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Abstract: DNA double-strand breaks (DSBs), interrupting the genetic information, are elicited by
various environmental and endogenous factors. They bear the risk of cell lethality and, if mis-repaired,
of deleterious mutation. This negative impact is contrasted by several evolutionary achievements for
DSB processing that help maintaining stable inheritance (correct repair, meiotic cross-over) and even
drive adaptation (immunoglobulin gene recombination), differentiation (chromatin elimination) and
speciation by creating new genetic diversity via DSB mis-repair. Targeted DSBs play a role in genome
editing for research, breeding and therapy purposes. Here, I survey possible causes, biological effects
and evolutionary consequences of DSBs, mainly for students and outsiders.

Keywords: DNA double-strand break (DSB) repair; meiotic crossover; chromosome rearrangements;
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1. Background

The heritable information of all living beings on Earth (except for some RNA, or single-
stranded DNA, viruses) is encoded, stored and propagated through the base sequence of
complementary double-stranded deoxyribonucleic acid molecules. The double-stranded
DNA forms circular (in most prokaryotes, plastids and mitochondria) or linear molecules
(in eukaryotic nuclei). Eukaryotic chromosomes, the carriers of linear nuclear DNA, are
organized by histones and other nuclear proteins in hierarchical structures which differ in
compactness during differentiation and along the cell cycle.

For correct reading, replication and segregation of double-stranded DNA molecules,
local interruption of both strands (double-strand break = DSB) is the most critical lesion.
DSBs may occur via mechanic shearing, ionizing irradiation, some chemical mutagens
such as bleomycin and reactive oxygen species (ROS) or enzymatically, mediated by
endonucleases. Endonucleases cut double strands directly, or opposite single-stranded
break positions and excision repair gaps or at stalled replication forks (e.g., [1]). Adjacent
single-strand breaks can complement each other to DSBs [2]. DSBs and their processing
may occur in all cells of an organism, and the products can be transferred via germ line (or
plant apical meristems) into the next generation.

2. Unrepaired DSBs Can Be Lethal for Dividing Cells

Unrepaired DSBs may have fatal consequences for cells harboring the broken molecules.
In the case of circular DNA molecules, open break ends provide a substrate for exonu-
cleases, degrading the molecules from their ends (for review: [3]). In addition, complete
regular replication is no longer possible, because all known DNA polymerases work only
in 5′ to 3′-direction and require an RNA primer to start polymerization at a free 3′-hydroxyl
group. The primer is later replaced by DNA. Therefore, free break ends would be shortened
with each round of replication.

In the case of linear nuclear DNA molecules, in addition to what may happen to
broken circular ones, correct segregation of broken fragments into daughter nuclei is
usually not possible. Rare exceptions are fragments of holocentric chromosomes to which
spindle fibers attach along the entire length (for review: [4]) and occasional ‘hitchhiking’
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of acentric fragments together with undamaged chromosomes [5]. An acentric fragment
of broken monocentric chromosomes (the break product from distal the centromere at
which spindle fibers attach to pull the sister chromatids to opposite cell poles) usually
segregates at random and eventually gets lost. The break end at the centric fragment is
also prone to degradation and to ‘illegitimate recombination’, as long as no stabilizing
telomere structure is added. Illegitimate recombination means either interaction with other
break ends, yielding an aberrant linkage, or invasion into allelic or ectopic homologous
double-stranded regions for elongating via replication (see below). If the break end is
elongated up to the end of the template molecule, the process is called ‘break-induced
replication’ (BIR) which is experimentally proven for yeast [6].

3. DSBs Can Be Repaired by Diverse Mechanisms

Because of the negative impact of DSBs on cell survival, several mechanisms of their
repair were adopted during evolution already in prokaryotes and extended in eukaryotes.
These mechanisms are characterized mainly by a different degree of homology require-
ments at break ends (Figure 1) and a particular enzyme equipment. They comprise direct
ligation of ‘clean’ break ends (non-homologous end-joining = NHEJ), or microhomology-
mediated (= alternative) end-joining (MMEJ) which require a few complementary bases at
single-stranded overhangs of the break ends to align prior to ligation (for review: [7,8]). An-
other mechanism is ‘single-strand annealing’ (SSA) which requires longer single-stranded
overhangs and larger regions of homology to pair before ligation (for instance the long
terminal repeats = LTRs of LTR-retrotransposons) (for review: [9]). Other types of DSB
repair, the variants of homology-directed recombination repair (HDR), include invasion
of single-stranded overhanging break ends into (partially) homologous sequences, and
their elongation over the broken region along the template sequence before resolution
of the recombination structure (Holiday junction(s)) in a different manner (Figure 1) (for
review: [10]).
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section, homology requirement and mutation outcome distinguish conservative non-homologous 

Figure 1. Different modes of DSB repair (modified according to [11]). Various degrees of end resection, homology require-
ment and mutation outcome distinguish conservative non-homologous end-joining (cNHEJ), alternative or microhomology-
dependent end-joining (altNHEJ/MMEJ) and single-strand annealing (SSA). All three differ from homology-dependent
repair (HDR), where, after end resection, single-stranded overhangs invade an undamaged (partially) homologous double
helix for synthesis over the gap region prior to re-annealing and ligation (synthesis-dependent strand annealing = SDSA).
The latter results in gene conversion. In the same way, transgenic donor DNA can become integrated. Alternatively, the
recombination structures (Holiday junction(s)) can be resolved in a way resulting in double-strand exchange between
the damaged and the template molecule. Depending on the template molecule, double-strand exchange leads to sister
chromatid exchange (SCE), meiotic cross-over or different types of rearrangements (see Figure 2).
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linear fragment (Figure 2F). If the ring is part of one chromosome arm, it behaves as an 
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Figure 2. Different types of double-strand exchange. Via HDR (or NHEJ between two DSBs) the outcome of double-strand
exchanges can be a SCE (A), a meiotic cross-over or a homologous translocation (B), a symmetric (C) or asymmetric (D)
heterologous reciprocal translocation, an inversion (E) or a ring chromosome plus a fragment (F). A centric ring chromosome
results after replication and odd numbers of SCEs in double-sized dicentric rings (G), which are unstable, due to bridge
formation, and disrupted during nuclear division (see Figure 3).
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4. DSB Repair Generates Diverse Phenomena

Depending on the way of resolution of the recombination structure, the sequence of
the repair template (donor) can be transferred to the originally damaged recipient molecule
via single-strand or via double-strand exchange (Figure 1). An elongated single-stranded
end serves, after ligation to the opposite break end, as a template for gap-filling in the
complementary strand (synthesis-dependent strand annealing = SDSA = gene conversion).
A double-strand exchange is accompanied by a switch of flanking sequences between
the donor and the recipient region. Depending on the chromosomal region which serves
as a repair template, the outcome of a double-strand exchange differs (Figure 2). If the
template is the identical region of the sister chromatid, a sister chromatid exchange (SCE)
is the consequence (Figure 2A). If it is the allelic region of the homologous chromosome,
a homologous translocation (or a cross-over, when occurring during meiotic prophase
I) occurs (Figure 2B). Direct end-joining (NHEJ), SCE and SDSA with the identical allele
usually have no genetic consequences and are therefore considered to be correct DSB
repair. In case the template was an ectopic (partially) homologous region in cis or in
trans, the outcome of recombination repair is either an intra- or an interchromosomal
reciprocal translocation. Translocations can occur either via NHEJ between two breaks or
via resolution of recombination structures during HDR. Interchromosomal translocations
are symmetric and yield monocentric products, when proximal and distal break ends are
ligated crosswise with each other (Figure 2B,C). They are asymmetric, if ligation involves
proximal with proximal, and distal with distal ends. An asymmetric interchromosomal
exchange yields a dicentric and an acentric fragment (Figure 2D). Both products of an
asymmetric exchange are unstable during nuclear divisions. Dicentrics can cause bridges
during nuclear divisions if the centromeres are distant enough that sister chromatids can
twist between them (Figure 3B). Disrupted bridges may result in monocentric chromosomes
with deletions or duplications, when after the first nuclear division telomeres are added
(Figure 3C left box). If, after replication, the break ends of the sister chromatids are
joined, a new bridge forms in the next division (Figure 3C right box) resulting in complex
rearrangements (‘breakage-fusion-bridge cycles’ according to [12]). Acentrics are usually
lost during subsequent nuclear divisions.
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Figure 3. Breakage-fusion-bridge cycles of dicentric products from asymmetric reciprocal translocation (modified according
to [13]). If the dicentric product of an asymmetric translocation (A) is replicated and the sister chromatids undergo a twist
between the two centromeres (B, lower panel), a mitotic bridge will occur and break during first division (C, left) leading
to a duplication (upper product) and a corresponding deletion (lower product). Fusion of the break ends between sister
chromatids (after replication) leads to complex rearrangements in the 2nd division (shown for the upper product of the 1st
division).
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Intrachromosomal translocation leads to an inversion (Figure 2E) if the proximal ends
and the distal ends of two breaks are crosswise ligated. When the proximal end of the
first break is ligated with the distal end of the second break, and the distal end of the first
with the proximal end of the second break, the result is a ring chromosome and a linear
fragment (Figure 2F). If the ring is part of one chromosome arm, it behaves as an acentric.
If the ring harbors the centromere, and after replication experiences odd numbers of sister
chromatid exchanges (even numbers compensate each other) resulting in a double-sized
dicentric ring, it gets disrupted and lost during later divisions (Figure 2G).

DSBs and their repair can happen in all cell cycle stages. If the DSB and its mis-repair
occur in G1, the entity of exchange is the entire unreplicated chromosome. After replication,
both chromatids of the translocated chromosomes are identical. If breakage and repair
occur after replication (during the S or G2 phase), only one chromatid of each involved
chromosome enters nuclear division in the translocated state. Consequently, one daughter
cell receives the wild-type and the other the translocated chromosomes when the segrega-
tion is balanced. If the segregation is unbalanced, the genetic constitution of the daughter
cells (if viable) gives the impression of non-reciprocal translocation (Figure 4). The results
are either loss of heterozygosity (if the involved chromosomes were homologs), or a com-
plementary duplication/deletion between daughter nuclei (if the involved chromosomes
were heterologs). However, non-reciprocal translocations have never been observed in
statu nascendi, and unbalanced segregation (or alternatively BIR in yeast) is the more likely
interpretation of the observed phenomenon.
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A chromosome constellation presumed to represent a non-reciprocal translocation is shown on the left; the most likely
interpretation is shown on the right. While balanced segregation separates translocated and wild-type chromatids into
different daughter nuclei, unbalanced segregation (one translocated and one wild-type chromatid in each daughter nucleus)
gives the impression of non-reciprocity. Unbalanced segregation leads to partial loss of heterozygosity in the case of equal
translocation between homologous chromosomes, and to duplications and deletion in the case of translocation between
heterologous chromosomes.
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5. Deleterious and Beneficial Consequences of DSB Repair

From a conservative point of view, DSBs, if unrepaired or incorrectly repaired, change
the genetic constitution of a cell (or an organism, if transferred to gametes) and are to be
considered as deleterious because they are lethal or counteract the maintenance of genetic
information, which so far had proven as successful during evolution. However, some DSBs
and their processing are important for developmentally regulated genome rearrangements
and/or turn out to be drivers of evolution as exemplified in the following. All phenomena
described in the following are experimentally proven, and are valid for all eukaryotes, if
not stated otherwise (see 8, 9 and 11).

1. DSBs which are programmed during meiotic prophase I are repaired in their majority
without genetic consequences; a minority, via cross-over with the homologous allele,
result in a new combination of maternal and paternal alleles. Cross-overs keep
maternal and paternal homologous chromosomes together until reductional anaphase
I, and thus enable correct segregation of parental chromosomes into gametes. The
new combination of parental alleles, if beneficial for survival (and propagation) of its
carriers, will be positively selected in the next generations.

2. Chromosome translocations in the heterozygous state potentially reduce the fertil-
ity of carriers (due to the risk of lethality after unbalanced segregation) (Figure 4).
Heterozygous inversions, if the corresponding regions engage in crossing over, will
yield duplications and deletions, which are mostly lethal. Chromosome rearrange-
ments will be eliminated if carriers bear negative features. If, however, their effect is
superior to the ancestral genotype/karyotype, after passing the bottle neck towards
homozygosity, the progeny will be positively selected. Such positive effects may be
differential gene expression or advantageous linkage of distinct alleles, for instance.
In the homozygous condition, positively selected chromosome rearrangements, and
even selectively neutral ones, may contribute as initial events towards speciation
(for review: [14]), because usually they act as fertility barriers.

3. While the correct DSB repair during meiotic prophase I results in cross-overs and leads
to new combinations of pre-existing alleles, mis-repair of DSBs at any developmental
stage can lead to deletion (via end-digestion), or to sequence insertion (e.g., via
conversion of more than the missing sequence, via transposon invasion or via alien
chromatin introgression in interspecific hybrids used in crop breeding; see Figure 1)
into the break. Deletions and/or insertions create a genetic novelty which is either
positive, negative or selectively neutral. Positive or neutral mutations increase genetic
diversity; the latter as a playground for future mutation and selection processes.

4. If there is a (genetically fixed) bias of DSB repair towards either deletions or insertions,
shrinking or expansion of the genome would be the corresponding long-term con-
sequence in a population, as long as the bias is maintained (Figure 5; for review: [11]).
This might explain the C-value paradox [15], which means that the genome size is not
correlated with the genetic complexity of organisms.

5. In particular, genome expansion via active retroelement amplification and dispersion
is eventually the result of DSB repair [16] biased towards insertion mediated by a
retroelement-encoded integrase.

6. Erroneous repair of DSBs can generate such primary chromosome rearrangements
which can in turn be linked directly and/or via meiotic segregation errors with dys-
ploid chromosome number alteration in both directions (Figure 6) (for review: [13]).
Reciprocal translocation with breakpoints close to the centric ends of two acro- or
telocentric chromosomes, which yield a large metacentric product and a small centric
(or acentric) one, can reduce the chromosome number, if subsequent meiotic loss of
the small product is tolerated [17] (Figure 6A). Similarly, insertion of a chromosome
with breakpoints at both termini into a break within the centromere of a recipient
chromosome reduces the chromosome number, if two telomeres and one centromere
get lost or the recipient centromere becomes inactive (Figure 6B; [13]). If a metacentric
gets broken in the centromere region in a way in which both fragments maintain cen-



Int. J. Mol. Sci. 2021, 22, 5171 7 of 11

tromere function and get stabilized by telomeric sequences, the chromosome number
increases (Figure 6C, arrow to the left). This process can be reversible by translocation
between these novel centric ends (Figure 6B, arrow to the right).
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small translocation product* (even if containing a centromere) is frequently lost during meiosis (A–C) [17]. Meiotic mis-
segregation from multivalents in organisms heterozygous for distinct translocations yield germ cells with the simultaneous
increase and decrease of the parental haploid chromosome number (D). The increase is accompanied by small duplications
and the decrease by the corresponding deletions (vertical bars in (D)). Chromosome configurations of descendent dysploidy
are framed in gray.
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Individuals, heterozygous for two translocations with breakpoints near centromeres
in one metacentric and two acrocentrics, may mis-segregate during meiosis I. Instead of
correctly balanced segregation of the translocation chromosomes, four acrocentrics may
segregate into one, and the corresponding two metacentrics into the other daughter nucleus.
This mis-segregation simultaneously changes the haploid chromosome number by +1 or
−1 compared to the ancestral situation, and was proven experimentally (Figure 6D; for
review: [13] with references for experimental evidence in the plant Vicia faba).

7. In addition to primary rearrangements (deletion, inversion, translocation), secondary
rearrangements (Figure 7) also depend on DSBs. Secondary rearrangements may
occur in individuals which are heterozygous for two rearrangements with one chro-
mosome involved in both rearrangements. If meiotic cross-over takes place between
partially homozygous regions of rearranged chromosomes (flanked by different re-
gions on either side of the cross-over), a newly rearranged chromosome segregates
to one daughter nucleus and the re-established wild-type chromosome to the other.
This pathway was also experimentally proven for plants, and might occur in other
eukaryotes as well (for review: [13]).
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Figure 7. Secondary rearrangement (modified according to [13]). The example shows the meiotic
crossing-over at partially homologous chromosome regions (flanked by non-homologous regions)
of two different translocation chromosomes. Such events occur in individuals which are double-
heterozygous for two translocations involving three chromosomes (one chromosome participating in
both translocations). The cross-over products segregate into daughter nuclei of which one harbors
the new secondarily rearranged chromosome, and the other the reconstituted wild-type chromosome
complement.

8. Programmed DSBs take place during V(D)J-recombination of immunoglobulin
genes in the adaptive immune system of vertebrates (for review: [18,19]). Immunoglob-
ulins are the antibodies which recognize and neutralize antigenic proteins of invading
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pathogens, thus mediating disease resistance. In case of pathologic overreaction of
the immune system, antibodies can cause allergies, when directed against harmless
environmental antigens, or autoimmune diseases when directed against the body’s
own proteins.

9. DSBs, mediated by ‘domesticated’ transposases, play an essential role in chromatin
elimination. Chromatin elimination (or diminution) occurs, e.g., in protozoans, where
the chromosomes of generative micronucleus are fragmented into many, much smaller
(sometimes gene-sized) chromosomes of the vegetative macronucleus, removing
the interspersed repetitive sequences (for review: [20]), or in somatic stem cells of
roundworms (e.g., [21]). Exceptionally, B chromosomes can be eliminated from plant
organs [22].

10. Programmed cell death (apoptosis) is another phenomenon accompanied by endonuclease-
mediated DSBs, degrading nuclear DNA into small pieces (for review: [23]). Apopto-
sis represents a developmentally or extrinsically triggered suicidal cell destruction.

11. Cancerogenesis of several tissues is also considered to start with multiple chromosome
breaks as a consequence of a sudden genotoxic stress in a single cell. Such an event of
catastrophic accumulation of DSBs (chromosome pulverization) and subsequent mis-
repair leads simultaneously to dozens to hundreds of chromosomes rearrangements
(Figure 8). The phenomenon is called chromothripsis [24]. The derivatives of the
affected cell will mostly die (bottle neck) until viable versions (the malign cells)
with the ability of rapid propagation prevail. This process is called evolution by
several researchers (for review: [14]). True cancerogenesis is not known for plants.
Nevertheless, multiple breakages and rearrangements occur during plant evolution
(e.g., [25]). However, we cannot be sure whether evolutionarily fixed events appeared
in a single cell, or subsequently over generations.
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malignant ones.
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6. Targeted DSBs Can Modify Genetic Information for Research, Breeding and
Gene Therapy

Recent developments (in particular variants of the CRISPR/Cas technology) allow
for precise artificial DSB targeting. The DSBs can be generated by Cas nucleases which are
guided by an RNA complementary to the target site, thus enabling site specific mutagenesis,
usually via small deletions or insertion that inactivate a gene of interest. Recently, genes
can be edited by precise base edition without induction of DSBs [26]. Alternatively, when
additional (partially) homologous donor sequences are supplied which become integrated
into the break via HDR, gene replacement with a desirable allele, or introduction of novel
genetic information can be achieved (for review: [27–31]). Both approaches are useful
for basic research (testing and modification of gene functions) and for breeding purposes
(to prevent negative or promote positive traits in crops and livestock). Therapy of gene-
mediated human diseases is also envisaged [26]. Finally, there are attempts to generate by
targeting DSBs at distinct loci meiotic cross-overs [32], specific chromosome rearrangements
to recapitulate or reverse evolutionary rearrangements [33,34], or de novo rearrangements
(e.g., [35]) which might initiate speciation, as well as to domesticate de novo, e.g., orphan
crops (for review [36]).

7. Concluding Remarks

Although DSBs represent a severe risk for stable inheritance of genetic information,
and may initiate cancerogenesis, a series of mechanisms emerged during evolution to
overcome this risk by re-establishing the original status. Moreover, various routes of DSB
induction and/or (mis-)repair not only contribute to stable inheritance and differentiation
(chromatin elimination), but even to adapt to environmental challenges (e.g., adaptive
immunity) and to promote breeding, gene therapy and speciation. Finally, despite the
ambivalent nature of DSBs, evolutionary aspects might eventually turn the balance more
to advantages than disadvantages.
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