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Abstract

Currently, blindness cannot be cured and patients’ living quality can be compromised severely. 

Ultrasonic neuromodulation is a promising technology for the development of non-invasive 

cortical visual prosthesis. We investigated the feasibility of transcranial focused ultrasound (tFUS) 

for non-invasive stimulation of the visual cortex to develop improved visual prosthesis. tFUS was 

used to successfully evoke neural activities in the visual cortex (VC) of both normal and retinal 

degenerate (RD) blind rats. Our results showed that blind rats showed more robust responses to 

ultrasound stimulation compared to normal rats. (p<0.001, two-sample t-test). Three different 

types of ultrasound waveforms were used in the three experimental groups. Different types of 

cortical activities were observed when different US waveforms were used. In all rats, when 

stimulated with continuous ultrasound waves, only short-duration responses were observed at ‘US 

on & off’ time points. In comparison, pulsed waves evoked longer low-frequency responses. 

Testing different parameters of pulsed waves showed that a pulse repetition frequency higher than 

100Hz is required to obtain the low-frequency responses. Based on the observed cortical activities, 

we inferred that acoustic radiation force (ARF) is the predominant physical mechanism of 

ultrasound neuromodulation.
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I. Introduction

Recent studies have shown that tFUS is a promising non-invasive technology for cortical 

neuromodulation. Ultrasound waves pass through the skull and stimulate almost any area of 

the brain with precise spatiotemporal resolution. Meanwhile, the safety of tFUS has been 

proved in many in-vivo studies in various animal models [1–8] and humans [9–13]. While 

electrical stimulation methods offer high targeting specificity and resolution, invasive cranial 

surgery is required. Further, electrode implantation and its maintenance cause problems, 

Lu et al. Page 2

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



especially for long-term deep brain stimulation [14, 15]. Other non-invasive brain 

stimulation methods such as temporally interfering electric fields [16], repetitive transcranial 

magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) [17, 18] have 

relatively poor spatial resolution (on the order of centimeters) compared to tFUS (on the 

order of few millimeters). Additionally, it is difficult for TMS and tDCS to modulate deep 

subcortical areas.

Age-related macular degeneration (AMD) and retinitis pigmentosa (RP) are two common 

outer retinal degenerative (RD) diseases that can produce severe vision loss. It is estimated 

that nearly 30% of the U.S. population greater than 75 years of age have AMD, 10% of 

whom may become legally blind [19–21]. Currently there is no cure for blindness resulting 

from end-stage AMD and RP. Retinal prosthesis use electrical stimulation to directly elicit 

neural activity at the inner retina and promise the best short-term strategy to provide partial 

restoration of sight to the blind [20, 22–24]. In retinal prosthesis, electrically induced neural 

activities are transmitted through the optic nerve to the higher visual areas of the brain to 

obtain visual perception. There are also visual prosthetic devices based on directly 

stimulating the visual cortex, such as the Orion System by Second Sights Inc. This cortical 

visual prosthesis converts images captured by a miniature video camera mounted on a 

patient’s glasses into electrical pulses transmitted wirelessly to an array of electrodes on the 

surface of the visual cortex. Although several types of visual prosthesis have been 

developed, they all are reported to have severe limitations (references). Firstly, current 

technologies have limited spatial resolution due to the limited number of stimulating 

electrodes. Secondly, invasive devices require complex and difficult surgical implantation 

procedures. They also cause significant issues including encapsulation, electrode 

degradation, and interference with residual vision resulting from limitations in 

biocompatibility and power supply. Blindness can also occur due to irreversible and 

permanent inner retinal damages caused by glaucoma, optic neuropathy diseases, or 

accidents. Treating the above conditions by stimulating the retina may not be very effective. 

Direct implantation of the prosthesis into the visual cortex (VC) is an alternate option that 

has the advantage of avoiding device implantation in the delicate retinal tissue. However, the 

majority of the issues associated with eye implantation could persist when implanting 

prosthesis in the brain. In addition, electrical stimulation in the brain may produce side 

effects because of the strong current used in prosthesis. Therefore, there is an unmet clinical 

need for developing new techniques to cure blindness.

Non-invasive ultrasonic (US) visual prosthesis has great potential for restoring lost vision 

and is a promising treatment for patients suffering from blindness. Some studies have shown 

that tFUS can modulate the neuronal activities of the VC. Seung-Schik Yoo’s group used 5% 

duty cycle tFUS to suppress visually evoked potentials (VEPs) in rats and elevated the VEPs 

using higher duty cycle and stronger ultrasound intensity [25]. Human studies conducted by 

the above group suggested that tFUS can stimulate the human VC, resulting in the 

perception of phosphene and associated evoked potentials. The study also showed a network 

of activated brain regions that are typically involved in visual and higher-order cognitive 

processes [10]. In all the above studies, only normal animals and humans without any visual 

disability were tested. So far, no studies have been conducted to restore vision using tFUS 

by targeting the VC. In addition to this, the mechanism behind ultrasound neuromodulation 
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is still undetermined, making it difficult to optimize ultrasonic parameters in various 

applications.

In this study, we use tFUS to stimulate the VC of normal rats and RD rats with severe retinal 

degeneration that are considered to be blind. VC-evoked potentials were measured to 

provide an electrophysiological assessment of the brain activities. Different ultrasonic 

waveforms were tested, and different types of responses were analyzed. Light-evoked 

potentials were also measured for comparison with tFUS evoked activities. Our results 

suggested that tFUS stimulation of the VC in rats can evoke neuronal activities in both 

normal and RD blind rats. Also, the blind rats showed significantly stronger responses to 

ultrasound stimulation compared to the normal rats. The results also support the idea that the 

predominant physical mechanism of ultrasound neuromodulation is the acoustic radiation 

force (ARF).

II. Materials and Method

A. Ultrasound transducer and waveform

A self-designed 0.5 MHz transducer was used to stimulate the VC, with a center frequency 

of 0.5 MHz, 23 mm focal length, a f -number of 0.7 for a minimized focal area. A 3D-

printed collimated cone was attached to the surface of the transducer for better collimation 

and easier manipulation in experiments. The transducer was manipulated by a 5-axis stage to 

aim at VC. A function generator (AFG3252C, Tektronix, Beaverton, OR, USA) was 

connected to a radiofrequency power amplifier (100A250A, Amplifier Research, Souderton, 

PA, USA) to drive the transducer. The diagram of experimental system is shown in Fig. 1. 

Different types of waveforms were used in the three experiment groups:

1. A 15-ms-long continuous wave (CW) following a rest of 6 seconds.

2. Two 2-ms-long continuous waves following a rest of 6 seconds. The interval 

between two waves was 20 ms.

3. Pulsed waves (PW) with high pulse repetition rat (PRF) were used in group 3. 

Five sets of parameters were used: 500 Hz PRF with 1-ms pulse, 500 Hz with 

0.5-ms pulse, 333.3 Hz PRF with 1-ms pulse, 200 Hz PRF with 2-ms pulse, 100 

Hz PRF with 5-ms pulse. All stimulations were conducted for 30 ms following a 

rest of 6 seconds.

Ultrasound field was measured by the hydrophone (HGL-0400, ONDA, Sunnyvale, CA, 

USA) in a large water tank (free field). The ultrasonic spatial peak pulse average intensity 

ISPPA used in all experiments were the same. The spatial-peak temporal-average intensity 

(ISPTA) was defined as ISPTA = ISPPA* DC. DC is the duty cycle (%) of the pulsed 

waveforms, which were different in three groups.

To better illustrate the acoustic field and the ultrasound-induced temperature increase, a 

finite-element simulation was conducted using a finite element analysis software. 

(COMSOL 5.3a, COMSOL Inc., Burlington, MA, USA.)
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B. Animal preparation

All animal procedures were approved by the University of Southern California Institutional 

Animal Care and Use Committee (IACUC). Seventeen rats were studied. Six of them were 

normally sighted Long-Evan (LE) rats, and eleven were RD Royal College of Surgeon 

(RCS) blind rats. Three normal rats and three blind rats were used in experimental groups 

1&2. Five blind rats were used in group 3. The RCS rats are characterized by retinal pigment 

epithelium (RPE) dysfunction due to the deletion of the Mer tyrosine kinase (MerTK) 

receptor that abolishes internalization of photoreceptor (PR) outer segments by RPE cells. 

All rats were male and about six-month old. The rats were anaesthetized initially with an 

intraperitoneal injection of Ketamine/Xylazine (50–90 mg/kg, 5–10mg/kg) then with 

sevoflurane inhalation through a nose cone. [26] The eyes were dilated using 1% 

tropicamide and 2.5% phenylephrine drops. The cranium was exposed by removing the skin 

above skull. A small cranial hole was made using a dental drill. All procedures and 

experiments were performed in a dark room illuminated with dim red light to minimize 

possible stimulation of the VC due to photoreceptor activation. The space between the brain 

surface and transducer was filled using US gel.

C. Recording of VC evoked potential activities

A tungsten needle electrode (E363T, P1 Technologies, Roanoke, VA, USA) was advanced 

into the visual cortex using the stereotactic apparatus. The electrode was aligned to the 

ultrasound focal area as accurate as possible, as shown in Fig. 1(b). The reference electrode 

was attached to the scalp and the ground electrode was placed on the hindlimb. Signals were 

recorded by a PowerLab data acquisition (DAQ) system (ADInstruments, Sydney, 

Australia). Sampling frequency was 100 kHz. DAQ was synchronized with the ultrasound 

stimulation and light stimulation. To record light stimulation activities in the brain, a full-

field strobe flash using a Grass Photic stimulator (Grass Instrument Co., W. Warwick, RI, 

USA) was delivered to the contralateral eye with a 6 second interstimulus interval. The 

optical stimulation has a duration shorter than <1 ms. In all experiments, recordings were 

repeated eight times. For each recording, the signals were averaged 64 times. Two filters 

together with 60Hz notch filter were applied to all signals. The 300 Hz-25000 Hz filter 

highlights the short-time/high-frequency responses which were clearly observed in only 

groups 1&2 (CW ultrasound). In contrast, the 0.1 Hz-300 Hz filter highlights the long-time/

low-frequency responses which were observed only in group 3 (PW ultrasound). Light 

stimulation signals were filtered with a 60 Hz notch filter. The amplitude of the evoked 

potentials was used to quantify the stimulation effects in this study. Signal processing and 

statistical analysis were conducted using MATLAB 2017a (Mathworks, Natick, MA, USA).

D. Experimental design

The major difference between the three experimental groups was that different ultrasound 

waveforms were used. All animals went through the same experimental procedures: baseline 

recording, light stimulation, ultrasound stimulation and no stimulation control recording. 

There were 5 minutes intervals between each step. During the control recording, the 

ultrasound was still on, but the transducer was oriented to a completely different location 

(away from the brain).
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III. Results

A. Ultrasound field

The measured focused ultrasound pressure in free field had a peak-to-peak amplitude of 3.74 

MPa, the intensity ISPPA was 115.8 W/cm2, the mechanical index (MI) was 2.6. The −6dB 

focal area had a lateral width of 2.4 mm, and an axial length of 5.1 mm. A stimulated 

ultrasound field has been shown in Fig. 1(c). Ultrasound heating effect can be neglected 

giving the relatively low center frequency, and short stimulation time (in the order of 

milliseconds). In the simulation, the absorption coefficient was set to 5 Np/m, which is high 

for 0.5MHz ultrasound. [27] The stimulation time was set to 100ms which is much longer 

than the stimulation time in this study (<15ms/6s). In the bottom of Fig. 1(c), the color 

represents the increased temperature (K) caused by ultrasound stimulation. With these loose 

conditions, the increased temperature is lower than 0.3°C.

The center frequency of ultrasound was chosen as 0.5MHz mainly based on two aspects: 

skull penetration and focal size. Lower frequency provides a better penetration and worse 

resolution. Considering the surface topography of rat brain as shown in Fig. 1(b), the focus 

should have a diameter smaller than 4mm for a region specific stimulation of visual cortex 

[28]. Higher-frequency ultrasound will be strongly distorted by the skull. Therefore, 0.5MHz 

is chosen as the center frequency in this study, which has also been widely used in various 

ultrasound neuromodulation studies. For safety concern, amplitude of ultrasound was 

determined to be as low as possible to see clear responses. Amplitude was same in all 

experimental groups.

B. VC responses from groups 1&2

Representative results from one LE normal rat and one RCS blind rat are shown in Fig. 2. 

During US stimulation, 20-ms-long signals were recorded in group 1 rats and 55-ms-long 

signals were recorded in group 2 rats. Different durations of CW were tried in the study. The 

durations from 2ms to 15ms caused similar responses, except that both ‘on&off’ responses 

can be observed in 15-ms-CW stimulation on blind rats and cannot be observed in 2-ms-CW 

stimulation. Initially, light stimulation was used to test the rats’ visual sense, Figs. 2(a)&(e) 

for which 20-ms-long signals were recorded. The light stimulation responses from the 

normal rat had a peak-to-peak amplitude of ~15 μV, while the blind rats did not show any 

light-evoked cortical activities. US-evoked cortical responses were obtained from both 

normal rats and blind rats. The peak-to-peak amplitude of US responses are summarized in 

Fig. 3. The US responses from blind rats were significantly stronger than those from normal 

LE rats (p<0.001, two-sample t-test). Looking into the response onset latency and response 

duration, light responses had a latency ~1 ms and a duration ~2 ms. In both LE and RCS 

rats, the US-evoked activities showed latencies comparable to the light-responses (~1 ms). 

The response duration was considerably longer during US stimulation (~5 ms).

C. VC responses from groups 3

In group 3, 30-ms-long pulsed waves were used to stimulate the VC. Different sets of 

parameters (duty cycle, duration and PRF) were tested. Each set of parameters was tested on 

one blind rat. US responses from different waveforms are shown in Fig. 4. 100-ms-long 
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signals were recorded and averaged at 512 times. Different duty cycles (DC), PRFs, and 

pulse lengths were compared. The evoked potentials had a similar specific waveform: 

starting with a weak ~10-ms negative peak (N1) followed by a strong ~10-ms positive peak 

(P1), then a weaker negative peak (N2) and ending with a ~20-ms positive peak (P2). This 

waveform pattern was observed in all cases except when 5-ms pulse in every 10 ms (100 Hz 

PRF and 50% DC) was used (see Fig. 4e). Although durations of the peaks were similar, the 

amplitude of the peaks were different when different stimulation parameters were used.

IV. Discussion

Our study demonstrated that tFUS can evoke VC neuronal activities that are comparable to 

light stimulated responses. Although US evoked VC potentials observed in our study were 

weaker than light stimulated responses, it is reasonable to predict that the responses would 

be stronger if a stronger US intensity was used [29]. The results from group 2 demonstrated 

that ultrasound VC stimulation can produce temporal resolution shorter than 20 ms. 

Temporal resolution determines the available frame rate and is an important parameter for 

developing successful visual prosthesis technology. As shown in Fig. 2, regardless of the 

degree of US response, the durations were always around 5 ms that provides a potential 

frame rate of 200 frame/s. It should be noted that the responses in group 2 were slightly 

longer than the responses in group 1, especially in blind rats. Presumably, this is a result of 

the overlap between the US-evoked ‘on’ and ‘off ‘responses.

A key point of our work is the finding that US-evoked VC activities in blind RCS rats were 

different from those of the normal LE rats. Under the same stimulus conditions, the 

responses in blind rats were significantly stronger than that of normal rats. During US 

stimulation, both ‘on’ & ‘off’ responses were clearly visible in blind rats whereas only a 

single peak (apparently ‘on’ response) was recorded from normal rats. One possible 

explanation for the differences is that stimulation sensitivity of blind rats’ VC has been 

changed due to prolonged visual deprivation. It is highly unlikely that such differences can 

be attributed to difference in rat strains. Further investigations using the same animal strains 

can provide a better conclusion in this regard.

Another major finding of this study is that different ultrasound waveforms can evoke 

different types of VC responses. In experimental group 3, PW was used to stimulate the VC. 

Besides the ~5 ms duration responses, which can be shown using a high-pass filter, a 

different type of long-duration low-frequency response was acquired. As shown in Fig. 4, 

this type of responses had a duration longer than 20ms with four peaks (N1, P1, N2, P2) at 

specific time points. The above waveform pattern persisted at different stimulus parameters 

until the PRF went down to 100 Hz (Fig. 4e). Different DCs were tested at 100 Hz PRF, but 

the typical waveform was never observed. PRF down to 50 Hz were also tested to confirm 

that the above waveform cannot be observed at lower PRF. Although the data obtained from 

group 3 was not sufficient to show statistically significant differences based on various 

parameters tested (pulse length, PRF, DC), it showed a clear trend to support the hypothesis 

that PRF larger than 100 Hz are essential to obtain the low-frequency responses. In group 1 

& 2, 2-ms waves and 15-ms waves were used to show similar short duration responses. Kim 

Butt Pauly’s group used 80-ms-long US stimulation to the auditory cortex to obtain ‘US on 
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& off’ short-duration responses that are comparable to our observation [30]. It can be 

inferred that changes in the duration of CW stimulation (at least within the range of 100 ms) 

may not cause changes in the response pattern like PW.

In this study, the acoustic field was measured in free field and the MI was 2.6, which is a 

little higher than U.S. Food and Drug Administration (FDA)’s limitation of ultrasound 

imaging 1.9. However, since the MI was measured in free field, it is reasonable to predict 

that the real acoustic energy that reached the brain would be weaker than the reported 

pressure, due to the distortion caused by skull and tissue absorption. It is estimated that, the 

ultrasound transmission factor through the adult rats skull is around 0.5–0.7 at 0.5MHz [31, 

32], which will reduce the MI from 2.6 to 1.3–1.8. (<1.9). Therefore, considering the 

distorting caused by skull, the MI in this study should be within the FDA limitation.

There are some limitations in this study that need to be addressed in future investigations. 

Rats of different sex and age should be compared. Additional sets of stimulus parameters are 

required for PW stimulation to validate the effect of individual stimulus condition. We are 

not ruling out the possibility of backward projections along visual pathways. This can be 

investigated by suitable staining techniques like C-FOS detection to map the activated 

neurons. It may also help to understand the extent of spatial resolution. We plan to 

implement these for our future experiments.

There have been arguments about whether the ultrasound neuromodulation effect in the VC 

may be partially due to the auditory response to the audible sound caused by pulsed 

ultrasound or mode conversion [33]. The study from Hubert Lim’s group suggested that the 

removal of cochlear fluids (CF) or transection of the auditory nerves would eliminate the US 

neuromodulation effect [6]. But Kim’s research disproved this argument by eliminating 

peripheral auditory pathway activation and obtaining motor responses during US stimulation 

[30]. Although genetically deaf rats or CF removal is required in our future studies to 

completely eliminate the auditory pathway effects, we conducted some preliminary 

experiments to rule out its contribution to VC activation. We stimulated the auditory cortex 

but did not observe any responses at VC. One of the potential factors that causes the 

arguments and inconsistency among different studies is the stimulation area relative to the 

animal size, which is related to the animal model, ultrasound frequency and ultrasound 

focusing. Minimized ultrasound focal point and localized stimulation area are desirable to 

minimize the experimental artifacts.

Physical mechanism of in-vivo ultrasound neuromodulation effect is another significant but 

undetermined question. Understanding the mechanisms of ultrasound neuromodulation can 

be helpful in optimizing ultrasonic parameters in various applications and scientific research. 

Recent studies using excised retinas support the idea that acoustic radiation force (ARF) is 

the main mechanism for ultrasound-evoked neuronal activities [29] ex vivo. The above study 

ruled out the cavitation effect by comparing the stimulation effect induced by different-

frequency ultrasounds with same intensity. However, the study did not discuss the acoustic 

oscillation effect and the mechanism could be different under in vivo conditions. Our in vivo 
results suggest that ARF is the predominant mechanism for ultrasound neuromodulation 

from another perspective. The two phenomena observed in our experiments - the presence of 
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‘US on & off’ responses and response changes caused by changes in the PW and CW, 

support the ARF hypothesis. The candidates for physical mechanism of US stimulation are 

cavitation, acoustic oscillation, thermal effect, and ARF. However, thermal effect is a 

gradual and accumulative effect depositing energy in brain tissues, with which PW and CW 

should not cause different phenomenon [34]. Also, CW should have stronger thermal effect 

than PW, which was not observed in our experiments. Cavitation effect is the interaction 

between ultrasound waves and bubbles, where bubbles can be generated if the acoustic 

pressure has sufficiently negative peaks. The size of the bubble oscillates as the localized 

pressure changes sinusoidally. Transient cavitation happens when the size expansion is at 

least double, at which point the bubbles collapse violently, causing a destructive event [35]. 

In stable cavitation, the size change is smaller and the bubbles do not burst, which is 

hypothesized to produce stable neuromodulation [29]. Similarly, acoustic oscillation is the 

intrinsic linear mechanical effect of acoustic waves, which cause tissues sinusoidal 

oscillations with a much weaker amplitude compared to cavitation effect. ARF is a nonlinear 

acoustic effect which generates a non-oscillating force and causes a unidirectional 

displacement in biological tissues [36]. All mechanical acoustic effects are hypothesized to 

affect local neural ion channels, facilitate cellular ion flux and cause electrical activities of 

neurons [37–40]. The key difference that highlights the ARF is the fact that ARF has a non-

oscillating unidirectional effect, while stable cavitation and acoustic oscillation are 

sinusoidal and periodic effects. If the stable cavitation or acoustic oscillation is the 

mechanism, the ion influx and outflux should be periodic as well. It is less likely for 

periodic effects to cause responses only during ‘US on and off’, and no responses in 

between. If ARF is the mechanism of neuronal stimulation, the occurrence of the above 

phenomena is more reasonable. Because the US on can push the neuron or ion channels and 

cause the measurable electrical potentials, the local potentials will regain the balance 

(absence of response) until the US is off, which can well explain the ‘on’/’off’ phenomena 

observed in our study. We caution that the statement about ARF as the principal physical 

mechanism of neuromodulation is only a result-oriented interference rather than a well-

reasoned conclusion from elaborated experiments. However, we believe that results from this 

study deserve to be considered in further discussions and in future studies on the 

mechanisms of ultrasound neuromodulation.

Although the size of ultrasound focus in this study is not fine enough for a practical visual 

prosthesis, ultrasound has the potential to reach a resolution in micrometer-level by 

increasing center frequency and enhancing transducer’s focusing performance. In addition, 

MRI-guided/CT-guided ultrasound technology can enhance the focus region and resolution 

in further studies.

V. Conclusion

The feasibility of tFUS-based cortical visual prosthesis is studied and discussed here. tFUS 

can be used to evoke neural activities in the VC of normal and blind rats. Different types of 

VC responses could be evoked by different US stimulus waveforms. ARF is inferred to be 

the predominant physical mechanism of ultrasound neuromodulation. Based on our study, 

ultrasonic neuromodulation is a promising technology for the development of non-invasive 
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cortical visual prosthesis. It can be applied to treat blindness caused by irreversible inner 

retinal damages (optic neuropathy or accidents) where retinal prosthesis cannot be effective.
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Fig. 1. 
(a) Schematic diagram of the experimental system. (b) The surface topography of the 

cortical areas of the left hemisphere of the rat, which was modified after Gabbott [28]. Each 

background grid has a length of 2mm. The primary visual cortex, area 17, is shown stippled. 

The exact position of the stereotaxically located electrode is shown by the red point. 

Ultrasound focal area is shown by the orange circle. (c) Top: Simulation results of spatial 

distribution of acoustic intensity. Bottom: Simulation results of the ultrasound-induced 

temperature increasing and its spatial distribution.

Lu et al. Page 16

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Representative results evoked by continuous ultrasound stimulation from one normal rat (a-

d) and one blind rat (e-h). Gray lines show eight-times records and red lines are the averaged 

records. Light stimulation was used to test the rats’ visual responsiveness. Normal rats 

responded to the light (a) while blind rats failed to show any light responses (e). VC 

potential baseline recorded from during control experiments (when transducer was focused 

to a different direction) showed no responses in both rat groups (b)&(f). (c)&(g) show the 

responses with 15ms ultrasound stimulation (shown by the red line) from the group 1. 

(d)&(h) show the responses from the group 2.
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Fig. 3. 
Comparison of response amplitude in groups 1&2 showing blind rats have significantly 

stronger VC responses to US stimulation (p<0.001, two-sample t-test). In experimental 

group 1, normal rats showed response amplitude of 1.88±0.04 μV, whereas blind rats had 

4.87±0.38 μV. In group 2, the response amplitudes were 1.69±0.18 μV for normal rats and 

3.84±0.14 μV for blind RCS rats.
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Fig. 4. 
VC low-frequency responses to pulsed US stimulation with high PRF. US stimulation 

duration was 30 ms, which shown by the red bar in the bottom. All signals were averaged 

512 times. Signals were recorded with different stimulation parameters: (a) 1-ms pulse in 

every 2 ms (500PRF and 50% DC); (b) 0.5-ms pulse in every 2 ms (500PRF and 25% DC); 

(c) 1-ms pulse in every 3 ms (333.3PRF and 33.3% DC); (d) 2-ms pulse in every 5 ms 

(200PRF and 40% DC); (e) 5-ms pulse in every 10 ms (100PRF and 50% DC). Most 

responses (a)-(d) had a similar waveform which was labeled by P1, P2, N1, N2 in (a).
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