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Abstract

Many real-world datasets are labeled with natural orders, i.e., ordinal labels. Ordinal regression is 

a method to predict ordinal labels that finds a wide range of applications in data-rich domains, 

such as natural, health and social sciences. Most existing ordinal regression approaches work well 

for independent and identically distributed (IID) instances via formulating a single ordinal 

regression task. However, for heterogeneous non-IID instances with well-defined local geometric 

structures, e.g., subpopulation groups, multi-task learning (MTL) provides a promising framework 

to encode task (subgroup) relatedness, bridge data from all tasks, and simultaneously learn 

multiple related tasks in efforts to improve generalization performance. Even though MTL 

methods have been extensively studied, there is barely existing work investigating MTL for 

heterogeneous data with ordinal labels. We tackle this important problem via sparse and deep 

multi-task approaches. Specifically, we develop a regularized multi-task ordinal regression 

(MTOR) model for smaller datasets and a deep neural networks based MTOR model for large-

scale datasets. We evaluate the performance using three real-world healthcare datasets with 

applications to multi-stage disease progression diagnosis. Our experiments indicate that the 

proposed MTOR models markedly improve the prediction performance comparing with single-

task ordinal regression models.
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I. INTRODUCTION

Ordinal regression is capable of exploiting ordinal labels to solve multi-ordered 

classification problems, which has been widely applied to diverse application domains [1], 

[2], e.g., medical diagnosis [3]–[6], social science [7]–[10], education [11], [12], computer 

vision [13]–[16] and marketing [17]–[19]. Specifically in medical diagnosis, many major 
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diseases are multi-stage progressive, for example, Alzheimer’s Disease (AD) progresses into 

three stages that are irreversible with orders, i.e., cognitively normal, mild cognitive 

impairment and AD [3]. Conventional methods either convert ordinal regression problems 

into multiple binary classification problems [20]–[22] (e.g., health and illness) or consider 

them as multi-class classification problems [23], [24]. However, these methods fail to 

capture the key information of ordinal labels (e.g., the progression of multi-stage diseases). 

Therefore, ordinal regression is essential as it incorporates the ordinal labels in multi-class 

classification [25]–[27].

In the real-world scenario, there is an increasing need to build multiple related ordinal 

regression tasks for heterogeneous data sets. For instance, multi-stage disease diagnosis in 

multiple patient subgroups (e.g., various age groups, genders, races), student satisfaction 

questionnaire analysis in multiple student subgroups (e.g., various schools, majors), 

customer survey analysis in multiple communities (e.g., various incomes, living 

neighborhoods). However, most of the prior works merely concentrate on learning a single 

ordinal regression task, i.e., either build a global ordinal regression model for all sub-

population groups, ignoring data heterogeneity among different subgroups [28]–[31]; or 

build and learn an ordinal regression model for each subgroup independently, ignoring 

relatedness among these subgroups [25]–[27].

To overcome the aforementioned limitations, multi-task learning (MTL) is introduced to 

learn multiple related tasks simultaneously [32], which has been extensively researched in 

tackle classification and standard regression problems. By building multiple models for 

multiple tasks and learning them collectively, the training of each task is augmented via the 

auxiliary information from other related subgroups, leading to an improved generalization of 

prediction performance. MTL has achieved significant successes in analyzing heterogeneous 

data, such as prediction of patients’ survival time for multiple cancer types [33], prioritzation 

of risk factors in obesity [34] and HIV therapy screening [35]. However, MTL for 

heterogeneous data with ordinal labels, such as multi-stage disease diagnosis of multiple 

patient subgroups, remains a largely unexplored and neglected domain. Multi-stage 

progressive diseases are rarely cured completely and the progression is often irreversible, 

e.g., AD, hypertension, obesity, dementia and multiple sclerosis [3], [5], [6]. Hence new 

ordinal regression approaches are urgently needed to analyze emerging heterogeneous 

and/or large-scale data sets.

To train multiple correlated ordinal regression models jointly, [36] connect these models 

using Gaussian process prior within the hierarchical Bayesian framework. However, multi-

task models within the hierarchical Bayesian framework are not sparse or performed well in 

high dimensional data. In [37], forecasting the spatial event scale is targeted using the 

incomplete labeled datasets, which means not every task has a complete set of labels in the 

training dataset. The objective function in [37] is regularized logistic regression derived from 

logistic ordinal regression; therefore, their approach also suffers from the limitations of 

logistic regression, e.g., more sensitive to outliers comparing with our proposed methods 

based on maximum-margin classification [38], [39].
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Here we propose a regularized multi-task ordinal regression (MTOR) model to analyze 

heterogeneous and smaller datasets. Moreover, we develop a deep neural networks (DNN) 

based model for heterogeneous and large-scale data sets. The proposed MTOR approach can 

be considered as the regularized MTL approach [40], where the assumption of task 

relatedness is encoded via regularization terms that have been widely studied in the past 

decade [41], [42]. In this work, the task relatedness is encoded by shared representation 

layers. We note that [21] formulates a single ordinal regression problem as a multi-task 

binary classification problem whereas in our work we solve multiple ordinal regression 

problems simultaneously within the MTL framework.

In this paper, we employ the alternating structure optimization to achieve an efficient 

learning scheme to solve the proposed models. In the experiments, we demonstrate the 

prediction performance of our models using three real-world datasets corresponding to three 

multi-stage progressive diseases, i.e., AD, obesity and hypertension with well-defined yet 

heterogeneous patient age subgroups. The main contributions of this paper can be 

summarized as follows:

• We propose a regularized MTOR model for smaller yet heterogeneous datasets to 

encode the task relatedness of multiple ordinal regression tasks using structural 

regularization term;

• We propose a DNN based MTOR model for large-scale datasets to encode the 

task relatedness via the shared hidden layers;

• We propose an alternating structure optimization framework to train our models, 

and within this framework the fast iterative shrinkage thresholding algorithm 

(FISTA) is employed to update the model weights;

• Our comprehensive experimental studies demonstrate the advantage of MTOR 

models over single-task ordinal regression models.

The rest of this paper is organized as follows: Section II summarizes relevant works on 

ordinal regression and MTL. In Section III, we review the preliminary knowledge on the 

ordinal regression. Section IV elaborates the details of MTOR models. In Section V, we 

extend the MTOR model to deep learning using DNN to accommodate large-scale 

heterogeneous data sets. Section VI demonstrates the effectiveness of the MTL ordinal 

regression models using three real-world healthcare datasets for the multi-stage disease 

diagnosis. In Section VII, we conclude our work with discussion and future work.

II. RELATED WORKS

In this section, we summarize the related works in the fields of ordinal regression and multi-

task learning, and discuss the relationships and primary distinctions of the proposed methods 

compared to the existing methods in the literature.

A. Ordinal regression

Ordinal regression is an approach aiming at classifying the data with natural ordered labels 

and plays an important role in many data-rich science domains. According to the commonly 
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used taxonomy of ordinal regression [43], the existing methods are categorized into: naive 

approaches, ordinal binary decomposition approaches and threshold models.

The naive approaches are the earliest approaches dealing with ordinal regression, which 

convert the ordinal labels into numeric and then implement standard regression or support 

vector regression [21], [44]. Since the distance between classes is unknown in this type of 

methods, the real values used for the labels may undermine regression performance. 

Moreover, these regression learners are sensitive to the label representation instead of their 

orders [43].

Ordinal binary decomposition approaches are proposed to decompose the ordinal labels into 

several binary ones that are then estimated by multiple models [20], [45]. For example, [20] 

transforms the data from U-class ordinal problems to U−1 ordered binary classification 

problems and then they are trained in conjunction with a decision tree learner to encode the 

ordering of the original ranks, that is, train U − 1 binary classifiers using C4.5 algorithm as a 

decision tree learner.

Threshold models are proposed based on the idea of approximating the real value predictor 

followed with partitioning the real line of ordinal values into segments. During the last 

decade, the two most popular threshold models are support vector machines (SVM) models 

[28], [29], [31], [46] and generalized linear models for ordinal regression [47]–[50]; the 

former is to find the hyperplane that separates the segments by maximizing margin using the 

hinge loss and the latter is to predict the ordinal labels by maximizing the likelihood given 

the training data.

In [46], support vector ordinal regression (SVOR) is achieved by finding multiple thresholds 

that partition the real line of ordinal values into several consecutive intervals for representing 

ordered segments; however, it does not consider the ordinal inequalities on the thresholds. In 

[28], [29], the authors take into account ordinal inequalities on the thresholds and propose 

two approaches using two types of thresholds for SVOR by introducing explicit constraints. 

To deal with incremental SVOR learning caused by the complicated formulations of SVOR, 

[31] propose a modified SVOR formulation based on a sum-of-margins strategy to solve the 

computational scalability issue of SVOR.

Generalized linear models perform ordinal regression by fitting a coefficient vector and a set 

of thresholds, e.g., ordered logit [47], [48] and ordered probit [49], [50]. The margin 

functions are defined based on the cumulative probability of training instances’ ordinal 

labels. Different link functions are then chosen for different models, i.e., logistic cumulative 

distribution function (CDF) for ordered logit and standard normal CDF for ordered probit. 

Finally, maximum likelihood principal is used for training.

With the development of deep learning, ordinal regression problems are transformed into 

binary classifications using convolutional neural network (CNN) to extract features [14], 

[15]. In [16], CNN is also used to extract high-level features followed by a constrained 

optimization formulation minimizing the negative log-likelihood for the ordinal regression 

problems.
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In this work, we propose novel ordinal regression models for heterogeneous data with 

subpopulation groups under the MTL framework. Particularly, we implement two different 

types of thresholds in the loss functions under different assumptions and use alternating 

structure optimization for training our models, which are different from existing threshold 

models using hinge loss or likelihood. Please refer to Section IV for details.

B. Multi-task learning

To leverage the relatedness among the tasks and improve the generalization performance of 

machine learning models, MTL is introduced as an inductive transfer learning framework by 

simultaneously learning all the related tasks and transferring knowledge among the tasks. 

How task relatedness is assumed and encoded into the learning formulations is the central 

building block of MTL. In [40], the earliest MTL approach is to couple the learning process 

by using multi-task regularizations. Regularized MTL is able to leverage large-scale 

optimization algorithms such as proximal gradient techniques, so that the regularized MTL 

approach has a clear advantage over the other MTL approaches [42], [51]–[53]. As a result, 

the regularized MTL can efficiently handle complicated constraints and/or non-smooth 

terms in the objective function.

Note that, we start this subsection by introducing some classical regularized MTL 

approaches. They demonstrate their models performance in different applications. For 

example on a benchmark dataset, i.e., School1, which considers each school as one task to 

predict the same outcome exam scores in the multiple related tasks. Here we focus our 

literature review on the methods instead of applications.

MTL has been implemented with many deep learning approaches [54] in two ways, i.e., soft 

and hard parameter sharing of hidden layers. In the soft parameter sharing, all tasks do not 

share representation layers and the distance among their own representation layers are 

constrained to encourage the parameters to be similar [54], e.g., [55] and [56] use l2-norm 

and the trace norm, respectively. Hard parameter sharing is the most commonly used 

approach in DNN based MTL [54] where all tasks share the representation layers to reduce 

the risk of overfitting [57] and keep some task-specific layers to preserve characteristics of 

each task [58]. In this paper, we use the hard parameters sharing for DNN based MTOR. 

These existing methods are to solve either classification or standard regression problems. 

For the more challenging learning tasks of multiple ordinal regression. We describe our 

regularized MTOR model in Section IV and deep learning based MTOR model in Section V 

to solve the multiple related ordinal regression problems simultaneously. Moreover, in the 

Section VI, the multi-stage disease diagnosis are demonstrated in experiments using the 

proposed MTOR models.

III. PRELIMINARY: LATENT VARIABLE MODEL IN ORDINAL REGRESSION

Given N training instances denoted as (Xi, Yi)i∈{1,…,N}, the latent variable model is used to 

predict the ordinal label [47]:

1https://ttic.uchicago.edu/~argyriou/code/
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Y * = XW + b, 1

Y i = uifϑμ − 1 < Yi* ≤ ϑμ,

where Y* is the latent variable and Y i is the ordered predicted label (i.e.,Y i = μ ∈ 1, …, U ) 

for the ith training instance. ϑ is a set of thresholds, where ϑ0 = −∞ and ϑU = ∞, so that we 

have U − 1 thresholds (i.e.,ϑ1 < ϑ2 < … < ϑU − 1) partitioning Y* into U segments to obtain 

Y , which can be expressed as:

Y =

1  if  ϑ0 < Y * ≤ ϑ1,
⋮ ⋮ ⋮
μ  if  ϑμ − 1 < Y * ≤ ϑμ,
⋮ ⋮ ⋮
U  if  ϑU − 1 < Y * ≤ ϑU .

2

As we see in Eq. (1) and Eq. (2), U ordered predicted labels, i.e., Y , are corresponding to U 
ordered segments and each Y* has the value within the range: (ϑμ−1, ϑμ), the latter is 

immediate thresholds, for μ ∈ {1, …,U}.

IV. REGULARIZED MULTI-TASK ORDINAL REGRESSION (RMTOR) 

MODELS

In this section, we formulate regularized multi-task ordinal regression (RMTOR) using two 

different types of thresholds: 1) Immediate thresholds: the thresholds between adjacent 

ordered segments including the first threshold ϑ0 and last threshold ϑU. In the real-world 

problems, ϑ0 and ϑU always remain in finite range. Hence, we can use the first and last 

thresholds to calculate the errors for training instances in the corresponding segments. 2) All 

thresholds: the thresholds between adjacent and non-adjacent ordered segments followed the 

traditional definition of the be used for calculating the errors of training instances.first and 

last thresholds, i.e., ϑ0 = −∞ and ϑU = ∞. Thus, the first and last thresholds can not be used 

for calculating the errors of training instances.

A. Regularized multi-task learning framework

In the real-world scenario, multiple related tasks are more common comparing with many 

independent tasks. To employ MTL, many studies propose to solve a regularized 

optimization problem. Assume there are T tasks and G input variables/features in each 

corresponding dataset, then we have the weight matrix as W ∈ RG×T and regularized MTL 

object function as:

J = min
W

ℒ(W ) + Ω(W ), 3

where Ω(W) is the regularization/penalty term, which encodes the task relatedness.
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B. RMTOR using immediate thresholds (RMTORI)

1) RMTORI model: We define a margin function M(D) := log(1+exp(D)) for the ordered 

pairwise samples as the logistic loss is a smooth loss that models the posterior probability 

and leads to better probability estimation at the cost of accuracy. The loss function of 

RMTOR with the immediate thresholds is formulated as:

ℒI = ∑
t = 1

T
∑
j = 1

nt
M ϑ Ytj − 1 − XtjW t + M XtjW t − ϑYtj , 4

where t is the index of task, nt is the number of instances in the tth task, j is the index of 

instance in the tth task, Ytj is the label of the jth instance in the tth task, Xtj ∈ R1×G, Wt ∈ 
RG×1 and ϑ ∈ RT×U. Note that, ϑYtj is a threshold in the tth task, which is a scalar and its 

index is Ytj. To visualize our immediate thresholds method, we show an illustration figure in 

Fig. 1.

Thus, we have the objective function RMTORI as:

RMTORI = min
W , ϑ

∑
t = 1

T
∑
j = 1

nt
M ϑ Ytj − 1 − XtjW t

+M XtjW t − ϑYtj + λ W 2, 1,
5

where λ is the tuning parameter to control the sparsity and W 2, 1 = ∑g = 1
G ∑t = 1

T wgt
2. 

Note that, g is the index of feature and wgt is the weight for the gth feature in the tth task.

2) Optimization: Alternating structure optimization [59] is a used to discover the shared 

predictive structure for all multiple tasks simultaneously, especially when the two sets of 

parameters W and ϑ in Eq. (5) can not be learned at the same time.

a) Optimization of W:  With fixed ϑ, the optimal W can be learned by solving:

min
W

ℒI(W ) + λ W
2, 1

, 6

where ℒI(W ) is a smooth convex and differentiable loss function, and the first order 

derivative can be expressed as:

ℒI′ W t = ∑
j = 1

nt
Xtj G XtjW t − ϑYtj

−G ϑ Ytj − 1 − XtjW t ,

ℒI′ (W ) =
ℒI′ W 1

n1
, ⋯,

ℒI′ W t
nt

, ⋯,
ℒI′ W T

nT
,

7

where G(D): = ∂M(D)
∂D = 1

1 + exp( − D) .
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To solve the optimization problem in Eq. (6), fast iterative shrinkage thresholding algorithm 

(FISTA) shown in Algorithm 1 is implemented with the general updating steps:

W (l + 1) = πP S(l) − 1
γ(l)ℒI′ S(l) , 8

where l is the iteration index, 1
γ(l)  is the largest possible step-size that is chosen by line 

search [60, Lemma 2.1, page 189] and ℒI′ S(l)  is the gradient of ℒI( ⋅ ) at search point S(l). 

S(l) = W(l) + α(l)(W(l) − W(l−1)) are the search points for each task, where α(l) is the 

combination scalar. πP (·) is l2,1−regularized Euclidean project shown as:

πP H S(l) = min
W

1
2 W − H S(l)

F
2 + λ W

2, 1
, 9

where ||·||F is the Frobenius norm and H S(l) = S(l) − 1
γ(l)ℒ′ S(l)  is the gradient step of S(l). 

An efficient solution (Theorem 1) of Eq. (9) has been proposed in [42].

Theorem 1: Given λ, the primal optimal point W  of Eq. (9) can be calculated as:

W g =

1 − λ
H S(l)

g 2
H S(l)

gifλ > 0, H S(l)
g 2 > λ

0 if λ > 0, H S(l)
g 2 ≤ λ

H S(l)
g if λ = 0,

10

where H(S(l))g is the jth row of H(S(l)), and W g is the gth row of W .

Algorithm 1: Fast iterative shrinkage thresholding algorithm (FISTA) for training RMTOR.

Input: A set of feature matrices {X1, X2, ⋯, XT }, target value matrix Y for all T tasks, 

initial coefficient matrix W(0) and λ

Output: W

1. 1 Initialize: W(1) = W(0), d−1 = 0, d0 = 1,γ(0) = 1,l = 1;

2. 2 repeat

3. 3 Set α(l) =
dl − 2 − 1

dl − 1
, S(l) = W(l) + α(l)(W(l) −W(l−1));

4. 4 for j = 1,2, ⋯ do

5. 5 Set γ = 2jγ(l−1);

6. 6 Calculate W (l + 1) = πP S(l) − 1
γ(l)ℒI′ S(l) ;

7. 7 Calculate Qγ(S(l),W(l+1));
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8. 8 if ℒI W (l + 1) ≤ Qγ S(l), W (l + 1)  then

9. 9 γ(l) = γ, break;

10. 10 end

11. 11 end

12.
12 dl =

1 + 1 + 4dl − 1
2

2 ;

13. 13 l = l + 1;

14. 14 until Convergence of W(l);

15. 15 W = W (l);

In lines 4–11 of Algorithm 1, the optimal γ(l) is chosen by the backtracking rule based on 

[60, Lemma 2.1, page 189], γ(l) is greater than or equal to the Lipschitz constant of ℒI( ⋅ ) at 

search point S(l), which means γ(l) is satisfied for S(l) and 1
γ l  is the possible largest step 

size.

In line 7 of Algorithm 1, Qγ(S(l), W(l+1)) is the tangent line of ℒI( ⋅ ) at S(l), which can be 

calculated as:

Qγ S(l), W (l + 1) = ℒI S(l) + γ
2 W (l + 1) − S(l) 2

+ W (l + 1) − S(l), ℒI′ S(l) .

b) Optimization of ϑ:  With fixed W, the optimal ϑ can be learned by solving minϑℒI(ϑ), 
where ℒI(ϑ)′s first order derivative can be expressed as:

ℒI′ ϑt = ∑
j = 1

nt
∑

Ytj − 1 = μ

U
G ϑtμ − XtjW t 11

− ∑
j = 1

nt
∑

Ytj = μ

U
G XtjW t − ϑtμ ,

ℒI′ (ϑ) =
ℒI′ ϑ1

n1
, ⋯,

ℒI′ ϑt
nt

, ⋯,
ℒI′ ϑT

nT
,

where ϑtμ is the μth threshold in task t, so that ϑ can be updated as:

ϑ(l) = ϑ(l − 1) − ε(l)ℒI′ (ϑ), 12

where ε is the step-size of gradient descent.
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C. RMTOR using all thresholds (RMTORA)

Alternatively, we describe another possible way of formulating the loss function for ordinal 

regression, so-called all thresholds (Fig. 2), and use it as a strong baseline to compare with 

the loss function formulated using adjacent thresholds only.

1) RMTORA model: RMTOR with the all thresholds, loss function is calculated as:

ℒA = ∑
t = 1

T
∑
j = 1

nt
∑

μ = 1

Ytj − 1
M ϑtμ − XtjW t + ∑

μ = Ytj

U − 1
M XtjW t − ϑtμ , 13

where ∑μ = 1
Ytj − 1

M XtjW t − ϑtμ  is the sum of errors when μ < Ytj, which means the 

threshold’s index μ is smaller than the jth training instance label Ytj, while 

∑μ = Ytj
U − 1 M ϑtμ − XtjW t  is the sum of errors when μ ≥ Ytj. To visualize our all thresholds 

method, we show an illustration figure in Fig. 2.

Thus, its objective function RMTORA is calculated as:

RMTORA = min
W , ϑ

∑
t = 1

T
∑
j = 1

nt
∑

μ = 1

Ytj − 1
M ϑtμ − XtjW t

+ ∑
μ = Ytj

U − 1
M XtjW t − ϑtμ + λ W

2, 1
.

14

2) Optimization: We also implement an alternating structure optimization method to 

obtain the optimal parameters W and ϑ, which is similar as we perform for RMTORr 
optimization.

a) Optimization of W:  With fixed ϑ, the optimal W can be learned by solving:

min
W

ℒA(W ) + λ W
2, 1

, 15

where ℒA(W ) is a smooth convex and differentiable loss function. First, we calculate its first 

order derivative w.r.t. Wt:

ℒA′ W t = ∑
j = 1

nt
∑

μ = Ytj

U − 1
XtjG XtjW t − ϑtμ ,

− ∑
μ = 1

Yij − 1
XtjG ϑtμ − XtjW t .

16

We introduce an indicator variable zμ:
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zμ =
+1, μ ≥ Y tj
−1, μ < Y tj

17

Then the updated formulation of Eq. (16) and the first order derivative w.r.t. W are 

calculated as:

ℒA′ W t = ∑
j = 1

nt
∑

μ = 1

U − 1
Xtj

T zμ ⋅ G zμ ⋅ XtjW t − ϑtμ ,

ℒA′ (W ) =
ℒA′ W 1

n1
, ⋯,

ℒA′ W t
nt

, ⋯,
ℒA′ W T

nT
.

18

Similar as we did for RMTORI optimization of W, we then use FISTA to optimize with the 

parameters in RMTORA updating steps:

W (l + 1) = πP S(l) − 1
γ(l)ℒA′ S(l) , 19

which is solved in Algorithm 1.

b) Optimization of ϑ:  With fixed W, the optimal ϑ can be learned by solving minϑℒA(ϑ)
where ℒA(ϑ)‘s first order derivative can be expressed as:

ℒA′ ϑt = − 1T zμ ⋅ G zμ ⋅ XtjW t − ϑtμ ,

ℒA′ (ϑ) =
ℒA′ ϑ1

n1
, ⋯,

ℒA′ ϑt
nt

, ⋯,
ℒA′ ϑT

nT
,

20

and hence ϑ can be updated as:

ϑ(l) = ϑ(l − 1) − ε(l)ℒA′ (ϑ) . 21

V. DEEP MULTI-TASK ORDINAL REGRESSION (DMTOR) MODELS

In this section, we introduce two deep multi-task ordinal regression (DMTOR) models 

implemented using deep neural networks (DNN). Fig. 3 illustrates the basic architecture of 

the

A. DMTOR architecture

We denote input layer, shared representation layers and task-specific representation layers as 

L1, L(R·) and L(S·), respectively. Thus, we have the shared representation layers as:
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LR(1) = ReLU W 1 ⋅ L1 ,
LR(2) = ReLU W 2 ⋅ LR(1) ,
,
LR(r) = f W r, LR(r − 1) ,

22

where {W1,··· ,Wr} are the coefficient parameters at different hidden layers, ReLU(·) stands 

for rectified linear unit that is the nonlinear activation function, r is the number of hidden 

layers and f(·) is a linear transformation.

Task-specific representation layers are expressed as:

LS(1)
t = ReLU B1

t ⋅ LR(r) ,
⋯,
LS(s)

t = ReLU Bs
t ⋅ LS(s − 1) ,

23

where Bt is the coefficient parameter corresponding to the tth task and s is the number of 

task-specific representation layers.

B. Network training

Forward propagation calculation for the output is expressed as:

outputt = f Ot, LS(s)
t , 24

where Ot is the coefficient parameter corresponding to the tth task.

Then the loss function of DMTORI model can be calculated as:

ℒI = ∑
t = 1

T
∑
j = 1

nt
M ϑ Ytj − 1 = outputt

+M outputt − ϑYtj .
25

Similarly, the loss function of DMTORA model can be calculated as:

ℒA = ∑
t = 1

T
∑
j = 1

nt
∑

μ = 1

Ytj − 1
M ϑtμ − outputt

+ ∑
μ = Ytj

U − 1
M outputt − ϑtμ .

26

We use mini-batches to train our models’ parameters for faster learning with partitioning the 

training dataset into small batches, and then calculate the model error and update the 

corresponding parameters.
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Stochastic Gradient Descent (SGD) is used to iteratively minimize the loss and update all the 

model parameters (weights: W,B,O and thresholds: ϑ):

W (l) = W (l − 1) − ε(l)∇W ℒ,
⋯,
ϑ(l) = ϑ(l − 1) − ε(l)∇ϑℒ .

27

VI. EXPERIMENTS AND RESULTS

To evaluate the performance of our proposed multi-task ordinal regression (MTOR) models, 

we extensively compare them with a set of selected single-task learning (STL) models. We 

first elaborate some details of the experimental setup and then describe three real-world 

medical datasets used in the experiments. Finally, we discuss the experimental results using 

accuracy and mean absolute error (MAE) as the evaluation metrics.

A. Experimental setup

We demonstrate the performance of proposed RMTOR and DMTOR models on small and 

large-scale medical datasets, respectively: 1). We use a small dataset (i.e., Alzheimer’s 

Disease Neuroimaging Initiative) to experimentally compare RMTORI and RMTORA with 

their corresponding STL ordinal regression models denoted as STORI and STORA. We also 

compare them with two SVM based ordinal regression (SVOR) models, i.e., support vector 

for ordinal regression with explicit constraints (SV OREC) [29] and support vector machines 

using binary ordinal decomposition (SV MBOD) [20]. Both SVOR models are implemented 

in Matlab within ORCA framework [61]. 2). Our experiments on two large-scale healthcare 

datasets (i.e., Behavioral Risk Factor Surveillance System and Henry Ford Hospital 

hypertension) compare DMTORI and DMTORA with their corresponding STL ordinal 

regression models denoted as DSTORI and DSTORA. In addition, we compare them with a 

neural network approach for ordinal regression, i.e., NNRank [62], which is downloaded 

from the Multicom toolbox2. In our experiments, the models with DNN (i.e., DMTORI, 

DMTORA, DSTORI and DSTORA) are implemented in Python using Pytorch and the other 

models without DNN (RMTORI, RMTORA, STORI and STORA) are implemented in 

Matlab.

1) MTL ordinal regression experimental setup: In the three real-world datasets, 

tasks are all defined based on various age groups in terms of the predefined age groups in 

MTOR models for the consistency. Also, all tasks share the same feature space, which 

follows the assumption of MTL that the multiple tasks are related.

For RMTORI and RMTORA, we use 10-fold cross validation to select the best tuning 

parameter λ in the training dataset.

For DMTORI and DMTORA, we use the same setting of DNN, i.e., three shared 

representations layers and three task-specific representation layers. For each dataset, we set 

2http://sysbio.rnet.missouri.edu/multicom_toolbox/tools.html
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the same hyper-parameters, e.g., number of batches and number of epochs; while these 

hyper-parameters are not the same in different datasets. We use random initialization for 

parameters. Please refer to Section V-B to see the details of the network training procedures.

2) STL ordinal regression experimental setup: In our experiments, STL ordinal 

regression methods are applied under two settings: 1) Individual setting, i.e., a prediction 

model is trained for each task; 2) Global setting, i.e., a prediction model is trained for all 

tasks. In the individual setting the heterogeneity among tasks are fully considered but not the 

task relatedness; on the contrary, in the global setting all the heterogeneities have been 

neglected.

For DSTORI and DSTORA, the setting of DNN uses three hidden representation layers, 

where each layer’s activation function is ReLU(·). During the training procedure, the loss 

functions use the same function M(·) with either immediate or all thresholds. Same as we did 

for DMTOR, we set the same hyper-parameters within each dataset and different ones 

among different datasets.

In the training of NNRank, we use the default setting, .e.g., number of epochs is 500, 

random seed is 999 and learning rate is 0.01. In testing, we also use the default setting, e.g., 

decision threshold is 0.5.

B. Data description

In this paper, Alzheimer’s Disease Neuroimaging Initiative (ADNI) [63] and Behavioral 

Risk Factor Surveillance System (BRFSS) are public medical benchmark datasets, while 

Henry Ford Hospital hypertension (FORD) is the private one. We divide these three datasets 

into training and testing using stratified sampling, more specifically, 80% of instances are 

used for training and the rest of instances are used for testing.

Age is a crucial factor when considering phenotypic changes in disease [64]–[67]. Thus, we 

define the tasks according to the disjoint age groups in ADNI, BRFSS and FORD datasets.

1) Alzheimer’s Disease Neuroimaging Initiative (ADNI): The mission of ADNI is 

to seek the development of biomarkers for the disease and advance in order to understand 

the pathophysiology of AD [63]. This data also aims to improve diagnostic methods for 

early detection of AD and augment clinical trial design. Additional goal of ADNI is to test 

the rate of progress for both mild cognitive impairment and AD. As a result, ADNI are 

trying to build a large repository of clinical and imaging data for AD research.

We pick one measurement from the participants of diagnostic file in this project and delete 

two participants whose age information are missing, which leaves us 1,998 instances and 95 

variables including 94 input variables that are corresponding to measurement of AD, e.g., 

FDG-PET is used to measure cerebral metabolic rates of glucose; plus one output variable 

that is phase used to represent three stages of AD (cognitively normal, mild cognitive 

impairment, and AD).
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Since the age groups in ADNI dataset fall in mature adulthood and late adulthood, we divide 

mature adulthood into three subgroups. Hence, the tasks are defined in ADNI based on 

different stages of people shown as the first column in Table I and Table II, i.e., mature 

adulthood 1 (50 years to 59 years), mature adulthood 2 (60 years to 69 years), mature 

adulthood 3 (70 years to 79 years) and late adulthood (equal or older than 80 years).

2) Behavioral Risk Factor Surveillance System (BRFSS): The BRFSS dataset is a 

collaborative project between all the states in the U.S. and the Centers for Disease Control 

and Prevention (CDC), and aims to collect uniform, state-specific data on preventable health 

practices and risk behaviors that affect the health of the adult population (i.e., adults aged 18 

years and older). In the experiment, we use the BRFSS dataset that is collected in 20163.

The BRFSS dataset is collected via the phone-based surveys with adults residing in private 

residence or college housing. The original BRFSS dataset contains 486,303 instances and 

275 variables, after deleting the entries with missing age information and the variables with 

all hidden values, the preprocessed dataset contains 459,156 with 85 variables including 84 

input variables and one output variable, i.e., categories of body mass index (underweight, 

normal weight, overweight and obese).

The tasks are defined in BRFSS based on different stages of people shown in the first 

column in Table III and Table IV, i.e., early young (18 years to 24 years), young (25 years to 

34 years), middle-aged (35 years to 49 years), mature adulthood (50 years to 70 years) and 

late adulthood (equal or older than 80 years).

3) Henry Ford Hospital hypertension (FORD): FORD dataset is collected by our 

collaborator from Emergency Room (ER) of Henry Ford Hospital. All participants in this 

dataset are all from metro Detroit. All variables except for the outcomes are collected from 

the emergency department at Henry Ford Hospital. Some diagnostic variables are collected 

from any hospital admissions that occurred after the ER visits. The index date in FORD 

dataset for each patient started in 2014 and went through the middle of 2015. They then 

collect outcomes for each patient for one year after that index date. So, the time duration 

from the date that a patient seen in ER to his/her diagnostic variable collection date may be 

longer than one year. For example, a patient may have been seen in the ER on July 2, 2015 

and they would have had diagnosis variable collected date up to July 2, 2016.

Originally, this FORD dataset contains 221, 966 instances and 63 variables including 

demographic, lab test and diagnosis related information. After deleting the entries with 

missing values, the preprocessed dataset contains 186, 572 instances and 23 variables 

including 22 input variables and one output, i.e., four stages of hypertension based on 

systolic and diastolic pressure: normal (systolic pressure: 90–119 and diastolic pressure: 60–

79), pre-hypertension (120–139 and 80–89), stage 1 hypertension (140–159 and 90–99) and 

stage 2 hypertension (≥ 160 and ≥ 160).

3https://www.cdc.gov/brfss/annual_data/annual_2016.html
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Since the number of instances in the age groups of infant, children and teenager are much 

less than other age groups, we combine these three age groups into one age group as minor. 

Hence, the tasks are defined in FORD based on different ages of people shown as the first 

column in Table V and Table VI, i.e., minor (1 year to 17 years), early young (18 years to 24 

years), young (25 years to 34 years), middle-aged (35 years to 49 years), mature adulthood 

(50 years to 70 years) and late adulthood (equal or older than 80 years).

C. Performance comparison

To evaluate the overall performance of each ordinal regression method, we use both 

accuracy and MAE as our evaluation metrics. Accuracy reports the proportion of accurate 

predictions, so that larger value of accuracy means better performance. With considering 

orders, MAE is capable of measuring the distance between true and predicted labels, so that 

smaller value of MAE means better performance.

To formally define accuracy, we use i and j to represent the index of true labels and the index 

of predicted labels. A pair of labels for each instance, i.e., Y i, Y j , is positive if they are 

equal, i.e., Y i = Y j, otherwise the pair is negative. We further denote NT as the number of 

total pairs and NP as the number of positive pairs. Thus,accuracy =
NP
NT

. MAE is calculated 

as MAE =
∑i = 1

ns Yi − Y i
ns

, where ns is the number of instances in each testing dataset.

We show the performance results of prediction accuracy of different models along with their 

standard deviations using the aforementioned three medical datasets ADNI, BRFSS and 

FORD in Table I, Table III and Table V, respectively. We also present the performance 

results of MAE of different models along with their standard deviations using the 

aforementioned three medical datasets ADNI, BRFSS and FORD in Table II, Table IV and 

Table VI, respectively. Each task in our experiments is to predict the stage of disease for 

people in each age group. In the experiments of MTOR models, each task has its own 

prediction result. For each task, we build one STL ordinal regression model under the global 

and individual settings as comparison methods.

Overall, the experimental results show that the MTOR models perform better than other STL 

models in terms of both accuracy and MAE. MTOR models outperform STL ones across all 

the tasks in each dataset. MTOR models with immediate thresholds largely outperform the 

ones with all thresholds in both evaluation metrics, which confirms the assumption that first 

and last thresholds are always remaining in finite range in the real-world scenario.

Under the proposed MTOR framework, both deep and shallow models have descent 

performance for different types of datasets: RMTOR model with immediate thresholds 

performs better for small dataset whereas DMTOR model with immediate thresholds is more 

suitable for large-scale dataset. More specifically, the DMTORI model outperforms the 

competing models in the most tasks of BRFSS and FORD datasets. In ADNI dataset, 

RMTORI outperforms other models in terms of accuracy and MAE. Note that, the accuracy 

and MAE do not always perform consistently for all tasks. For example in the experiment 
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using ADNI dataset, for the first task with ages ranging in (50–59), RMTORI shows the best 

(largest) accuracy whereas RMTORA exhibits the best (lowest) MAE.

For SVM based STL ordinal regression models, the distance between classes is unknown in 

this type of methods, the real values used for the labels may undermine regression 

performance. Moreover, these regression learners are sensitive to the label representation 

instead of their orders. While our MTOR models with predefining margin function that 

utilizes shared information between tasks can overcome the aforementioned shortcomings.

VII. CONCLUSION

In this paper, we tackle multiple ordinal regression problem by proposing a regularized 

MTOR model for smaller data sets and a DNN based MTOR model for large-scale data sets. 

The former belongs to the regularized multi-task learning, where the ordinal regression is 

used to handle the ordinal labels and regularization terms are used to encode the assumption 

of task relatedness. The latter is based on DNN with shared representation layers to encode 

the task relatedness. Particularly, the DNN based MTOR outperforms other models for the 

large-scale datasets and the regularized MTOR are appropriate for small datasets. In the 

future, we plan to develop a weighted loss function for MTOR using both immediate and all 

thresholds in one unified function.
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Fig. 1: 
Illustration of immediate-thresholds loss using four segments that only calculate the errors 

using the neighbor/adjacent thresholds of each segment when first and last thresholds remain 

in finite range. We denote EA + / −
Y = μ  as the error for a data point in the class μ, where A 

represents adjacent thresholds used and + or − indicates the error value is positive or 

negative. Note that, the solid arrow lines represent the errors calculated using neighbor/

adjacent thresholds and the different direction of the arrow lines indicate the error direction. 

For example, EA −
Y = μ denotes the error of a class 1 data point that equals ϑ0 − Xtj

Y = 1W t; this 

error is represented with a right direction arrow line in this figure and as ϑ0 is smaller than 

Xtj
Y = 1W t, so its value is negative.
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Fig. 2: 
Illustration of the all-thresholds loss using four segments that calculate the error using both 

neighbor/adjacent and non-neighbor/non-adjacent thresholds. We denote EA + / −
Y = μ  and 

EN + / −
Y = μ  as the error for a data point in the class μ, where A and N represent adjacent 

thresholds and non-adjacent used, respectively. In addition to Fig. 1, solid lines represent the 

errors calculated using adjacent thresholds, while dash lines represent the errors calculated 

using non-adjacent thresholds. Same as Fig. 1, + or − indicates the error value is positive or 

negative and the different direction of the arrow lines indicate the error direction. Due to the 

loss functions are different in immediate and all thresholds, the errors are also different in 

Fig. 1 and Fig. 2. For example, EA +
Y = 1 denotes the error of a class 1 data point using adjacent 

threshold that equals to Xtj
Y = 1W t − ϑ1; this error is represented with a left direction arrow 

line in Fig. 2 and as ϑ1 is smaller than Xtj
Y = 1W t, so its value is positive. There are two 

EN −
Y = 1 in Fig. 2 denoting the errors of a class 1 data point using non-adjacent threshold that 

equal to Xtj
Y = 1W t − ϑ2 and Xtj

Y = 1W t − ϑ3, respectively; these two errors are represented 

with two right direction arrow dash lines in Fig. 2 and as ϑ2 and ϑ3 are smaller than 

Xtj
Y = 1W t, so their values are negative. Note that, in Eq. (13), the errors for data points in 

each class are calculated summing over from μ = 1 to U − 1, so that ϑ = 0 and ϑ = 4 are not 

presented in Fig. 2.
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Fig. 3: 
Illustration of DNN based multi-task ordinal regression (DMTOR). All tasks share the input 

and representation layers, while all tasks keep several task-specific layers. Note that, circles 

represent the nodes at each layer and squares represent layers.
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TABLE I:

The accuracy of our proposed regularized MTOR model, i.e., RMTORI and compared with an alternative 

formulation RMTORA, the corresponding single-task ordinal regression models (i.e., STORI and STORA) and 

two SVM based STL ordinal regression models (i.e., SVOREC and SVMBOD) using a small healthcare 

dataset, i.e., ADNI. Note that, standard deviations are shown at the second row in each cell that is under the 

accuracy. The first and second columns represent the age group (AG) of each task and number of instances in 

each task of testing dataset, respectively. The best performance results are in bold face.

Task/
AG

No. of 
instances

MTOR Global setting Individual setting

RMTORI RMTORA SVOREC SVMBOD STORI STORA SVOREC SVMBOD STORI STORA

50–
59 72 0.791±0.055 0.783±0.09 0.572±0.08 0.522±0.049 0.493±0.04 0.489±0.12 0.554±0.065 0.633±0.105 0.473±0.05 0.459±0.115

60–
69 104 0.739±0.14 0.687±0.02 0.583±0.05 0.611±0.072 0.429±0.112 0.493±0.018 0.638±0.035 0.621±0.046 0.633±0.033 0.656±0.081

70–
79 142 0.764±0.218 0.659±0.019 0.533±0.255 0.661±0.047 0.572±0.023 0.478±0.061 0.602±0.038 0.645±0.041 0.674±0.029 0.629±0.078

≥ 80 83 0.747±0.015 0.709±0.09 0.623±0.12 0.671±0.04 0.523±0.09 0.475±0.031 0.693±0.037 0.701±0.044 0.677±0.016 0.616±0.03

Data Min Knowl Discov. Author manuscript; available in PMC 2022 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang and Zhu Page 25

TABLE II:

The MAE of our proposed regularized MTOR model, i.e., RMTORI, compared with an alternative formulation 

RMTORA, their corresponding STL ordinal regression models and two SVM based STL ordinal regression 

models using a small healthcare dataset, i.e., ADNI.

Task/ 
A

No. of 
instances

MTOR Global setting Individual setting

RMTORI RMTORA SVOREC SVMBOD STORI STORA SVOREC SVMBOD STORI STORA

50–
59 72 0.344±0.009 0.307±0.022 0.673±0.013 0.691±0.087 0.683±0.103 0.629±0.028 0.537±0.039 0.501±0.043 0.792±0.182 0.690±0.207

60–
69 104 0.311±0.005 0.362±0.093 1.014±0.088 0.892±0.049 1.033±0.052 1.098±0.132 0.911±0.095 0.837±0.105 0.894±0.077 1.063±0.207

70–
79 142 0.401±0.048 0.561±0.05 0.943±0.073 0.798±0.082 0.743±0.117 0.832±0.131 0.601±0.128 0.592±0.092 0.611±0.057 0.975±0.155

≥ 80 83 0.579±0.051 0.619±0.039 0.912±0.133 0.593±0.094 0.840±0.078 0.983±0.098 0.812±0.109 0.727±0.207 0.930±0.118 1.091±0.257
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TABLE III:

The accuracy of the proposed DNN based MTOR model, i.e., DMTORI, the alternative formulation 

DMTORA, their corresponding STL ordinal regression models (i.e., DSTORI and DSTORA) and a STL neural 

network approach for ordinal regression (i.e., NNRank) using a large-scale medical dataset, i.e., BRFSS.

Task/
AG

No. of 
instances

MTOR Global setting Individual setting

DMTORI DMTORA NNRank DSTORI DSTORA NNRank DSTORI DSTORA

18–
24 5,325 0.532±0.037 0.431±0.071 0.525±0.095 0.405±0.039 0.363±0.058 0.507±0.009 0.359±0.073 0.328±0.098

25–
34 5,693 0.524±0.052 0.452±0.037 0.521±0.112 0.432±0.094 0.379±0.075 0.513±0.11 0.325±0.046 0.389±0.091

35–
49 17,480 0.577±0.089 0.513±0.076 0.574±0.034 0.455±0.078 0.381±0.054 0.563±0.093 0.367±0.061 0.328±0.052

50–
79 55,388 0.608±0.101 0.529±0.097 0.580±0.063 0.421±0.051 0.276±0.077 0.585±0.067 0.293±0.035 0.284±0.029

≥ 80 745 0.451±0.091 0.443±0.085 0.447±0.058 0.410±0.039 0.391±0.022 0.425±0.081 0.394±0.048 0.374±0.053
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TABLE IV:

The MAE of the proposed DNN based MTOR model, the alternative formulation DMTORA, their 

corresponding STL models and NNRank using a large-scale BRFSS dataset.

Task/
AG

No. of 
instances

MTOR Global setting Individual setting

DMTORI DMTORA NNRank DSTORI DSTORA NNRank DSTORI DSTORA

18–
24 5,325 0.479±0.071 0.582±0.059 0.793±0.037 0.783±0.095 1.020±0.107 0.802±0.092 0.745±0.093 1.055±0.111

25–
34 5,693 0.521±0.058 0.633±0.079 0.573±0.082 0.795±0.094 0.839±0.105 0.581±0.057 0.935±0.034 1.037±0.125

35–
49 17,480 0.755±0.102 0.924±0.115 0.915±0.059 1.090±0.11 0.927±0.098 0.790±0.055 0.954±0.072 1.077±0.092

50–
79 55,388 0.536±0.088 0.711±0.042 0.875±0.089 1.330±0.107 1.033±0.122 0.582±0.197 1.503±0.106 1.270±0.14

≥ 80 745 0.630±0.108 0.681±0.102 0.833±0.133 0.961±0.079 0.902±0.082 0.710±0.124 1.027±0.21 1.009±0.095
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TABLE V:

The accuracy of the proposed DNN based MTOR models, their corresponding STL models and NNRank 
using a large-scale FORD dataset.

Task/
AG

No. of 
instances

MTOR Global setting Individual setting

DMTORI DMTORA NNRank DSTORI DSTORA NNRank DSTORI DSTORA

0–17 4,176 0.732±0.13 0.709±0.105 0.451±0.058 0.532±0.092 0.588±0.078 0.455±0.074 0.577±0.039 0.591±0.102

18–
24 5,284 0.742±0.085 0.697±0.032 0.551±0.049 0.530±0.051 0.592±0.069 0.479±0.071 0.635±0.083 0.671±0.097

25–
34 6,279 0.722±0.056 0.720±0.072 0.488±0.035 0.497±0.042 0.593±0.038 0.452±0.092 0.622±0.055 0.530±0.094

35–
49 9,516 0.781±0.081 0.737±0.09 0.667±0.033 0.649±0.047 0.563±0.04 0.619±0.85 0.620±0.029 0.565±0.058

50–
79 10,991 0.755±0.096 0.734±0.075 0.615±0.08 0.534±0.09 0.530±0.073 0.598±0.069 0.616±0.084 0.613±0.106

≥ 80 1,070 0.737±0.089 0.733±0.083 0.690±0.036 0.570±0.095 0.539±0.047 0.658±0.05 0.609±0.104 0.579±0.035
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TABLE VI:

The MAE of the proposed DNN based MTOR models, their corresponding STL models and NNRank using a 

large-scale FORD dataset.

Task/
AG

No. of 
instances

MTOR Global setting Individual setting

DMTORI DMTORA NNRank DSTORI DSTORA NNRank DSTORI DSTORA

0–17 4,176 0.277±0.007 0.303±0.021 0.654±0.008 0.745±0.039 0.894±0.089 0.531±0.091 0.845±0.013 0.919±0.087

18–
24 5,284 0.298±0.025 0.401±0.028 0.537±0.034 0.639±0.023 0.792±0.058 0.938±0.086 0.862±0.079 0.583±0.093

25–
34 6,279 0.435±0.061 0.539±0.077 0.680±0.062 1.032±0.095 0.794±0.054 0.902±0.075 0.883±0.098 0.895±0.086

35–
49 9,516 0.301±0.027 0.350±0.019 0.548±0.025 0.642±0.092 1.055±0.179 0.720±0.032 0.860±0.046 0.930±0.071

50–
79 10,991 0.379±0.039 0.351±0.059 0.537±0.024 0.665±0.048 0.995±0.064 0.850±0.076 0.990±0.096 1.034±0.19

≥ 80 1,070 0.383±0.03 0.412±0.052 0.731±0.083 0.790±0.078 1.077±0.12 0.609±0.065 1.073±0.14 0.977±0.098
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