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Abstract

Animals and humans evolved sophisticated nervous systems which endowed them with the ability 

to form internal-models or beliefs, and make predictions about the future to survive and flourish in 

a world in which future outcomes are often uncertain. Crucial to this capacity is the ability to 

adjust behavioral and learning policies in response to the level of uncertainty. Until recently, the 

neuronal mechanisms that could underlie such uncertainty-guided control have been largely 

unknown. In this review, I discuss newly discovered neuronal circuits in primates that represent 

uncertainty about future rewards, and propose how they guide information-seeking, attention, 

decision-making, and learning to help us survive in an uncertain world. Lastly, I discuss the 

possible relevance of these findings to learning in artificial systems.
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Slow reproduction, high capacity for prediction: the mammalian central 

nervous system evolved to negotiate uncertainty

Surviving and taking advantage of unpredictable events is a fundamental challenge for all 

organisms [1-6]. At the population level, unexpected events and variable environments or 

contexts may drive genetic variability, population abundance, spatial dispersal, and alter 

swarm or group behavior [3, 4, 6, 7]. For example, unexpected stressors may lead single cell 

organisms to increase their rates of mutation and division [7-9]. Many such population level 

adaptation mechanisms function on rapid time scales and across many generations.

In animals that possess sophisticated nervous systems, unexpected events and variable 

contexts also activate behavioral adaptation mechanisms such as changes in foraging, action 

planning, motivational drive, valuation strategy, and the rate of learning new information, 

including rules and higher order statistical models of the environment [1, 6, 10-12].
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Also, in their everyday decision making, many animals will forego some immediate amount 

of reward (or pleasure) for advance information that will reduce their uncertainty about 

difficult to predict events of high importance (such as rewards), even if that information 

cannot be used to modify their future [13].

The capacity for uncertainty-related behavioral adjustments is particularly crucial for 

animals such as mammals, and particularly for primates, due to our slow rate of replication, 

maturation, and our relatively slow population-level responses to variability or challenge.

In this review, I outline some of the key behavioral changes that primates employ to survive 

in an uncertain world and propose biologically plausible mechanisms to support them. The 

article primarily reviews recent electrophysiological studies in behaving monkeys and 

concerns itself with how explicit representations of uncertainty in the primate brain guide 

cognitive processing. The intent is that it, alongside other reviews that outline how 

prediction errors mediate our beliefs under uncertainty and painstakingly define distinct 

forms of uncertainty that animals and humans face [1, 11, 14-17], will guide future 

experiments to reveal the mechanisms of learning and adaptation in an uncertain world.

Behavioral goals change as a function of outcome uncertainty: an overview

Uncertainty about future rewards arises from many sources. Some rewards are uncertain 

because they are fundamentally probabilistic or risky (e.g., coin toss). However, rewards can 

also become uncertain due to many additional factors, including uncertainty about incoming 

sensory percepts and outgoing motor commands, the values of objects and actions, and the 

states and dynamics of the environment [1].

When rewards are available and uncertainty about them is low, subjects may increase the 

rate and speed of reward-driven behaviors [18-20] and aim to reduce the mental cost of those 

behaviors [20-22] so that those resources could support other ongoing cognitive processes. 

Automatic behaviors, such as skills or habits [18, 19, 23-25] which are efficient and require 

little online evaluation [26], are well-suited to obtain rewards quickly in low uncertainty 

environments and allow subjects to engage in additional goal directed behaviors. Also, they 

can be learned through classical reinforcement learning (RL) mechanisms in which if a 

reward gained is better than expected, the learning mechanism assigns credit for the benefit 

to the action(s) that preceded it, facilitating them to increase their probability or magnitude 

[19]. Under low uncertainty, this learning rule work exceedingly well.

When uncertainty about future rewards is high, the goals of learning often change [1, 27-29]. 

For instance, once the agent has detected high outcome uncertainty, particularly because the 

values of its action are changing, the performance of RL learning rules can be improved by 

incorporating additional meta-learning parameters based on estimates of uncertainty [30]. 

Agents can learn much faster if they adapt their learning rates to match the environment [31] 

(but see [12]). They can use a fast rate in some novel and volatile environments where a 

single large prediction error warrants a large behavioral change, or a slow learning rate in 

stable environments that change gradually, and in noisy environments where large prediction 
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errors are common but may not warrant changing behavior. The agent can accomplish these 

adjustments by using an internal estimate of reward uncertainty (Figure 1).

In high uncertainty, instead of seeking immediate reinforcement, actors must try to learn the 

structure of the world and reduce their uncertainty - otherwise, proper credit assignment may 

not be achieved, and learning-related behavioral enhancements may not actually result in 

more reward. Indeed, humans and animals assign value to obtaining information to resolve 

uncertainty about future rewards, even when this information cannot be used to directly and 

immediately to influence the timing or amount of reward they will get [32-37]. This may 

ultimately be beneficial in natural environments where accurate estimation and reduction of 

uncertainty can accelerate learning of adaptive behaviors in order to succeed in the future 

[38], and during foraging under threat, predation, or competition [39, 40].

To support uncertainty-related behavioral adaptation, when uncertainty is high, it may be 

necessary to lengthen the time-scale of learning [29], such that entire sequences of 

behaviorally relevant events are considered, which may require episodic memory, to 

facilitate processes such as transfer and one-shot learning. Agents may place special 

emphasis on “learning-to-learn” [41], perhaps partly through synaptic changes that mediate 

how neural circuits respond to surprising events [31] or by changing their behavioral 

strategy, such as for example through the facilitation of distinct modes of “attention” [16, 25, 

42].

On the surface, it may seem that these uncertainty-related modulations should only be 

implemented if the agent thinks they are in a volatile or ambiguous environment, because 

there learning from outcomes and tracking uncertainty could theoretically decrease 

uncertainty (and increase confidence). However, it is likely that the same or similar 

processes take place under risk. I return to this point later in Concluding Remarks.

In summary, under reward uncertainty, behavior must be mediated such that an individual 

agent can resolve it, learn uncertainty, and obtain an internal representation of possible 

outcomes. This may occur by adjusting risk attitude (to change the rate of surprises), 

learning strategies, and by sacrificing physical or “cognitive” reward to gain advance 

information about the future. Many cognitive functions such as episodic memory and 

attention must sub serve these goals, and support the ability of the agent to select appropriate 

automatic and goal-oriented behaviors (and learning strategies that support them).

Next, I will discuss the circuits that represent uncertainty about future rewards and discuss 

the possible advantages of explicitly representing uncertainty for behavioral and cognitive 

control.

Multiple neuronal representations of reward uncertainty in the primate 

brain

Does the brain encode reward uncertainty with a distributed population code? Or does it also 

contain a representation of uncertainty that can be read out from the activity of single 

neurons? Neuroscience has made strides in answering similar questions in the sensory 
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domain. When it is due to variability in sensory inputs, or expressed in the form of 

uncertainty regarding action output, uncertainty is represented in the population dynamics of 

neuronal pools [43].

Differentially, recent work also showed that primate brain regions involved in value-based 

decision making and reinforcement learning contain single neurons that vary their discharge 

rates with quantitative levels of reward uncertainty. These single reward uncertainty selective 

neurons are located in two networks: in the septal and basal forebrain (BF) areas in the 

center of the forebrain, and in an interconnected network of cortico-basal ganglia regions 

that include the anterior cingulate cortex, the internal capsule bordering striatum, and the 

ventral regions of the anterior pallidum [33, 44-48], which I will refer to as the ACC-icbDS-

Pallidum network.

Also, one study found that the orbitofrontal cortex (OFC) contains neurons that scale with 

reward uncertainty [49]. There, as the standard deviation of rewards increased, the monkeys’ 

preference also increased. At the same time, the neuronal activity of some OFC neurons was 

correlated with the monkeys’ preferences for higher reward variance. Importantly, the same 

neurons’ activity did not scale with reward magnitude. This result demonstrates that 

embedded within the OFC value- decision related circuits there are a minority of neurons 

that process information about reward uncertainty.

Why does the brain contain multiple circuits and areas that signal reward uncertainty? To 

answer the question, I will discuss their differences and concentrate on the BF and ACC-

icbDS-Pallidum networks, whose reward uncertainty neurons have been particularly well 

characterized. I will then go on to argue that the BF is particularly well-suited to play a 

global coordinative function, mediating cortical activity across many brain areas to facilitate 

learning and attention under uncertainty, whereas the ACC-icbDS-Pallidum network 

particularly motivates behaviors aiming to obtain uncertainty-resolving information.

Both BF and ACC-icbDS-Pallidum uncertainty neurons on average have uncertainty related 

“ramp-like” activity: that is, following an uncertain prediction, the average activity of many 

single neurons increased (or decreased) as a function of time until the uncertainty was 

resolved [33, 44, 47, 50]. However, the ramping in the BF and ACC-icbDS-Pallidum 

differed in several important ways. BF reward uncertainty neurons’ ramping was not 

strongly dependent on the presence of the reward uncertainty predicting visual stimuli and 

was not highly sensitive to gaze parameters. They even displayed ramping activity when 

animals’ eyes were closed during blinking [45, 47] and during trace conditioning in which 

no stimuli were present on the display [44, 47]. In contrast, the ACC-icbDS-Pallidum 

network was highly sensitive to the presence of objects associated with reward uncertainty. 

The network’s signals were greatly decreased when uncertain objects were removed [47], 

most crucially the network’s signals increased before monkeys made gaze shifts to uncertain 

visual objects that predicted advance information that resolved the uncertainty [33].

Another difference between BF and ACC-icbDS-Pallidum uncertainty neurons emerged 

when we tested whether and how uncertainty-selective neurons dynamically updated their 

representation of uncertainty as animals learned novel probabilistic object reward 
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associations. At the start of learning, the ACC-icbDS-Pallidum network strongly responded 

to all 3 visual cues. But, within the same session, as the monkeys learned the objects’ 

reward-predictions, the networks’ uncertainty signals decreased for the certain reward 

associated images (0 and 100%) [47]. In contrast, BF uncertainty ramping activity, as well as 

saccadic choice response times, changed gradually across multiple days [45], as the 

monkeys gained familiarity with the images and became fast and skillful at utilizing them to 

harness rewards [51]. Finally, almost all BF uncertainty sensitive neurons ramp to the time 

of certain noxious events and to the expected time of presentations of novel objects [44, 45]. 

So, relatively, BF ramping is a more general expectation mechanism.

With these differences in mind, next I will discuss how the less specific BF and the relatively 

more specific ACC-icbDS-Pallidal reward uncertainty signals could mediate attention, 

learning, and decision making under uncertainty.

Memory formation and credit assignment under reward uncertainty

Animals face a unique set of challenges in naturalistic environments in which many types of 

uncertainties co-occur. As a result, they are faced with a credit assignment problem: they 

must decide which previous cues and actions predicted or caused rewards or punishments. 

This is no easy feat, as in natural environments, the influences of sensory noise and 

ambiguity, uncertainty about the structure of the world, and outcome uncertainty are 

compounded, making it difficult to decide which events in the past led to which outcomes in 

the present. To aid us in solving this credit assignment problem, the brain may have adopted 

strategies that rely on memories and attentional control (e.g., to help us gain a model of the 

environment). In support of these processes, uncertainty could promote memory formation 

by explicitly changing the motivation to learn, by mediating plasticity [52, 53], and by 

influencing attention including overt and covert spatial attention [16, 33, 54].

A recent behavioral study in humans has shown that recognition memory enhancements in 

reward variable contexts may occur not only due to the reward prediction errors that 

generally occur after uncertainty or risk is resolved [55]. That is, when high reward variance 

was associated with a particular object, recognition memory reports about that object were 

more accurate. Such memory enhancements under reward uncertainty may be influenced by 

attentional and (meta)plastic mechanisms. Objects experienced under uncertainty may be 

preferentially processed due to covert or overt attention resulting in a richer or finer sensory 

representation leading to enhanced object or context memory. At the same time, uncertainty 

may also increase the capacity of synapses to learn and store information. Theoretical and 

behavioral work [15, 52] argues that meta plasticity could contribute to the estimation of 

uncertainty. But, whether neuronal circuits that represent uncertainty mediate meta plasticity 

remains an open question.

An adaptive way for the brain to regulate memory formation and attentional processes could 

be by encoding predictions about the expected time of upcoming surprising, important, 

rewarding, and noxious outcomes. That is because events that resolve uncertainty or that are 

proximal to behaviorally salient outcomes are particularly important to commit to memory. 

Such neural predictions could take the form of population ramping activity, in which case 
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they would regulate the capacity to learn as a function of time – increasing learning and 

memory in anticipation of the time of the upcoming outcome, and peaking as the outcome 

itself arrives (and the need for learning and memory encoding is greatest).

Next, I will briefly describe the circuitry that could give rise to such a general surprise 

expectation signal, and then will argue that the BF uncertainty-related ramping neurons are a 

likely candidate to broadcast this signal to the cortical mantle.

The origin and functional role of the basal forebrain ramping activity

Recent evidence suggests several cortical and subcortical brain areas could support distinct 

aspects of such temporal predictions that could ultimately be integrated to give rise to 

ramping activity that anticipates a wide range of behaviorally salient events. For example, 

the basal ganglia contain neurons that could underlie population-level encoding of time 

through coordinated phasic activity [56]. Also, the dorsal medial prefrontal cortex and the 

hippocampus [57, 58] possess context specific temporal codes. Finally, the ACC contains 

valence-specific neurons, distinctly predicting the timing of rewards or punishments [48] 

(see Box 1). In principle, this diversity could facilitate the prediction of many distinct events 

for the control of a diverse set of action plans, emotional states, and memories.

The context-dependent temporal codes in these brain areas may contribute to relatively non-

specific ramping activity in the BF [56]. And, the resulting signal may be particularly well 

suited to signal temporal predictions for the purpose of enhancing memory formation and 

mediating a wide range of sensory and cognitive processes (Figure 2). First, BF ramping 

anticipates uncertain outcomes as well as many other kinds of behaviorally important events 

[44, 45, 50]. Second, BF ramping is relatively independent of sensory or motor state. Third, 

BF ramping is strongly linked to beliefs about the timing and structure of the behavioral 

context [44]. Fourth, BF is anatomically well-positioned to coordinate and simultaneously 

change the gain [59] of a wide range of neuronal circuits (Figure 2A-C) because it projects 

to the entire cortical mantle [60] – which would be crucial for mnemonic and attentional 

functions that rely on wide coordination across distinct functional regions of cortex.

One particularly salient anatomical observation is that in primates the BF strongly projects 

to the medial temporal lobe [45, 60]. This BF-temporal circuit, particularly the cholinergic 

input from the BF, is necessary for object memory formation [61]. As discussed earlier, BF 

uncertainty-sensitive ramping neurons’ activity changes slowly during new object value 

learning and may depend on object familiarity (and not purely on the explicit knowledge of 

object values [45]). Such slow learning rates are reflected in monkeys’ gaze behavior [18, 

45, 51]. One possibility is that these slow changes in the saccadic behavior could be directly 

mediated by the BF-temporal cortex circuit. Under the influence of the BF, the temporal 

cortex would then mediate gaze through the posterior ventral basal ganglia, which learns 

object salience over long time scales, receives dense projections from most areas of the 

temporal cortex, and directly controls the generation of eye movements [62].

The BF is also well positioned to control cortical computations under uncertainty through a 

distinct population of phasically activated neurons that rapidly signal the occurrence of 
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behaviorally salient external events (Figure 2B). These neurons are sensitive to the degree of 

statistical errors, for example in reward value or in sensory patterns like in object sequences, 

display strong bursting activations in responses to novel objects [44, 63, 64].

In summary, ramping BF neurons may coordinate learning, memory, and attention by 

mediating the gain and spike timing of many cortical regions (Figure 2C) relative to the 

agent’s predictions and expectations. And, in concert, the precise short latency BF phasic 

bursting activity could signal the occurrence of external behaviorally salient and uncertain 

events in a temporally precise manner. BF ramping activity may increase or decrease the 

effect of this widely broadcasted phasic salience signal, but how it would do so remains 

unknown. Broadly consistent with the proposed coordinative functions of the BF, 

inactivation of the BF changes the correlation structure of primate cortical brain areas that 

receive the densest BF inputs from the inactivated/disrupted BF region [65]. And, BF inputs 

to the cortical mantle directly impact global states [66] in manners that could facilitate 

learning and attention [67]. Finally, modelling and experimental data indicate that 

cholinergic manipulations directly impact attention-related computations in multiple brain 

areas, including the frontal eye field, a key region for the mediation of spatial selective 

attention [68-73].

To date, how BF inputs accomplish this remains unclear, particularly in primates. Therefore, 

to test the mechanisms proposed in Figure 2C, future work must assess the relative 

contribution of the phasic and ramping cell types to cortical computations by (1) specifically 

understanding which cortical neurons receive their inputs and (2) which neurotransmitter(s) 

they release.

Reward uncertainty mediates information seeking gaze behavior: the role 

of the ACC-icbDS-Pallidal network

Visual objects that predict uncertain outcomes are often associated with a chance to learn 

and update our beliefs because they are followed by prediction errors. Therefore, many 

theories predict that uncertain objects ought to attract gaze because gaze is the chief 

instrument of primate information seeking.

However, thus far most experiments showed that the speed and probability of saccadic gaze 

shifts to visual objects are strongly driven by their absolute values or behavioral salience 

[51, 74]: objects associated with highly probable big rewards or with noxious, aversive, or 

intense outcomes preferentially attract gaze [48, 74]. This is particularly the case 

immediately after object presentation [48, 74].

In recent years a considerable effort has been undertaken to also understand how uncertainty 

impacts primate gaze behavior. One study showed that when information was available and 

could be obtained with saccades, saccadic choices and response times reflected the 

motivational value of information to resolve reward uncertainty [32]. A later study replicated 

and extended this important observation to visual search, showing that animals examined 

more search targets, and did so faster or for longer durations, to gather uncertainty-resolving 

information [75]. Moreover, we subsequently found that even at times when information was 
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not yet available and was not contingent on gaze, animals still preferentially gazed at objects 

associated with uncertain rewards, anticipating the moment when information would arrive 

[48]. These results show that primates are motivated to resolve uncertainty and assign high 

motivational value to objects that predict information gain (uncertainty reduction). Their 

desire to seek information is robustly reflected in gaze patterns.

Information seeking may be in part supported by reward circuitry in manners that overlap 

with reward seeking. The phasic bursting of dopamine neurons signaled the possibility to 

resolve uncertainty earlier in time similarly to how they signaled fluid rewards [34]. 

However, a key question remained: Through what mechanism might the motivational drive 

to seek advance information be implemented? While phasic dopamine neuron responses 

could be used during learning to endow informative cues with value, it was unknown how 

neural circuits translated those values into motivation to guide online information seeking 

behavior.

To answer this question, we designed an information viewing procedure that studied whether 

monkeys naturally exhibit gaze behavior that reflects their anticipation of uncertainty-

resolving information. In this procedure, there was no way for the monkeys to use 

information or their gaze patterns to influence reward magnitude. We then studied the 

relationship of the monkeys’ uninstructed gaze behavior and the neural activity in the ACC-

icbDS-pallidal network (Figure 3).

Behaviorally, we found that the monkeys’ gaze was strongly attracted to objects based on 

their uncertainty, especially in the moments before receiving information to resolve it. This 

attraction was specifically related to anticipating information (Figure 3B), not reward value 

or uncertainty per se [33].

Because spatial attention can influence both gaze and visual processing, and gaze behavior 

reflects attentional biases, it is possible that this object importance signal influences visual 

processing itself. So, when primates first encounter a visual object (perhaps during the initial 

low-level feature analyses of that object), its relative importance (based on stored memory) 

has a great impact on gaze. This importance is directly related to many factors such as 

reward, punishment, uncertainty, and information. Next, after the gaze is on the object or 

after it has been recognized, reward uncertainty of the object has a particularly powerful 

effect on gaze, especially before the time of uncertainty resolution (Figure 3B).

Our work suggested that this attraction may be directly related to, and serve, information 

seeking, and that information seeking is regulated by the ACC-icbDS-pallidal network [33]. 

The data indicate that single neurons in the ACC-icbDS-pallidal network (A) monitor the 

level of uncertainty about future events (B) anticipate the timing of information, and (C) 

anticipate information-seeking actions, such as gaze shifts to inspect the source of 

uncertainty. The uncertainty sensitive neurons in the network predicted when information 

will become available in information viewing procedure (Figure 3C). Their activity was 

most prominent during uncertain trials and ramped up to times when the monkeys expected 

information: when they were anticipating an informative visual cue or when they had not 

received an informative cue and were instead anticipating being informed of the outcome by 
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reward delivery or omission itself at the end of the trial. Furthermore, this information-

anticipatory activity was coupled to gaze behavior on a moment-by-moment basis: increases 

in this activity were followed by gaze shifts to uncertainty-resolving objects, and decreases 

in this activity were followed by gaze shifts away from uncertainty-resolving objects (Figure 

3D).

Surprisingly, fluctuations in ACC information signals were the earliest predictor of future 

behavior. ACC information signals began to change hundreds of milliseconds before these 

gaze shifts, while the icbDS-pallidal regions of the network changed their activity more 

proximally to behavior. So, the ACC may be more directly linked to the cognitive processes 

surrounding the drive to seek advance information to resolve uncertainty, while the basal 

ganglia may be more directly related to the implementation of this drive to control action. 

Also, consistent with the role of the basal ganglia in action control, temporary chemical 

disruptions of icbDS-Pal activity disrupted monkeys’ information seeking (Figure 3E). This 

finding not only provides direct evidence that the information predicting signals in the basal 

ganglia mediate information seeking, but also show that the anterior basal ganglia loops have 

functions beyond those predicted by classical reinforcement learning.

How would the ACC-icbDS-Pallidum network control gaze? One candidate mechanism is 

through the basal ganglia which influence saccades and attention by mediating the activity 

of the superior colliculus [76]. Though the anterior pallidal regions in the information 

seeking network may not send strong direct projections to the superior colliculus, the ACC-

icbDS-Pallidum network is well-suite to directly impact other basal ganglia loops. For 

example, the dorsal caudate nucleus has been shown to carry an oculomotor signal that 

combines information about the spatial location and the reward uncertainty of upcoming 

saccadic targets [77]. Control of gaze by uncertainty may also take place through a cortical 

route. For example, LIP, a parietal area that contributes to saccadic behavior and attention, 

displays modulations of its gaze-related spatially selective activity by the subjects’ 

motivation to resolve uncertainty [54]. Also, the frontal eye fields (FEF), another cortical 

area that directly impacts attention and gaze [71-73] and directly projects to dorsal caudate 

[78] and LIP, receives inputs from the ACC and could be another possible candidate site 

through which uncertainty signals impact information seeking related gaze behavior.

Based on these observations and our previous studies, Figure 3F proposes a circuit/anatomy 

constrained mechanism for information seeking. The motivation to seek uncertainty 

resolving information is mediated by the ACC-icbDS-Pallidum network. Anatomically, 

pallidum projects directly to dopamine neurons and also mediates dopamine through the 

lateral habenula – brainstem circuitry [79, 80]. Because the ACC-icbDS-Pallidum network 

anticipates the timing of uncertainty resolving prediction errors (Figure 3C), through this 

pathway, ramping activity can regulate dopaminergic prediction error related learning. Also, 

dopamine neurons project to ACC-icbDS-Pallidum network, particularly strongly to the 

striatum. Because dopamine neurons signal prediction errors that result from uncertainty 

resolution by reward-predicting information [32], for example following the time of the info 

cue in Figure 3C, dopaminergic signaling is perfectly suited to endow information with 

value through shaping of cortico-striatal interactions. Finally, to obtain information primates 

rely on gaze. Both dopamine and ACC-icbDS-Pallidum network can mediate information 
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seeking directly by controlling gaze either through the basal ganglia oculomotor circuit 

(comprising of the striatum and substantia nigra pars reticulata) or through cortical pathways 

to the superior colliculus. The information obtained by observing the world, can then guide 

reinforcement learning and information seeking. The BF (Figure 2) projects to all cortical 

sites in Figure 3F. And though it is not shown there, it may play a crucial coordinative role in 

mediating information seeking across this wide range of circuits.

It is also worth mentioning that in situations in which economic (or subjective value driven-) 

decision making guides behavior, uncertainty reduction and information seeking may also be 

impacted by changes in risk attitude that coincide with probability distortions, leading to 

optimistic or pessimistic evaluations of the future. We previously proposed this idea based 

on observations of single neurons’ activity in the primate ventromedial prefrontal (vmPF) 

cortex [81]. In this brain region, anatomically segregated populations of single neurons 

reflected the optimistic and pessimistic integration of uncertainty and expected value, for 

example leading to what we termed as a hopeful or overly-positive weighting of possible 

future rewards [81]. This may promote or suppress risky choices, changing the frequency of 

encountering prediction errors and thus potentially leading to adaptations in learning 

processes and uncertainty reduction. More recently, similar proposals have been made based 

on observations of single dopamine neuron activity [82]. Dopamine neurons appear to be 

heterogenous in their activations: some evaluating predictions optimistically or 

pessimistically, in a spectrum. Through this heterogeneity they appear to signal prediction 

errors based on the distribution of expected rewards rather than the mean of expected 

rewards. Importantly, depending on how optimistic or pessimistic dopamine neurons interact 

with other brain regions (e.g., via their anatomical projection patterns to different striatal 

areas that receive inputs from vmPF cortex), they may differentially and flexibly impact 

valuation of risky options by changing responses to offers or reward feedback, to 

subsequently mediate risk attitudes and impact uncertainty reduction and learning.

Concluding remarks

The study of how agents learn from outcomes under uncertainty remains a crucial and 

growing field in neuroscience. I have outlined how explicit representations of uncertainty 

could be utilized to control attention, memory, and learning. Next, I outline some important 

future directions for advancing our understanding of behavioral control under uncertainty 

and provide their summary in the Outstanding Questions.

To negotiate complex and uncertain environments agents must be willing to put forth mental 

effort, patience, and persistence in the face of failures and setbacks. Also, they must be 

willing to take risks to generate prediction errors in order to learn, and go on to estimate 

and/or reduce their uncertainty. While a large body of literature exists on risk-attitude in 

economics and behavioral neuroscience, very little research has been conducted on how 

neural representations of uncertainty mediate the drive to gain information to resolve it [13, 

32, 33, 54], and on the relationship between information seeking, risk attitude, and mental 

effort. Future work should carefully assess the interaction of these factors within individual 

subjects, and derive the mental algorithms that govern them. This effort may also facilitate 
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the improvement of artificial neural networks, which at present tend to perform poorly under 

uncertainty (Box 2).

Another important question to study is whether and how uncertainty mediates automatic 

versus controlled actions, and more broadly whether and how it participates in action 

selection. Under high uncertainty, humans may maintain a high level of automaticity for 

many behaviors that are or have been immediately rewarding. We rely on this capacity to 

support us as we learn, perform difficult tasks, ruminate, explore our memories, and seek a 

better understanding of the world. Recent work indicates that distinct circuits within the 

ventral basal ganglia influence “automatic” gaze shifts that are based on the long-term 

memory versus goal-directed gaze shifts that are based on dynamic estimates of object 

values [18]. Future research should ask whether and how uncertainty controls different 

regions of the basal ganglia to mediate automatic and goal-directed actions.

An important distinction should be made between the concepts of risk and ambiguity. Under 

risk, uncertain outcomes are drawn from a known probability distribution, about which 

theoretically nothing more can be learned. By contrast, under ambiguity, uncertain outcomes 

are drawn from an unknown probability distribution which may be learnable through new 

experiences [12, 47, 83, 84]. Adaptive behavior may differ, in principle between risky and 

ambiguous situations. But in natural environments, range, entropy, or variance of rewards 

may change at any time. So, even under risk, following outcomes, agents ought to update 

their state because otherwise they would not know when these changes occur. In general, 

risk without volatility and ambiguity is extremely rare in nature. Therefore, the distinction 

between risk and ambiguity may not be categorical. There are rarely totally stationary or 

stable probability distributions, and even when they exist, it is hard for agents to know that 

with certainty. Given these considerations, I would argue that rather than pursuing the 

dissociation of risk and ambiguity at the level of neuronal circuits, effort ought to be 

dedicated to understanding how learning strategies change with the agent’s beliefs about 

how stable or volatile the environment is, and/or how much of the variability in outcomes is 

due to an inherent variance or measurement noise. For example, recent work indicates that 

the ACC contains outcome-related neurons that signal feedback in a manner that is sensitive 

to the sources of uncertainty [85, 86]. Hence, along this line, an important direction for 

future work is find out how these uncertainty-resolution / post-decisional signals 

differentiate distinct sources of reward uncertainty that preceded them to adaptively mediate 

learning and attention.
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BOX 1 –

Uncertainty about aversive events

This review has concerned itself with uncertainty about rewards. However, recent 

evidence from our laboratory indicates that there may be distinct circuitry that processes 

uncertainty about the occurrence of aversive or noxious events, that we refer to as 

punishment uncertainty [48]. Despite the fact that punishment uncertainty is a crucial 

variable in the control of emotional states such as anxiety and depression, at the moment, 

little is known about the neural circuits of punishment uncertainty and about their impact 

on behavior.

Uncertainty about appetitive outcomes and about aversive punishments is associated with 

gains and losses. For example, following reward uncertainty, a gain could be a reward, 

and following punishment uncertainty, a gain could be an omission of a noxious event. 

However, these positive reward prediction errors are associated, not only with distinct 

outcomes, but also with distinct emotional states: relief when punishment is omitted and 

joy when reward is delivered [87]. Diverse responses while anticipating and receiving 

rewarding and aversive outcomes elicit different learning strategies [88], exert differential 

influences on choice related computations [5], and promote distinct action plans (e.g., 

fight or flight versus stay or leave) [87]. These observations suggest that the brain may 

contain distinct circuits for processing reward and punishment uncertainty.

Our laboratory recently discovered that the ACC contains distinct populations of reward 

and punishment uncertainty sensitive neurons [48]. Particularly, a small sub region of 

anterior ventral ACC, above the corpus callosum, is enriched in single neurons that 

respond to uncertain predictions of punishments, but not to uncertain predictions of 

rewards [48].

Interestingly, our experiments failed to identify punishment uncertainty signals in many 

brain regions that are involved in reward uncertainty related computations [45-47]). 

Hence, it is likely that the ACC sends punishment- and reward- uncertainty signals to 

distinct brain regions to support divergent processes, such as for example to separately 

control the desire to seek advance information about pleasant versus aversive outcomes, 

and to differentially impact choice behavior [5]. It will therefore be crucial to identify the 

brain regions to which the ACC sends punishment uncertainty signals, and assess how 

they utilize punishment uncertainty signals to mediate the distinct effects of reward and 

punishment on cognition and mood [5].
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BOX 2 –

Learning by artificial learners

Here I review several observations from the studies of neurobiology and behavior under 

uncertainty that may be relevant in the context of designing artificial intelligence systems.

Beyond the fact that biological agents explicitly represent uncertainty, they are in fact 

intrinsically motivated to spend time and effort exploring their environment. In many 

regimes, their cost functions bias them towards information acquisition and uncertainty 

reduction through surprise and novelty seeking. Particularly, mammals prior to sexual 

maturity, when their learning rates are high and their brains exceptionally plastic, tend to 

explore their environment extensively, often under the guidance of adults. This relatively 

long training-period in which novelty and surprise have a profound effect on behavior 

may give them an advantage later in life or in situations where accurate predictions of 

action values are crucial for survival.

Exploration or “play” based learning may be particularly enhanced in mammals that 

display sophisticated social structures and hierarchies, including primates. Living in 

groups imposes not only additional sources of uncertainty and opportunities for learning 

(because you don’t know what the other group members will do) but also the need to 

cooperate. As in the case of children at the playground under the watchful eyes of adults, 

multi-agent cooperation can support curiosity / information seeking behaviors in younger 

agents as they explore the world within the constraints of others’ more value-based 

policies.

Another way in which exploration and behavioral variability can arise in biological 

agents is through noise or variability in neuronal computations across a wide range of 

circuits. The basal ganglia for example produces variability in action selection [89] to 

enhance exploration and learning of new or arbitrary associations [90]. Since animals 

have distributed systems for sensory, motor, and cognitive functions, exploration could 

result from noise and/or errors at many levels of information processing [91, 92] in a 

context-dependent manner.

Also, an important feature of biological systems to consider for artificial learning under 

uncertainty is that the brain contains many neuronal circuits that have distinct learning 

rates and learn from distinct teaching signals [93-95]. These circuits changed through 

evolution (or development), sometimes together, sometimes at different time scales to 

cooperate or oppose each other. This heterogeneity can allow animals to learn flexibly, in 

a context-dependent manner (and itself can be a function of a higher-level objective). For 

example, a child may explore language fluidly to maximize surprise and learning, while 

still maintaining strong and stable aversion to certain foods she tried only once. Multiple 

teaching signals such as prediction errors signaled by global neuromodulators (or errors 

computed more locally during sensory processing [96]) can support such flexibility and 

diversity in learning, on different time scales [95].

There is appreciable work to implement the motivation to explore and to seek information 

in artificial neural networks [97-99]. Thus far, most of the efforts are based on designing 
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cost functions that heavily weight novelty and surprise to help agents learn the structure 

of the world [98]. Designing networks that represent multiple agents having different 

goals may be important for this effort. For example, in adversarial learning one agent is 

trained by challenges from another agent whose goal is to “fool” the first agent and 

maximize its error rate. Another way for implementing multi-agent processes in artificial 

neural networks could be for an agent to maximize others’ novelty and surprise, rather 

than error. Moreover, just as artificial-learners can be designed to be curious about the 

reward-seeking strategies of other agents and learn by observing their examples, it may 

be beneficial to also learn by observing others’ information-seeking strategies.

If artificial-agents are to gain qualities of “intelligent” behavior they will likely need to 

comprise many networks learning at different rates, for distinct goals. And, to coordinate 

them, one future avenue may be to add controllers of global network states. This would 

allow neural networks to follow the examples of biological agents that intelligently 

switch between different modes of network coordination and function based on what is 

most efficient for their current situation. For instance, responding to a lull in their 

opportunities to gain reward, agents may sustain adaptive learning by temporarily 

suppressing action, and enhancing memory replay and other deliberative functions to 

continue learning from past experiences.
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Outstanding questions

How do agents use their internal models about how volatile the environment is and about 

how much of the variability in outcomes is due to inherent variance or measurement 

noise to mediate learning?

Are there distinct circuits that selectively signal reward uncertainty under risk versus 

ambiguity? If not, how might the brain use representations of reward uncertainty 

differentially in different contexts?

Does uncertainty influence episodic memory distinctly from prediction errors?

Uncertainty is followed by surprise. Both reward uncertainty and surprise influence 

learning, particularly the learning of action values. But to date, little is known about how 

uncertainty and surprise influence other types of learning, such as of the encoding and 

retrieval of episodic memory.

What is the relationship among risk attitude, information seeking, and willingness to 

endure mental effort? What are the neural circuits that mediate their interactions during 

value-based decision making? What quantitative measures of uncertainty affect risk 

attitude and information seeking?

How does uncertainty promote or suppress automatic and controlled behaviors?

What is the cellular identity of phasic and ramping basal forebrain neurons and what is 

their connectivity with, and effect on, different cortical computational subunits?

The anterior cingulate (ACC) – basal ganglia network has been linked to driving 

information seeking to resolve uncertainty. What is the source of uncertainty signals in 

this network? The ACC displays correlations with information seeking-related gaze 

behavior earlier than the basal ganglia. But, within this network, uncertainty signals first 

emerge as a rapid suppression of pallidal neurons deep within the basal ganglia circuitry. 

Given this observation, future research should identify the sources of uncertainty signals 

in the basal ganglia.

Are information seeking strategies and mechanisms effector specific, for instance among 

arm reaches versus gaze shifts? Given that in cortex and in the basal ganglia, hand/reach 

control regions are somewhat separated from oculomotor control regions, inputs from the 

ACC-basal ganglia network could impact effectors differentially, which may be helpful to 

flexibly control behavior depending on goal, context, the physical parameters, and costs 

of individual actions.
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Highlights

• Uncertainty about future outcomes mediates attention, learning, memory and 

decision making. Uncertainty can modulate, for example, choices on whether 

to make risky decisions or to prioritize actions aimed at gaining uncertainty-

reducing information

• The basal forebrain broadcasts information about uncertainty and surprise to 

guide learning, memory, and attention

• A cotrico-basal ganglia loop originating in the anterior cingulate guides 

information seeking about uncertain rewards

• Ongoing work is assessing how neural circuits generate, support, and 

implement the mental algorithms that govern uncertainty-related behaviors
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Figure 1. The goals of behavior change when uncertainty is high.
Tracking reward uncertainty is crucial for adaptive control of a wide range of behavioral and 

learning strategies (top two rows). Under high reward uncertainty it is important to obtain a 

model of the environment and reduce uncertainty, hence serving to increase confidence in 

action values and in upcoming outcomes. Under low reward uncertainty, if reward is 

available, fast automatic behaviors can be deployed and dynamically optimized through 

model-free learning to increase reward per unit time. The process of uncertainty reduction 

can be supported by assigning a higher value to uncertainty-reducing information when 

uncertainty is high, and/or mediating risk attitude (not shown, but discussed in Main Text). 

Learning and information seeking under uncertainty are supported by increases in demand 

on memory and attention, and are associated with increases in the need for online evaluation 

of and control over many actions and behaviors. Of note, though, this does not imply that in 

high reward uncertainty, automatic behaviors and related learning processes are suppressed. 

In fact, high capacity for automating some behaviors may support primates’ high capacity to 

explore and obtain multi-dimensional models of the world through mental processes such as 

deliberation (see Concluding Remarks).
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Figure 2. Temporally-precise uncertainty-related modulation of wide-scale cortical computations 
by the basal forebrain (BF).
(A-C) BF broadcasts the timing and predictions of behaviorally salient, aversive, valuable, 

and uncertain events [44, 45, 63, 64]. (A) Location of the basal forebrain shown on sagittal 

MRI of a macaque monkey brain. Red arrows represent the wide projections of BF neurons 

to the cortical mantle. MR image is reproduced from reference [45]. (B) Two functional 

classes of BF neurons: “Type 1” neurons (top), which predict uncertain salient events, and 

“Type 2” neurons (bottom) that encode these events’ salience and timing, after they occur. 

The neurons’ average activity is separated to trials in which five distinct probabilistic reward 
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predictions were made with five distinct visual cues. The outcomes (reward or no reward) 

occurred 2.5 seconds after each prediction. Both ramping (Type 1) and phasic (Type 2) 

neurons are found in the medial and lateral regions of the BF, though the medial BF is 

particularly enriched with ramping (Type 1, top) neurons (reproduced from [45]). (C) 

Temporally precise modulation and coordination of cortical activity by the BF, constrained 

by anatomical biases in BF connectivity to distinct functional regions of the cortical mantle 

[60, 65]. Thickness of red arrows from the medial and lateral BF denotes connectivity 

strength (red arrows, on left). Cartoon of example cells’ responses in sensory and higher-

order cortices (top square) with (red) and without (gray) BF-mediated gain modulation to 

external events that predict behaviorally/motivationally salient outcomes. This temporally 

precise gain enhancement across distinct cortical subregions may be crucial for rapid control 

of cognitive functions under uncertainty (Figure 1), such as prediction-mediated control of 

sensory processing resembling attention (black arrows on the right in top square). 

Furthermore, wide-scale temporally precise gain modulation may mediate spike-timing 

across many cortical areas to impact slower time scale changes for learning and memory 

(e.g. by enhancing prediction error or external salient event responses by ramping activity of 

Type 1 neurons).
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Figure 3. A primate cortical basal ganglia network for information seeking.
(A) Example bidirectional tracer injection into an uncertainty-related region of the striatum 

reveals connectivity with anterior cingulate and anterior ventral pallidum. (B) Monkeys’ 

uninstructed gaze behavior in an information observation task reveals motivation to seek 

advance information about uncertain rewards. On Info trials (red), a peripheral visual 

stimulus predicted uncertain rewards. One second after, it was replaced by uncertainty-

resolving cue stimuli (see red arrow). Monkeys’ gaze on Info trials was attracted to the 

location of the uncertain prediction in anticipation of receiving informative cues that 

resolved their uncertainty. After uncertainty resolution in Info trials, gaze is split to trials in 

which reward will be delivered (dark red) and reward was not delivered (pink). On Noinfo 

trials (blue), another visual cue also predicted uncertain rewards. Here, the subsequent cue 

stimuli, shown 1 second after, were not informative and the monkeys resolved their 

uncertainty at the time of the trial outcome (blue arrow). In Noinfo trials, gaze was 

particularly attracted to uncertain visual stimuli in anticipation of uncertainty resolution by 

outcome delivery. Probability of gazing at the stimulus ramped up in anticipation of the 

uncertain outcome until it became greater than other conditions (50% > 100%; compare blue 

with dark red). (C) Neural activity across the ACC-Striatum-Pallidum network anticipates 

uncertainty resolution. Same format as (B). (D) The networks’ activity predicts information 

seeking gaze behavior. Mean time course of gaze shift-related normalized network activity 

Monosov Page 25

Trends Neurosci. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



aligned on gaze shifts onto the uncertainty resolving informative stimulus (green) and off the 

stimulus (purple). Asterisks indicate significance in time windows before, during, and after 

the gaze shift. Uncertainty-related activity was significantly enhanced before gaze shifts on 

the stimulus and reduced before gaze shifts off the stimulus when animals were anticipating 

information about an uncertain reward. (E) Pharmacological inactivation of the striatum and 

pallidum regions enriched with information anticipating neurons disrupted information 

seeking relative to saline control which produced no effect. (F) Mechanisms (black) and 

circuits (red) that support information seeking. BF is not shown but it projects to all cortical 

sites shown in F. ACC – anterior cingulate cortex; Cd – Caudate; FEF - Frontal eye field, 

LHb – lateral habenula complex; LIP – lateral intraparietal cortex, Pu – Putamen; RMTg - 

rostromedial tegmental nucleus; SC – superior colliculus; SNr – substantia nigra pars 

reticulata; ac – anterior commissure. The images in A-E are reproduced from [33].
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