yk, k ∈ ID. The problem at
hand was approached in three ways presented next.
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smoothing problems. Being an optimal smoother when the
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guaranteed. However, as the results of Section 4 demon-
strate, it can nonetheless be used empirically. The stability
concerns are not critical as the estimation is performed
with a discrete LTI model and on a finite time interval.

The RTS smoother is a two-pass algorithm consisting of
a Kalman filter (KF) that is run for the full interval in
a forward pass, followed by a backwards pass, when the
state estimates are smoothed. The KF equations are solved
recursively from the initial conditions x̂0 and P0|0
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Pk|k−1 = FPk−1|k−1F
ᵀ +Qk,

ỹk = yk −Hx̂k|k−1,

Sk = HPk|k−1H
ᵀ +Rk,

Kk = Pk|k−1H
ᵀS−1

k ,

x̂k|k = x̂k|k−1 +Kkỹk

Pk|k = (I −KkH)Pk|k−1,

where x̂k|k−1 and x̂k|k are the a priori and a posteriori
state estimates, Pk|k−1 and Pk|k are the a priori and a
posteriori estimate covariances, ỹk is the innovation, Sk is
the innovation covariance, and Kk is the Kalman gain.

Notice that the KF requires knowledge of the covariance
matrix Qk for 1 ≤ k ≤ d. Here, the covariance matrix
depends on the unknown states of the system and is not
available. Therefore, the plant state is replaced by its
estimate, and the covariance matrix is approximated as

Q̂k = Q(x̂k|k−1).

The a priori and a posteriori state and covariance esti-
mates at each time are are saved and the algorithm pro-
ceeds backwards from the last time point d. The smoothed
estimate x̂k|d is calculated recursively according to
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relation between the measurement and the state (i.e.
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where the properties of the noise w̃k will be elaborated
upon in Section 3.3. The state estimation problem is then
formulated as
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||Y − Φxm||2, (4)

where
Y = [y1 y2 . . . yd]
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,

Φᵀ =
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(F 1−m)

ᵀ
Hᵀ (F 2−m)

ᵀ
Hᵀ . . . (F d−m)

ᵀ
Hᵀ

]
.

Optimization problem (4) can be solved by standard least
squares. Furthermore, positivity of the state estimation
can be enforced by using constrained least squares.

3.3 Nonlinear least squares

The method of Section 3.2 can be refined by taking into
account the correlation of w̃k. Let SQ = {Qk}dk=0, and
define the matrix Ω(SQ) by specifying its elements

ωk,l =

r1−1∑
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HF r2Qr3F
ᵀñHᵀ + δklRk,
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,

r1 =

{
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r2 =

{
ñ− k + l, |k −m| ≤ |l −m|
ñ− l + k, |k −m| > |l −m| ,

r3 =

{
k − 1− ñ, |k −m| ≤ |l −m|
l − 1− ñ, |k −m| > |l −m| .

Then, Ω(SQ) is the covariance matrix of

W = [w̃0 w̃1 . . . w̃d]
ᵀ
.

The terms w̃k are thus neither uncorrelated nor ho-
moscedastic and the Gauss-Markov theorem does not ap-
ply. If the process noise covariance matrices were indepen-
dent of the system state, the best linear unbiased estimator
would be obtained by solving the optimization problem

x̂m|d = argmin
xm

(Y − Φxm)ᵀΩ(SQ)
−1(Y − Φxm).

Since the process noise is state-dependent in this case, the
state estimation problem cannot be approached directly.
Instead, an estimate

ŜQ(xm) = {Q(F k−mxm)}dk=0.

is used in the weight matrix of a nonlinear least-squares
setup. A solution to the estimation problem is then

x̂m|d = argmin
xm

(Y −Φxm)ᵀΩ(ŜQ(xm))−1(Y −Φxm). (5)

Since Ω(ŜQ(xm)) depends on xm, optimization problem
(5) is nonlinear and solved iteratively by Algorithm 1.

Algorithm 1 Nonlinear least squares

Solve x = argmin
xm

||Y − Φxm||2

let s = ∞, set stol
repeat

let s0 = s
Calculate Ω(Q̂(x))

Solve x̂ = argmin
xm

(Y − Φxm)ᵀΩ(Q̂(x))−1(Y − Φxm)

Let s = (Y − Φx̂)ᵀΩ(Q̂(x))−1(Y − Φx̂)
Let x = x̂

until |s0 − s| < stol
Let x̂m|d = x

3.4 Numerical consideration

For the parametrizations of F in this work, the observ-
ability matrix Φ that appears in the introduced least-
squares state estimation problems becomes numerically
infeasible for large m. The matrix F has eigenvalues that
are significantly smaller than one in magnitude, so that
repeated inversions of F result in very large elements in Φ.
Therefore, the number of estimated states was limited. For
parametrizations where one eigenvalue of F is close to zero,
the corresponding state was removed through truncation,
thus treating the state as identically zero.

The approximation x̂k = F k−mxm in the nonlinear least
squares formulation can also pose problems, when k is
significantly smaller than m. For this reason, a simple
regularization was implemented, where x̂k is set to zero
whenever any element of F k−mxm becomes negative.

4. EXPERIMENTAL RESULTS

The three estimation algorithms introduced above were
evaluated using two types of synthetic data. First, linear
model (1) was used to generate the data, with the same
Poisson-distributed state dependent noise sources as de-
rived for the estimators. Then, the data were generated
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Fig. 2. Estimation error probability density function for
synthetic data from simulations of linear model (1).

from stochastic simulations of the MC model. In both
cases, the models were simulated repeatedly over a time
horizon of 42 days (d = 42), from identical initial con-
ditions (distinct between the two cases) and with identi-
cal parameter values (identical between the two cases),
that were randomly selected from the prior parameter
distributions. The probability distributions of the state
estimation errors for m = 30 were estimated by fitting
kernel distribution and compared to each other.

4.1 Synthetic data from linear time-invariant model

The state estimation was performed with the three algo-
rithms for 100 realizations. The process noise covariance
was calculated with the diagonal elements of Q0 set to
0.1, and Rk = 0.1. Measurements for indices k < 19 were
neglected in the batch optimization approaches.

The estimated distributions for all model states are shown
in Fig. 2. The RTS smoother appears to perform the best,
mostly through lower uncertainty in the infected popula-
tion estimate. The main difference in performance between
the linear and nonlinear least squares is the significantly
higher uncertainty in the cumulative incidence estimation
for the linear method. This is due to the linear method not
exploiting the low uncertainty of the measurement of this
state, that is encoded in the covariance model.

4.2 Synthetic data from the Markov chain model

In this case, 50 realizations were generated and data from
the three counties with spread of the disease in the highest
number of realizations (33, 33 and 31) were analyzed. To
reflect the larger modelling error, the diagonal elements of
Q0 were set to 2 and Rk = 0.5. As above, indices k < 19
were neglected in the batch optimizations. The estimated
estimation error distributions for the states I, E and A in
the three counties are shown in Fig. 3 – Fig. 5.

Similarly to Section 4.1, the RTS smoother is generally
better at estimating the infected population. It is hard to
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Jönköping county based on synthetic data from sim-
ulations of the MC model.

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

Infected

RTS smoother

Linear least squares

Nonlinear least squares

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

Exposed

-10 -8 -6 -4 -2 0 2 4 6 8 10

Estimation error

0

0.1

0.2

0.3

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

Asymptomatic

Skåne

Fig. 4. Estimation error probability density function for
Sk̊ane county based on synthetic data from simula-
tions of the MC model.

draw conclusions apart from this, as the characteristics of
the distributions vary between the counties.

4.3 Markov chain initialization with different estimates

To investigate the effect of the initial estimation on the MC
model, it was simulated using estimated states as initial
conditions. The initial state estimates were produced by
the three estimation methods from one realization of the
simulation of the MC model, see Table 1. The MC model
was run 50 times for 42 days from each of the three sets
of initial conditions.

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.1

0.2

0.3

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

Infected

RTS smoother

Linear least squares

Nonlinear least squares

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.05

0.1

0.15

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

Exposed

-10 -8 -6 -4 -2 0 2 4 6 8 10

Estimation error

0

0.05

0.1

0.15

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

Asymptomatic

Västra Götaland

Fig. 5. Estimation error probability density function for
Västra Götaland county based on synthetic data from
simulations of the MC model.

Table 1. State estimates in initalization ex-
periment. Counties not included in the list
had no estimated spread of the disease. Västra
G. denotes Västra Götaland county and RTS,
OLS and NLS denote state estimations using
the RTS smoother, ordinary least squares and

nonlinear least squares respectively.

RTS OLS NLS
County I E A I E A I E A

Stockholm 2 3 3 0 4 4 0 4 4
Sk̊ane 24 28 24 7 30 31 12 30 29

Västra G. 24 39 30 36 40 28 29 40 31

The probability distributions of the logarithm of the
infected, exposed and asymptomatic populations, in the
three counties listed in Table 1, were then estimated using
kernel distribution fitting, see Fig. 6 – Fig. 8.

The main conclusion that can be drawn from these results
is that the variations between the considered estimation
algorithms have limited effect on the states of the system
in the end of the simulation, compared to the variations
due the stochastic simulation. A greater variance in the
states can be observed for the initial conditions generated
by the RTS smoother compared to the other, but no
general conclusion regarding the initialization methods can
be drawn from this, as the results are based on a single
estimation instance.

5. CONCLUSION

Three approaches to a fixed-interval linear smoothing
problem, one based on the RTS smoother and two on batch
optimization methods, have been compared with respect
to the initialization of a larger MC epidemiological model.
The non-Gaussian state-dependent noise in the linear
model makes standard stochastic approaches inapplicable
and covariance estimates have been employed in two of the
methods. The smoother outperforms the other methods on
synthetic data, despite the lack of theoretical justification.



 Håkan Runvik  et al. / IFAC PapersOnLine 53-5 (2020) 839–844 843

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

Infected

RTS smoother

Linear least squares

Nonlinear least squares

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

Exposed

-10 -8 -6 -4 -2 0 2 4 6 8 10

Estimation error

0

0.1

0.2

0.3

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

Asymptomatic

Jönköping

Fig. 3. Estimation error probability density function for
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draw conclusions apart from this, as the characteristics of
the distributions vary between the counties.

4.3 Markov chain initialization with different estimates

To investigate the effect of the initial estimation on the MC
model, it was simulated using estimated states as initial
conditions. The initial state estimates were produced by
the three estimation methods from one realization of the
simulation of the MC model, see Table 1. The MC model
was run 50 times for 42 days from each of the three sets
of initial conditions.
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Table 1. State estimates in initalization ex-
periment. Counties not included in the list
had no estimated spread of the disease. Västra
G. denotes Västra Götaland county and RTS,
OLS and NLS denote state estimations using
the RTS smoother, ordinary least squares and

nonlinear least squares respectively.

RTS OLS NLS
County I E A I E A I E A

Stockholm 2 3 3 0 4 4 0 4 4
Sk̊ane 24 28 24 7 30 31 12 30 29

Västra G. 24 39 30 36 40 28 29 40 31

The probability distributions of the logarithm of the
infected, exposed and asymptomatic populations, in the
three counties listed in Table 1, were then estimated using
kernel distribution fitting, see Fig. 6 – Fig. 8.

The main conclusion that can be drawn from these results
is that the variations between the considered estimation
algorithms have limited effect on the states of the system
in the end of the simulation, compared to the variations
due the stochastic simulation. A greater variance in the
states can be observed for the initial conditions generated
by the RTS smoother compared to the other, but no
general conclusion regarding the initialization methods can
be drawn from this, as the results are based on a single
estimation instance.

5. CONCLUSION

Three approaches to a fixed-interval linear smoothing
problem, one based on the RTS smoother and two on batch
optimization methods, have been compared with respect
to the initialization of a larger MC epidemiological model.
The non-Gaussian state-dependent noise in the linear
model makes standard stochastic approaches inapplicable
and covariance estimates have been employed in two of the
methods. The smoother outperforms the other methods on
synthetic data, despite the lack of theoretical justification.
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Fig. 6. Probability distributions of model states for Stock-
holm county according to simulation from estimated
initial conditions.
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Fig. 7. Probability distributions of model states for Sk̊ane
county according to simulation from estimated initial
conditions.

Simulations of the MC model from estimated initial con-
ditions indicate that the effect of minor estimation er-
rors is limited compared to the variability due to the
model stochasticity. Therefore, computational complexity,
robustness, and ease of implementation might be of greater
importance than a high initialization accuracy. However,
the incoherent impact of the initial conditions on the
distributions produced by on the MC model for different
considered counties warrants further investigation into the
implications of the initialization method selection.
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Fig. 8. Probability distributions of model states for Västra
Götaland county according to simulation from esti-
mated initial conditions.
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