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Abstract:
The SARS-Cov-2 is a type of coronavirus that has caused the COVID-19 pandemic. In
traditional epidemiological models such as SEIR (Susceptible, Exposed, Infected, Removed), the
exposed group E does not infect the susceptible group S. A distinguishing feature of COVID-19
is that, unlike with previous viruses, there is a distinct “asymptomatic” group A, who do not
show any symptoms, but can nevertheless infect others, at the same rate as infected patients.
This situation is captured in a model known as SAIR (Susceptible, Asymptomatic, Infected,
Removed), introduced in Robinson and Stilianakis (2013). The dynamical behavior of the SAIR
model is quite different from that of the SEIR model. In this paper, we use Lyapunov theory to
establish the global asymptotic stabiilty of the SAIR model.
Next, we present methods for estimating the parameters in the SAIR model. We apply these
estimation methods to data from several countries including India, and show that the predicted
trajectories of the disease closely match actual data.
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1. INTRODUCTION

1.1 Background

The mathematical modelling of the spread of epidemics
has a long history, stretching back over several centuries.
The “modern” approach to the modelling of epidemics
can be said to have begun with Kermack and McKendrick
(1927), which first enunciated the principle that infected
persons pass on the disease to susceptible persons at a rate
proportional to the number of contacts between the two
groups, the so-called SIR model. Over the years, various
refinements of the basic model have been proposed. The
literature on disease modelling is truly enormous. Indeed,
a survey paper Hethcote (2000) published in 2000 already
had more than 200 references. Today it would be many
times that number.

Traditionally, epidemiologcal models have grouped peo-
ple into two, three or four groups, usually denoted by
Susceptible (S), Exposed (E), Infected (I), and Removed
(R). Note that many authors use the symbol R to denote
“recovered.” However, in this paper we wish to make a
distinction between those who recover and are immune to
� This research was supported by the Science and Engineering Re-
search Board, Department of Science and Technology, Government
of India.

further disease, and those who die from the disease. In tra-
ditional models, contact between a member of the Infected
group I and another person belonging to the susceptible
group S leads to the latter person becoming infected with
a certain probability. Depending on the model, the suscep-
tible person either becomes infected straightaway (the SIR
model), or enters an intermediate stage called Exposed (E)
(SEIR model). In the latter scenario, it is assumed that
contact between persons belonging to the E and S groups
does not lead to fresh infections, because members of the
E group do not carry a sufficient viral load to infect others
through contact.

However, one of the characteristic features of the coro-
novirus, or COVID-19, pandemic that is currently sweep-
ing the world, is that many of the persons who contract the
disease, in some cases a majority, are “asymptomatic,” or
A. The members of this group do not manifest any external
symptoms, and for the most part, recover with no visible
impact from the disease. However, unlike in traditional
epidemiological models, contact between a person in the A
group and another in the S group does lead to the latter
getting infected, with a certain probability. In addition,
as in other models, contact between a person in the I
group and another in the S group also leads to the latter
getting infected, with a certain probability. To the best
of the authors’ knowledge, the first paper to formulate
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1. INTRODUCTION

1.1 Background

The mathematical modelling of the spread of epidemics
has a long history, stretching back over several centuries.
The “modern” approach to the modelling of epidemics
can be said to have begun with Kermack and McKendrick
(1927), which first enunciated the principle that infected
persons pass on the disease to susceptible persons at a rate
proportional to the number of contacts between the two
groups, the so-called SIR model. Over the years, various
refinements of the basic model have been proposed. The
literature on disease modelling is truly enormous. Indeed,
a survey paper Hethcote (2000) published in 2000 already
had more than 200 references. Today it would be many
times that number.

Traditionally, epidemiologcal models have grouped peo-
ple into two, three or four groups, usually denoted by
Susceptible (S), Exposed (E), Infected (I), and Removed
(R). Note that many authors use the symbol R to denote
“recovered.” However, in this paper we wish to make a
distinction between those who recover and are immune to
� This research was supported by the Science and Engineering Re-
search Board, Department of Science and Technology, Government
of India.

further disease, and those who die from the disease. In tra-
ditional models, contact between a member of the Infected
group I and another person belonging to the susceptible
group S leads to the latter person becoming infected with
a certain probability. Depending on the model, the suscep-
tible person either becomes infected straightaway (the SIR
model), or enters an intermediate stage called Exposed (E)
(SEIR model). In the latter scenario, it is assumed that
contact between persons belonging to the E and S groups
does not lead to fresh infections, because members of the
E group do not carry a sufficient viral load to infect others
through contact.

However, one of the characteristic features of the coro-
novirus, or COVID-19, pandemic that is currently sweep-
ing the world, is that many of the persons who contract the
disease, in some cases a majority, are “asymptomatic,” or
A. The members of this group do not manifest any external
symptoms, and for the most part, recover with no visible
impact from the disease. However, unlike in traditional
epidemiological models, contact between a person in the A
group and another in the S group does lead to the latter
getting infected, with a certain probability. In addition,
as in other models, contact between a person in the I
group and another in the S group also leads to the latter
getting infected, with a certain probability. To the best
of the authors’ knowledge, the first paper to formulate
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and analyze a model that captures this phenomenon is
Robinson and Stilianakis (2013). However, the analysis of
the model in Robinson and Stilianakis (2013) is not so
complete as is currently available for the SEIR model. The
authors of Robinson and Stilianakis (2013) did not give
a name to their model. In the present paper, we adopt
the model of Robinson and Stilianakis (2013) and refer
to it as the SAIR (Susceptible, Asymptomatic, Infected,
Removed) model.

1.2 Organization and Contributions of the Paper

The paper is organized as follows: We begin by review-
ing two classical models, namely the SIR and the SEIR
models, and analyze the stability of these models using
Lyapunov stability theory. This analysis closely follows
Korobeinikov and Wake (2002); Korobeinikov and Maini
(2004). Then we carry out a complete analysis of the SAIR
(Susceptible, Asymptomatic, Infected, Removed) model,
which represents a more realistic model for the COVID-19
pandemic than currently existing SEIR models. In order
to establish the stability properties of the SAIR model, we
extend the classical Krasovskii-LaSalle theory of Lyapunov
stability, from the case where the Lyapunov function V
is positive definite, to the case where V is only positive
semidefinite. This extension is of independent interest. In
the remainder of the paper, we first present methods for
estimating the parameters in the SAIR model based on the
evolution of the pandemic. Then we present the outcomes
of applying our theories to actual data from the COVID-
19 pandemic in eight countries from around the world,
including India.

In order to conform to page limits, various theorems are
presented without proofs.

2. REVIEW OF THE SIR AND SEIR MODELS

We begin with the SIR model. In this model, the popu-
lation is divided into three groups, denoted as S (Suscep-
tible), I (Infected), and R (Removed). Note that many
authors use R to denote “Recovered.” However, in our
model, the group R also includes those who die from the
disease. Also, it is assumed that the total population size
is constant, so that S, I, R represent the fraction of the
population within each group. Therefore

S, I, R ≥ 0, S + I +R = 1.

In the absence of births and deaths, the equations that
govern the SIR model are

Ṡ = −βIS, İ = βIS − γI, Ṙ = γI. (1)

As expected, we have that Ṡ + İ + Ṙ = 0. Therefore we
can ignore anyone of the three equations and focus only
on the other two. Most authors ignore R and study

Ṡ = −βIS, İ = βIS − γI, (2)

where β, γ > 0 are parameters of the disease under study.
Now let us analyze the dynamics in (2). Because we are
ignoring R, this dynamical system evolves over the simplex

S2 = {(S, I) : S ≥ 0, I ≥ 0, S + I ≤ 1}.
It can be seen that any point (S, 0) where S ∈ [0, 1] is
an equilibrium of the system (2). Therefore there is a
continuum of equilibria.

A thorough analysis of this equation is carried out in
Hethcote (1976); see Equation (2.5) and thereafter.

Theorem 1. (See (Hethcote, 1976, Theorem 2.2).) Define
σ := β/γ to be the “basic reproduction ratio.” Consider
the system (2) starting at an initial condition (I0, S0). If
σS0 ≤ 1, then I(t) ↓ 0 as t → ∞. If σS0 > 1, then I(t)
increases at first and then decreases to 0, while S(t) ↓ S∞,
where S∞ is the unique solution in (0, 1/σ) of

1− S∞ +
ln(S∞/S0)

σ
= 0. (3)

The SEIR model differs from the SIR model in that there
is an additional group, known as Exposed (E). These are
people whose viral load is not sufficient to infect anyone
through contact. The SEIR model is described by

Ṡ = −βIS, Ė = βIS − γE, İ = γE − δI, Ṙ = δI. (4)

3. THE SAIR MODEL

As mentioned earlier, the distinguishing feature of the
COVID-19 pandemic is the presence of a large number of
asymptomatic patients, who do not manifest any external
symptoms, but are still capable of infecting susceptible
persons. To capture this phenomenon, the following model
is presented in Robinson and Stilianakis (2013): 1

Ṡ = −βAAS − βIIS,

Ȧ = βAAS + βIIS − γAA− δA,

İ = δA− γII,

Ṙ = γAA+ γII.

(5)

In the above model, S, A, I, and R denote the susceptible,
asymptomatic, infected, and removed populations respec-
tively. Interactions between A and S lead to the person
from S moving to A at the rate of βA, while interactions
between I and S lead to the person from S moving to A
at the rate of βI . Note that persons from S move only to
A and do not move directly to group I. The persons in
group A move to the group R at the rate γA, and to the
group I at the rate δ. Finally, persons in group I move to
group R at the rate γI .

It is easy to verify that the set

S3 := {(S,A, I) ∈ R3
+ : S +A+ I ≤ 1} (6)

is an invariant set of (5), and that the set of equilibria is
{(S, 0, 0), S ∈ [0, 1]}.
Theorem 2. Define

M0 := {(S,A, I) ∈ S3 : A = 0, I = 0}. (7)

For the system (5), we have that

(S(t), A(t), I(t)) → M0 as t → ∞.

This theorem is proved using the rather non-traditional
Lyapunov function V = S +A+ I.

Now let us impose the simplifying assumptions

βA = βI = β, γA = γI = γ. (8)

1 Equations (1)–(3) of Robinson and Stilianakis (2013) include the
possibility that some fraction from group R re-enters the group S.
This can perhaps be called the SAIRS model. We slightly simplify
the model by assuming that persons who enter the group R remain
there.

in (5). This leads to

Ṡ = −βAS−βIS, Ȧ = βAS+βIS−γA−δA, İ = δA−γI,
(9)

and of course Ṙ = γA + γI. We refer to this model
as the simplified SAIR model, to distinguish it from the
more general SAIR model of (5). The main features of the
simplified SAIR model are:

(1) The infectvitiy of asymptomatic and infected patients
is the same. Papers such as Wölfel et al. (2020); He
et al. (2020); Liu et al. (2020); Li et al. (2020) show
that asymptomatic patients show the same amount
of viral shedding as infected patients.

(2) The removal rate of asymptomatic and infected pa-
tients is the same. This says that the recovery rate of
the A group is the same as the recovery plus death rate
of the I group. Hence this assumption is also nearly
valid.

The assumptions made allow us to derive closed-form
solutions to the simplified SAIR model, analogous to
Theorem 1 for the SIR model. Define a new variable
M := A+ I. Then it readily follows from (9) that

Ṡ = −βMS, Ṁ = βMS − γM, Ṙ = γM, (10)

which is just the “SIR” model of (1) with M playing the
role of I. Recall the simplified SAIR model

Ṡ = −βAS−βIS, Ȧ = βAS+βIS−γA−δA, İ = δA−γI.
(11)

It can be seen that there are only three parameters to
be estimated here, namely β, γ, δ. Now we discuss the
estimation is to be done. We estimate them in the order
γ, δ, β.

To estimate γ, we observe that the removal rate of persons
in group I is given by ṘI = γI. Both RI and I can be
measured. We express this in integral form as

RI(T )−RI(0) = γ

∫ T

0

I(t)dt.

In effect one makes a “phase portrait” of RI versus I.
Computing γ using a least-squares approach with the
above relationship for various values of T gives an estimate
that is more robust to the discrete nature of RI .

Next we derive a method to estimate δ, using the data after
lockdown. Suppose a “perfect” lockdown is implemented
at time TL, which causes β = 0 after that time. In this
case, the simplified SAIR model becomes

Ṡ = 0, Ȧ = −(γ + δ)A, İ = δA− γI.

In particular, it follows that

A(TL + t) = A(TL) exp(−(γ + δ)t), ∀t ≥ 0.

Also, the last equation in the model can be rewritten as

İ + γI = δA.

Combining these two relationships gives

log[(İ + γI)(TL + t)] = log(δA(TL))− (γ + δ)t, ∀t ≥ 0.

Therefore, ideally the plot of log[(İ + γI)(TL + t)] should
be a straight-line with intercept log(δA(TL)) and slope
−(γ + δ). By computing the slope we can estimate γ + δ,
and by combining this with the earlier estimate for γ, we
can get an estimate for δ. Note in passing that, once there

Country γ−1 Country γ−1

USA 50± 3 Brazil 20± 1
Italy 30± 2 India 20± 2
Iran 11± 1 Japan 11± 1
France 21± 2 or 100± 4 Switzerland 35± 2 or 19± 1

Table 1.

is an estimate, it is possible to determine the fraction of
asymptomatic patients by setting

A(TL + t) = (1/δ)(İ + γI)(TL + t), ∀t ≥ 0.

Finally we come to estimating β, which turns out to be
the most involved part. Define σ = β/γ and M = A + I,
and observe that, before the lockdown, we have

d logS

dR
= −σ,

dM

dS
= −1 +

1

Sσ
.

After some manipulations which are contained in the full
paper, we can write

I(t) =
(S0 − 1)(σ − 1) exp{(β − γ)t}

2 ( 1− σS0 + σ(S0 − 1) exp{(β − γ)t})
(12)

Since we can measure I(t) as a function of t, and we have
an estimate for γ is available at this point, the above
equation can be used to estimate β.

4. NUMERICAL RESULTS

Now we present the outcomes of applying the parameter
estimation techniques.

Table 1 shows the estimated γ−1 (with units of days) for
various countries.

Figures 1 and 2 show the values of γ for various countries,

by plotting RI(T ) versus
∫ T

0
I(t)dt as a function of T ,

for various countries. It can be seen that, for six out eight
countries, the plot is nearly linear, thus indicating a robust
estimate for γ. However, for France and Switzerland, the
graph is far from linear. We believe that this is because we
ignored the incubation period of the virus. If we were to
take this into account, then we would have to modify the
dynamics as a delay-differential equation, in the form

ṘI(t) = γI(t− τ),

where τ is the incubation period. Thus

R(T )−R(0) =

∫ T−τ

0

I(t)dt.

Figure 3 shows the estimates of γ for these two countries
using various values for the delay τ . It can be seen that,
as τ is increased, the plot becomes more linear. It is not
clear why this should be an issue only for two out of eight
countries.

Figure 4 shows the outcomes for estimating δ for various
countries.

Figures 5 and 6 show the outcomes for estimating β
for various countries. This figure shows clearly that the
“lockdown” has been implemented with quite varied levels
of thoroughness in different countries.

Once we have fitted the parameters, we have fitted the past
history and made future forecasts for various countries in
Figure 7. The quality of our estimates can be seen in this
figure.
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Figure 7. The quality of our estimates can be seen in this
figure.
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5. DISCUSSION AND FUTURE RESEARCH

In this paper, we undertook the task of completely analyz-
ing the SAIR model which was introduced in Robinson and
Stilianakis (2013) to incorporate asymptomatic patients.
As a part of this, we established the global attractivity of
the equilibria in the SAIR model, both with and without
vital dynamics. We then validated our model by fitting
observed data in eight countries. Our analysis shows that
the model built upon our estimated parameters does an
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Fig. 2. Removal (recovery+death) frequency γ for various
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excellent job of explaining the evolution of the pandemic
across these countries. We have also applied a similar
analysis to the situation in Delhi. This analysis shows
clearly the impact of implementing the “lockdown” in the
Delhi area.

There is no shortage of interesting open problems to be
tackled. We list some of them below: Some of these are
listed below. The full paper gives descriptions of these
problems.
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• Nonlinear observers for the SAIR model.
• Lyapunov stability analysis of SAIR and compart-
mental models with vital dynamics:

• Refinements of the SAIR model
• Sensitivity to estimation errors
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