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M A T E R I A L S  S C I E N C E

Deep exploration of random forest model boosts 
the interpretability of machine learning studies 
of complicated immune responses and lung 
burden of nanoparticles
Fubo Yu, Changhong Wei, Peng Deng, Ting Peng, Xiangang Hu*

The development of machine learning provides solutions for predicting the complicated immune responses and 
pharmacokinetics of nanoparticles (NPs) in vivo. However, highly heterogeneous data in NP studies remain chal-
lenging because of the low interpretability of machine learning. Here, we propose a tree-based random forest 
feature importance and feature interaction network analysis framework (TBRFA) and accurately predict the pul-
monary immune responses and lung burden of NPs, with the correlation coefficient of all training sets >0.9 and 
half of the test sets >0.75. This framework overcomes the feature importance bias brought by small datasets 
through a multiway importance analysis. TBRFA also builds feature interaction networks, boosts model interpret-
ability, and reveals hidden interactional factors (e.g., various NP properties and exposure conditions). TBRFA pro-
vides guidance for the design and application of ideal NPs and discovers the feature interaction networks that 
contribute to complex systems with small-size data in various fields.

INTRODUCTION
Nanoparticles (NPs) have attracted increasing attention in health 
care, biosensor, and immunotherapy research because of their ex-
cellent physicochemical properties (1, 2). NPs induce an immune 
system response once they enter or contact the body of humans or 
other organisms, and their pharmacokinetics also play critical roles 
in nanomedicine or other biologically related applications (3–5). 
For conventional biological experiments performed to assess the 
immune responses and organ burden of NPs, the cost is high, the 
reproducibility is low, the experimental time is long, and many ani-
mals are sacrificed (4, 6, 7). Quickly and accurately predicting the 
immune response and organ burden of NPs based on their physical 
and chemical properties is urgent for NP design and applications 
and pharmacokinetic assessments (8, 9). Given the complexity of 
the immune system and complicated properties of NPs, conven-
tional methods [e.g., quantitative structure-activity relationships 
(QSARs) and molecular dynamics simulations] cannot precisely 
predict the immune response and organ burden of NPs.

The molecular structure must be known for QSARs and molec-
ular dynamics simulations (10). However, the molecular structure 
of the immune system is difficult to depict. In addition, the compli-
cated molecular calculations required for QSAR and molecular dy-
namics simulations require a long time to complete (11), which 
limits the ability to manage thousands of NPs with many properties 
(e.g., size, shape, and surface modifications) and the capacity to ad-
dress data heterogeneity (12). As a type of robust nonparametric 
model, machine learning approaches, such as random forest (RF), 
artificial neural network (ANN), and support vector machine (SVM), 
have good potential to construct models that simulate complex re-
lationships (12, 13). The anti-interference capability of machine 

learning may overcome data heterogeneity and provide a solution 
to predicting complicated biological responses to NPs (14, 15). 
However, a great challenge for machine learning methods is their 
poor interpretability, thus affecting the trustworthiness of models 
(16). Although high-precision predictions or classification tasks can 
be achieved by configuring the appropriate parameters (17, 18), the 
internal operations of the model are obscure, and poor interpret-
ability also obscures causality (19). Current interpretable studies in 
the field of machine learning, such as prototype networks, local in-
terpretable model-agnostic explanations, and Shapley additive ex-
planations (20–22), are devoted to revealing how machine learning 
works to achieve classification tasks to judge the rationality of decision- 
making, but they have not paid attention to the interaction among 
multiple features. Understanding the interaction among multi-
ple features is useful to design NPs with ideal features and explore 
the mechanisms of bio-nano interactions.

To improve the interpretability of machine learning, it is urgent 
to understand how features affect labels and interact with each other 
(23), which widely occur in various machine learning models, such 
as RF and ANN (12, 19, 24). The present work proposed a feature 
interaction network concept along with a tree-based RF feature im-
portance and feature interaction network analysis framework 
(TBRFA) as a proof-of-principle demonstration. TBRFA disassem-
bles the trees implied by RF and then improves the interpretability 
of the RF model. The scheme is shown in Fig. 1. Inspired by meta- 
analysis workflow concepts and comparisons of RF, ANN, and SVM 
models, this study predicted the immune response and organ burden 
of various NPs with complicated properties. High correlation co-
efficients between the observations and predictions are achieved 
and further verified by validation set and animal experiments, thus 
ensuring the reliability of the model for the TBRFA framework. 
TBRFA includes two parts: importance analysis and feature inter-
action network analysis. TBRFA used a multiple-indicator impor-
tance analysis approach for RF based on existing methods to 
comprehensively screen the important features for the immune re-
sponse and organ burden of NPs, which resolved the problems 
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caused by the unbalanced data structure and the routine importance 
analysis method. Moreover, TBRFA proposes an interaction coeffi-
cient, uses the working mechanism of models to explore the inter-
action relationships among multiple features, and builds feature 
interaction networks to provide guidance for the design and appli-
cation of ideal NPs.

RESULTS
Description and pretreatment of heterogeneous data
The data were extracted following the process in Materials and 
Methods. To comprehensively correlate immune responses and 
lung burden with the physical and chemical properties of NPs, data 
and literature on pulmonary immune responses and NP burden 
caused by lung exposure were assembled and integrated. On the basis 
of a comprehensive and rigorous extraction criterion of published 
data, a total of 1620 samples containing 16 features (including three 
parts: NP properties, animal properties, and experimental conditions) 
and 12 toxicity labels [biomarkers, e.g., total protein, total cells, and 
interleukin-1 (IL-1)] were mined for immune response datasets. 
A total of 301 samples containing the same 16 features and 3 burden 
labels [i.e., lung, liver, and bronchoalveolar lavage fluid (BALF)] 
were mined for burden datasets. The references for the above sam-
ples are given in supplementary note S1. The datasets are described 
in Fig. 2 and tables S1 and S2. Six characteristic variables (NP type, 
shape, surface functionalization, rat/mouse, sex, and method) were 
described by the reported frequency (percentage). Inhalation as an 
exposure method was not recorded because of the difficulty in normal-
izing the inhaled doses. Ten numeric variables [diameter, thickness/
length, zeta potential, specific surface area (SSA), mean age, mean 
weight, exposure duration, exposure frequency, recovery duration, 
and dose] were described by mathematical statistics (mean, SD, me-
dian, and distribution range). The abovementioned 6 characteristic 

variables and 10 numeric variables covered the main factors in the 
immune response analysis (25, 26). The distribution of the samples 
was visualized and arranged in descending order of NP length (Fig. 2). 
Heterogeneity of the immune response datasets was mainly caused by 
NP diversity (number of NP types, 57). The literature on biological 
responses usually focuses on widely used NPs [for example, multi-
walled carbon nanotube (MWCNT) and TiO2 accounted for 22.54 and 
16.6% in the immune response dataset, respectively], leading to a small 
proportion of some uncommon or previously unknown NPs. Encoding 
the discrete NP types into several continuous features reduced biases 
caused by the imbalance of NP types. The inconsistent NP character-
ization standards and differences in NP properties and the exposure 
protocols among laboratories also led to challenges for precise predic-
tion. Systematic evaluations of the immune response to 57 NPs by 
routine experiments are costly and time-consuming, and it is also dif-
ficult to finish such complex model construction for QSAR analysis.

Many immune response biomarkers have been reported, although 
the choice of immune response index varies from laboratory to labora-
tory. Given the high reported frequency and the strong connections 
with immune responses (27, 28), the following 12 biomarkers were 
individually used for machine learning model construction: total 
protein, lactate dehydrogenase (LDH), total cells, macrophages, 
neutrophils), IL-1, tumor necrosis factor– (TNF-), IL-6, IL-4, 
IL-10, monocyte chemoattractant protein-1 (MCP-1), and macrophage 
inflammatory protein–1 (MIP-1). The burden datasets contained 
fewer NP types (n = 17) and had lower heterogeneity than the im-
mune datasets. The NP burdens in the lung, liver, and BALF were 
chosen as labels. The details of the subsets are listed in table S3. 
General regression methods, such as multiple linear regressions, 
presented poor performance on heterogeneous data in complex sys-
tems because of the missing values (16). As shown in fig. S1, most of 
the multiple linear regressions obtained low correlation coefficients 
[coefficient of determination (R2), minimum value: 0.324] and high 
root mean square errors (RMSEs; maximum value: 0.902), especially 
in the large subsets, indicating that traditional regression methods 
were not suitable for heterogeneous data. In contrast, machine 
learning can achieve accurate predictions of these data, and the in-
ternal relationships of complex systems can be mined by TBRFA-
based machine learning, as indicated in the following sections.

Model performance and feature selection
Nonparametric and nonlinear machine learning methods have the 
ability to resist noise and are expected to build accurate prediction 
models using aggregated data (24). To eliminate the dimensional 
effects and balance the weights of features, z-score normalization 
and encoding of the character variables were applied before the 
model training (details are provided in Materials and Methods). 
The label values need to be normalized to improve the accuracy of 
the models. However, the distribution range of the label data was 
too wide (e.g., total proteins ranged from 1.5 to 2752.9%), and a 
considerable number of outliers occurred. The rough use of the z 
score can lead to serious collapse of the model accuracy. For the 
immune response dataset, we used the percentage change of the ex-
perimental group relative to the control group as the label and com-
pressed the values between −1 and 1 (Materials and Methods, 
formula 2). For the organ burden dataset, we directly used the ratio 
of the detection concentration to the total exposure dose as the 
label. We initially compared the performance of ANN, SVM, and 
RF using all features for regression. To ensure that credible results 

Fig. 1. Overview of the machine learning workflow and TBRFA. Data extracted 
from publications are regressed by the RF and ANN methods. The random forest 
mechanism is explored in depth by TBRFA to screen important features and build 
feature interaction networks to provide guidance for the design and application of 
ideal NPs. Com.2, main element/component 2; D, diameter; Dim, dimension; E.D., 
exposure duration; IH., inhalation; IN.N., intranasal inoculation; IN.T., intranasal 
instillation, L, length; M.C., macromolecular compound; M.W., mean weight; Mφ, 
macrophages; R.D., recovery duration; SSA, specific surface area.
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are obtained from machine learning with a meta-analysis workflow, 
high R2 values are necessary (16). The R2 of the regression (Fig. 3, A to C) 
showed that in terms of the test set, the performance of RF (average 
of all models, 0.75 ± 0.12) was better than that of ANN (average of 
all models, 0.67 ± 0.11) and SVM (average of all models, 0.64 ± 0.10). 
Moreover, RF spent less time during the training process than ANN 
and had simpler adjustable parameters than ANN and SVM.

Figure S2 (A and B) shows that most of the features have low 
linear correlations, indicating that the features obtained via the 
literature and generated through coding will not cause overfitting 
due to multicollinearity. Figure S2 (A and B) also shows that there 
are low linear correlations between features and labels. The im-
mune responses and accumulation burden of NPs are complicated 
because a single feature contributes little information to the label. 
Although the tested features may all affect the performance of 
models (29), a suitable feature selection procedure is still necessary 

to determine whether there is undetectable redundant information 
in the features. A greedy algorithm, sequential backward selection 
(SBS; see Materials and Methods), was used here to eliminate re-
dundant information. Figure  3D shows that the SBS algorithm 
hardly improved the performance of the models, and we found that 
SBS abandoned some important NPs properties. Therefore, the RF 
models constructed on the basis of all features were selected for the 
subsequent analysis. The R2 values of the test set of most models 
were greater than 0.7, where R2 values for macrophages, lung bur-
den, and BALF burden were >0.85, and the maximum value reached 
0.896 (Fig. 3A and table S3). For some biological indicators, the test-
ing R2 values less than 0.7 were probably due to the biases of data 
from interlaboratory studies. Moreover, we performed permutation 
tests, and the intercepts of the cross-validation coefficients (Q2) on 
the y axis were all less than 0.05, indicating that the models did not 
overfit (fig. S3) (30). Figure 3 (E to G) lists three examples (IL-6, 

Fig. 2. Visualization of the data distribution of the raw datasets was performed using the “tabplot” package in R software. (A) Immune response dataset (data file 
S1). (B) NP burden dataset (data file S2). Samples are arranged in descending order of material length. The figure divided the raw data (data files S1 and S2) into 100 parts 
based on the material length and displayed the data distribution of the sample features. Logarithmic processing is performed for features with large distribution ranges. 
Characteristic variables (e.g., type and shape) are simply classified because they contain too many elements. The immunotoxicity dataset contains a variety of NPs, while 
metal oxides have a high proportion in the burden dataset. The distribution of exposure duration shows that most studies only focus on the acute toxicity of NPs. 
E.F, exposure frequency; IN.N., intranasal inoculation; I.T., intratracheal instillation; OPA, oropharyngeal aspiration; PA, pharyngeal aspiration.
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Fig. 3. Performance of the machine learning models. (A) R2 distribution of the RF regression (10-fold ShuffleSplit cross-validation). (B) R2 distribution of the ANN regres-
sion (10-fold ShuffleSplit cross-validation). (C) R2 distribution of the SVM regression (10-fold ShuffleSplit cross-validation). (D) R2 distribution of the RF regression with 
sequential backward selection (SBS) feature selection (10-fold ShuffleSplit cross-validation). (E to G) Prediction performance of IL-6, IL-4, and lung burden using RF mod-
els. The slope of the solid lines is 1, and the dotted lines represent the intercepts of ±RMSE. TP, total proteins; TC, total cells; PMN, polymorphonuclear neutrophil.
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IL-4, and lung burden) of regression results, and the others are given 
in fig. S4. To ensure that the features contributed valid information 
to the models, we performed feature value shuffling, and the predic-
tive performance was abrogated after feature value shuffling (fig. S5). 
Because the published immune literature contained few negative sam-
ples (experimental group > control group), the scatters were mostly 
distributed in the top right of the scatter plots (Fig. 3, E and F), and 
the predicted results of the negative samples were distributed outside 
the RMSE interval. This flaw is inherently unavoidable because of the 
published datasets, although the prediction accuracy of the positive 
samples is not influenced. Multilabel prediction was performed by 
ANN, but the prediction accuracy rate was low, with most of the R2 
values less than 0.7 (fig. S6), because the labels were independent of 
each other and represented different biological meanings.

NPs with a wide range of responses were used to verify the models. 
Five samples of each subset were randomly sampled as a validation 
set before building the model. The validation set did not participate 
in the construction of the model at all to ensure that the model did 
not learn them during the cross-validation. Figure 4A shows the 
prediction errors of the models on the validation set, where 76% of 
validation errors were less than 0.2. To verify the model further, 

animal experiments were performed in our laboratory. MWCNTs 
functionalized with triethoxycaprylylsilane and three MWCNTs of dif-
ferent sizes (small, medium, and large MWCNT, named S-MWCNT, 
M-MWCNT, and L-MWCNT, respectively) were chosen to con-
duct animal experiments. The above materials were all outside the 
scope of the datasets. Figure S7 shows the characterization of the NPs, 
and Fig. 4 (B to F) shows the immunofluorescence results of IL-1. 
The expressions of IL-1 induced by MWCNTs distributed within the 
error bounds of the RF model (Fig. 4G). Figure 4G also contains the 
observation prediction of the validation set. The validation set 
of IL-1 contained five additional samples, which were randomly 
sampled from the main NPs in the IL-1 subset. The quantitative 
comparison between the observed and predicted results of the vali-
dation set indicated that the model was reliable (Fig. 4G). Compared 
with SVM and ANN, RF exhibited high accuracy and reliability for 
dealing with heterogeneous data in a complex system.

Discovering important and unbiased features by TBRFA
The RF model was used to measure the importance of features by 
calculating the change in the error (increase in MSE) on the out-of-bag 
(OOB) data based on permutations of each feature (19). Figure 5 

Fig. 4. Validation of models and immunofluorescence imaging of lung tissue. (A) Prediction errors of the validation sets. DEPa, diesel engine particles; DWCNTb, 
double-wall carbon nanotubes; SWCNTb, single-wall carbon nanotubes; …d, SWGe-imogolite; CBe, carbon black; …f, cellulose nanocrystals; …g, QD-CdSe-ZnS; …h, Rosette 
nanotubes. (B) Immunofluorescence imaging of control. (C) F-MWCNTs. (D) S-MWCNTs. (E) M-MWCNTs. (F) L-MWCNTs. (G) Validation of models using IL-1 fluorescence 
intensity. Red channel, nuclear factor B (NF-B) p65; green channel, IL-1; and blue channel, 4′,6-diamidino-2-phenylindole (DAPI).
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visualizes the feature importance measured by the MSE increase. Each 
model was normalized by its most important features. Figure 5A 
shows that the exposure dose (Fig. 5B) and recovery duration (the 
time from last exposure to animal euthanasia; Fig. 5C) have a great 
impact on the immune responses and NP burden. However, as a 
mathematical statistic, increases in the MSE are limited by the quality 
of the dataset. Thus, using increased MSE values as the only criterion 
for analyzing feature importance may lead to bias. For example, in-
creased MSE values indicated that sex (male and female) contributed 
significantly to the IL-4 model (Fig. 5A). However, sex was not sup-
posed to be the main factor affecting the immune response, and we 
confirmed this bias in the follow-up analysis. Therefore, absolute 
dominant features may be incorrectly identified when using a single 
importance evaluation index.

TBRFA uses multiple indicators to perform a multiway feature 
importance analysis and can evaluate the importance of features from 
different perspectives to balance the absolute dominant features 
achieved by a single indicator. Three other indicators, i.e., node pu-
rity increase, mean minimal depth, and P value, were combined with 
increased MSE values to comprehensively screen important features 
(Fig. 6, A and B). Although gender led to a higher increase in MSE 
and node purity than the other features, the P value indicated that its 
importance was not statistical significant (Fig. 6A). The distribution of 

the features’ mean minimal depth also suggested that the zeta potential, 
dose, length/weight, and SSA appeared more frequently near the 
roots than the other features (Fig. 6B). The TBRFA results of all 
models indicated that recovery duration and exposure dose were 
the main factors affecting the immune response and organ burden 
(Fig. 6, A and B, and figs. S8 to S21). TBRFA successfully overcame 
the importance bias caused by a single indicator with small datasets.

Figure 6C summarizes the conclusions of the TBRFA impor-
tance analysis. Exposure dose is well known as one of the most im-
portant features, while recovery duration, which represents the 
acute or chronic responses induced by NPs, has been ignored 
(9, 10). A partial dependence analysis (fig. S22A) showed that im-
mune responses decreased as recovery duration increased and NPs 
tended to induce short-term acute immune responses. In the initial 
stage of exposure, the immune indicators increased rapidly; and 
within 50 days after the end of exposure, all immune indicators 
were decreased to less than 166.7% (corresponding to the normal-
ized value 0.4 in fig. S22A) of the control group. The mechanisms of 
NP clearance by the immune system are complicated and include 

Fig. 5. Conventional feature importance analysis. (A) Features importance mea-
sured by the increase in MSE. The dot size represents the importance of the fea-
tures, and the connecting lines indicate the hierarchical relationship. The black 
words represent the two most important features of each model. Dose (B) and re-
covery duration (C) were identified as important features in most of the models.

Fig. 6. TBRFA importance analysis of IL-4 RF model. (A) Multiway feature impor-
tance analysis of the IL-4 model combining the MSE increase, node purity increase, 
and P values of the features. The importance of gender is not significant. (B) Distri-
bution of the features’ mean minimal depth, recovery duration, zeta potential, 
dose, and length/weight are closer to the root of the trees than the other features. 
(C) Summary diagram of TBRFA importance analysis. Immune responses decreased 
as recovery duration increased. NPs with a large SSA cause low levels of cytokine 
release and high levels of total protein and cell numbers. NPs with a small diameter 
(<100 nm) could easily penetrate biological membranes and achieve cross-organ 
transport. NA, not available (missing value).
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immune cell phagocytosis and extracellular traps (31). The clear-
ance rate of NPs is also highly correlated with their structure and 
physical and chemical properties (32, 33). Figure S22B also con-
firmed that NPs could be gradually cleared by the immune system, 
with the accumulation of NPs in the lungs rapidly declining to ap-
proximately 20% of the total exposure dose within 100 days; hence, 
recovery duration became an important feature affecting the final 
observed immune responses. However, the immune responses did 
not decrease to the level of the control groups even after a long re-
covery duration. The optimized models proposed that the immune 
responses induced by NPs were persistent during the postexposure 
period; thus, the chronic and long-term toxicity of NPs deserve 
attention in future studies.

Although NP properties determine their immune response and 
organ burden, key properties of NPs remain inconclusive because 
of the limited number of animal experiments (34). The models pro-
posed that SSA was important for immune responses, while diame-
ter was important for organ burden compared with other properties 
(fig. S22, C and D). The SSA of NPs will allow the particles to adsorb 
proteins and form NP-protein corona complexes, which mediate 
immune responses (35). NPs with a large SSA are more likely to be 
internalized by the cell, thus causing a decrease in the number of 
molecules released by the cell (36). As the diameter decreased, fewer 
NPs stayed in the alveoli, and more NPs were transported to the 
lung and liver, which indicated that NPs with a small diameter 
(<100 nm) could easily penetrate biological membranes and achieve 
cross-organ transport (Fig. 6C and fig. S22D). A small size confers 
enhanced permeability to NPs, which is attributable to the binding 
to integrins on the surface of epithelial cells (37). Moreover, studies 
have shown that smaller NPs are less likely to be taken up by cells 
than larger NPs; thus, large NPs may preferentially translocate into 
the reticuloendothelial system, while small NPs may not be capable 
of being distributed among organs (38).

Animal studies, especially toxicological tests, are time-consuming, 
costly, and often impractical (10, 39). Because of these constraints, 
animal experiments can only screen the importance of specific or 
few properties (e.g., type, size, and surface functionalization) for one 
or a few NPs. In contrast, machine learning can quickly screen and 
sort various important features for various NPs at the same time. 
Moreover, the TBRFA approach overcame the conventional im-
portant feature analysis bias caused by the unbalanced data struc-
ture, identified the critical features (recovery duration, dose, SSA, 
and diameter), and quantified the importance of features and the 
response degree of biological biomarkers to features, thus providing 
a reference for the design of ideal NPs.

Feature interaction networks created by TBRFA
The mechanism underlying the ability of NPs to induce immune 
toxicity is complicated. Understanding how the different properties 
of materials interact with each other (feature interaction networks) 
and influence their immune response and organ burden is critical 
to the design and application of NPs, although the related informa-
tion remains largely unknown (39). Because most machine learning 
methods are black-box models, identifying the interactions among 
features represents a difficult challenge. The conditional minimal 
depth (Fig. 7A) in RF represents the strength of interactions be-
tween two features (40). As demonstrated in Fig. 7B and figs. S8 to 
S21C, the conditional minimal depth was calculated to obtain the order 
of the interaction strength between features, and then the strongest 
four feature interaction relationships were displayed through a 
double-variable partial dependence analysis (Fig. 7, C to F, and figs. 
S8 to S21, D to G). However, strong interactions between features 
were not found for most of the partial dependence analyses, and 
they tended to show a simple additive effect. A comparison with the 
unconditional minimal depth of the feature showed that the condi-
tional minimal depth was greatly affected by the importance of the 

Fig. 7. Feature interaction analysis using the conditional depth. (A) Schematic diagram of conditional minimum depth in the RF model. (B) Mean minimal (conditional 
and unconditional) depth for the 25 most frequent interactions. (C to F) Double-variable partial dependence on the four strongest feature interactions, which corre-
sponds to the four arrows in (B).
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feature itself. If the two features are both important, then they will 
have small and similar depths; therefore, even if they are close in the 
tree, they may not interact with each other.

To weaken the influence of feature importance on the interac-
tion represented by the conditional minimal depth, the RF based on 
the decision tree was explored again, which was called feature inter-
action network analysis. We redesigned an interaction coefficient 
on the basis of the conditional minimal depth (see Materials and 
Methods and Fig. 8A). To calculate the interaction coefficient be-
tween features, we explored the working mechanism of RF in depth, 
traversed each decision tree constituting the RF, and obtained the 
properties of the tree and its features. Subsequently, we integrated 
the interaction coefficients and built interaction networks for each 
RF model. The interactions between NP properties were mainly an-
alyzed to provide guidance for NP design. Interaction networks of 
total proteins, total cells, IL-6, IL-4, lung burden, and liver burden 
are provided as examples in Fig. 8 (B to G), and the other networks 
are given in figs. S22 to S30. As shown in Fig. 8 (B to G), the network 
analysis for the immune response dataset indicated that SSA had a 

strong interaction with the zeta potential and length/width, while 
the network analysis of the burden dataset indicated that diameter 
had strong interactions with length. The above feature interaction 
network explained the critical roles of SSA in immune responses 
(fig. S22C). The feature interaction network clearly showed the connec-
tions between NP properties and immune responses or organ burden 
(Fig. 9, A to F). For example, NPs with negative charges (<0 mV) and 
small SSAs (0 to 200 m2/g) induced low levels of total protein and 
total cells increase and high levels of IL-4 and IL-6 release (Fig. 9, 
A to D). The total protein value reflects the trend of inflammation 
as a whole, and the complicated trend between different cytokines 
and NP zeta potentials may be related to the electrostatic interac-
tion between the particle surface and cytokines (41, 42). There was 
an important influence of both zeta potential and SSA on the for-
mation of protein coronas and the uptake of nanomaterials (43, 44). 
The interactions excavated by TBRFA indicated that both factors 
were mutually restrictive and affected the biocompatibility and toxic-
ity of NPs. Long NPs caused more severe immune responses than 
short NPs, while a suitable SSA reduced different immune responses 

Fig. 8. TBRFA feature interaction network analysis. (A) TBRFA interaction coefficient calculation method. (B to G) Feature interaction networks for total proteins (B), 
total cells (C), IL-6 (D), IL-4 (E), BALF (F), and lung (G). Different colors are used to represent different types of features and indicators. The thickness of the lines represents 
the strength of the interaction. The size of the circle represents the number of times the feature interacts with other features. The five strongest interaction NP properties 
in the networks are highlighted in red.
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Fig. 9. Double-variable partial dependence for strong feature interactions. (A) Total proteins and SSA-Zeta. (B) IL-6 and SSA-Zeta. (C) IL-4 and SSA-Zeta. (D) Total cells and 
Zeta-SSA. (E) Total cells and L-SSA. (F) IL-6 and L-SSA. (G) Lung burden and L-D. (H) Liver burden and L-D. (I) BALF burden and L-D. (J) Summary diagram of TBRFA feature 
interaction network analysis. NPs with different properties are sorted according to the level of immune response. One-dimensional NPs tend to be transported to the live.
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(Fig. 9, E to F). For the burden dataset, the interactions between 
diameter and length caused the opposite degree of lung and liver 
burden. One-dimensional NPs had the lowest accumulation in the 
lung and the highest accumulation in the liver, suggesting that length 
determined the translocation capacity of NPs, which was consistent 
with the conclusion drawn by Huang et al. (45) that long NPs were 
cleared from the lung quickly. The above results also agreed that gold 
nanorods accumulated significantly less than gold spheres with similar 
size and surface chemistry (46). NPs with nonspherical shapes ex-
hibited the properties of targeted accumulation because of the deviat-
ing hydrodynamic behavior (e.g., roll and rotate) and lateral drifting 
speed in the vessel (47). In addition, NPs with a length and width in 
the range of 100 and 500 nm showed greater transport across or-
gans (Fig. 9, G to I). Figure 9J visualizes the conclusions of the above 
partial dependence analysis. This result further supplements the 
conclusion on the NP size effect on organ burden obtained from the 
TBRFA importance analysis, indicating that feature interaction net-
work analysis was a powerful method of boosting the interpretability 
of machine learning. The models are consistent with the experiments, 
ensuring the reliability of TBRFA. TBRFA discovers hidden feature 
interactions that are difficult to explore through few experiments 
and other machine learning methods [e.g., ANN and deep neural 
network (DNN)]. TBRFA extracts the complex interaction network 
among NP properties, immune response, and organ burden, there-
by providing guidance for the design and discovery of ideal NPs.

DISCUSSION
Given the high costs and limitations associated with animal protec-
tion, comprehensive biological response evaluation experiments for 
various NPs are not practicable. Although a number of studies have 
applied machine learning approaches to solve the above problems, 
the interpretability of the models is poor, thus hindering the appli-
cation of machine learning in the design and discovery of ideal NPs. 
Here, a rigorous TBRFA approach that boosts the interpretability of 
machine learning successfully predicted the pulmonary immune 
response and organ burden of NPs. The optimized prediction accu-
racy was achieved, with R2 values of all training sets >0.9 and half of 
the test sets >0.75. To overcome the shortcomings of traditional im-
portance analyses, TBRFA used multiway importance analysis and 
reduced the biases caused by the unbalanced structure of small sample 
datasets. The TBRFA framework also established feature interac-
tion networks and boosted the interpretability of machine learning. 
It is difficult for researchers to fully explore the joint effects of mul-
tiple features through experiments. In most machine learning studies, 
the exploration of interpretability usually stops at revealing the im-
portance of features and ignores the relationships under the joint 
action (e.g., antagonism and synergy) of multiple features (12, 48). 
It is well known that the interactions between NPs and biology are 
determined by multiple features or properties of NPs (49), but the 
key features that regulate biological responses remain controversial. 
For the design of NPs, studies usually focus on one or two features 
(50), but how the other features influence the global properties of 
NPs is unclear. The feature interaction network analysis in Fig. 8 
provides insights into the above challenging question.

The TBRFA approach revealed and explained the critical roles of 
SSA and diameter in the NP immune response and organ burden, 
respectively. The improved interpretability of machine learning is 
useful for models that explore causation and the design of excellent 

NPs in the medicine, biosensor, drug delivery, and other health care 
fields, and it also provides accurate predictions. Some animal exper-
iments conducted by different laboratories are not completely con-
sistent due to the biological response affected by multiple factors 
(e.g., the sources of animals, the environments of animal growth, and 
the operation skills of researchers) (51, 52). The above biases of data, 
especially for small-size data, would lead to a rather large variation in 
test predictive performance across labels. As the above explanation, 
the biases of data from interlaboratory studies may contribute to the 
misclassified (very off-diagonal) samples in Fig. 3E. Drafting stan-
dardized nanomaterial characterization protocols and animal expo-
sure protocols and improving the quality of the literature will ensure 
the authenticity of the label value and greatly improve the accuracy 
and applicability of TBRFA (49). Further improving the degree of 
automation of interaction coefficient calculations will also make TBRFA 
more suitable for big data. Overall, the models established in this work 
are suitable for predicting the lung immune response induced by 
inorganic NPs and their lung burden. TBRFA also deserves applica-
tion in other fields, and the discovered feature interaction networks 
could contribute to human disease or anticancer drug research.

MATERIALS AND METHODS
Extracting data to establish datasets
The immune response data were obtained from published arti-
cles in the ISI Web of Knowledge database (the datasets before 
31 December 2020 were collected). A total of 2548 studies were ini-
tially searched using the following search formula: TS = nano* AND 
TS = immun* NOT TS = Immunosensor AND (TS = mice OR 
TS = rat OR TS = mouse) AND (TS = pulmonary OR TS = lung). 
Given the heterogeneity of the biological data, the acquired publica-
tions were then filtered by the following conditions: (i) full text was 
available; (ii) the topic was the pulmonary immune responses of 
mice or rats induced by NPs; (iii) at least one of the following im-
mune metrics contained: total protein, LDH, alkaline phosphatase, 
cell count [total cells, macrophages, and neutrophils (polymorpho-
nuclear neutrophils)], cytokines, and chemokines; (iv) exposure 
methods were instillation, oropharyngeal aspiration, or similar 
methods; and (v) basic material characterization data and experi-
mental conditions were provided. Last, 1620 samples were identified 
to establish datasets. To precisely and comprehensively establish the 
relationships between NP/exposure features and pulmonary immune 
responses, 16 features were included in the dataset, and they con-
sisted of seven material properties, four animal properties, and five 
experimental conditions. Two biochemical indicators, three types of 
cell counts, and six different cytokines were selected as labels for the 
immune responses. The details are shown in supplementary Excel files.

Acquisition of lung burden data followed the above workflow. A 
total of 3525 studies (search date, June 2020) were initially searched 
using the following search formula: TS = nano* AND (TS = mice 
OR TS = rat OR TS = mouse) AND (TS = pulmonary OR TS = lung) 
AND TS = (accumulat* or burden* or clear*). Taking the exposure 
method and the determined features from the immune response 
dataset as the main filtering basis, 302 samples were lastly used to 
establish datasets. Liver and BALF burden data were also included 
in this burden dataset (supplementary Excel files). The data of bio-
logical responses to NPs are very complex and distributed in the texts, 
tables, and figures of publications. It is difficult to extract the required 
data by machine. The data were extracted from the publications by 

EMBARGOED UNTIL 2:00 PM US ET WEDNESDAY, 26 MAY 2021



Yu et al., Sci. Adv. 2021; 7 : eabf4130     26 May 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

11 of 14

hand. The data directly given in texts and tables were copied by 
hand. For the data in the figures, the “Digitizer” tool provided by 
OriginLab was used to read each point three times and then the 
averages were calculated. To reduce the errors, the extracted data 
were checked thoroughly by another person again.

Preprocessing data
To calculate characteristic variables, the six characteristic variables 
in the dataset (NP type, shape, surface functionalization, animal, 
gender, and method) need to be coded. “One-hot” is a general en-
coding method that converts disordered and discrete variables into 
binary vectors to overcome the problem that such variables cannot 
be recognized by machine learning algorithms. For the three dis-
crete features with few unique types (i.e., animal, gender, and method), 
the “one-hot” coding was adopted. For one-hot encoding features, 
there were no obvious correlations through correlation coefficient 
analysis (fig. S2). However, the one-hot method was not suitable for 
the descriptor “NP types” because the diversity of NP types (n = 57) 
caused a rapid increase in the data dimension. New descriptors 
were created on the basis of chemical properties for the other three 
characteristic variables to distinguish different properties. The new 
descriptors are as follows: 
1) NP types: carbide (0/1), macromolecular compound (M.C., 0/1), 
oxide (0/1), salt (0/1), component 1 (Com.1, relative atomic mass), 
and component 2 (Com.2, relative atomic mass). 
2) Shape: hollow (0/1), granular NPs (Dim.0, 0/1), one-dimensional NPs 
(Dim.1, 0/1), and two-dimensional NPs (Dim.2, 0/1). 
3) Surface functionalization: positive charge (S.P., 0/1) and neg-
ative charge (S.N., 0/1).

To prevent certain features from contributing excessively to the 
models, the z-score (Eq. 1) normalization method was applied to 
the features. The formula is listed as follows

  x′=   (x − ) ─      (1)

where x is the feature value,  is the mean of each feature, and  is 
the SD of each feature. The raw data in literatures are difficult to use 
for direct comparison. The difference in experimental design and 
used animals may produce biases in models. To intuitively reflect 
the relative degrees of the immune response caused by different NPs 
in different literatures, the label data were converted to values be-
tween −1 and 1 on the basis of the treated and control groups in 
each literature individually, rather than using the data in all litera-
tures together, to reduce the biases.

The formula is listed as follows

   y′=  
{

   
  
y − c

 ─ y    y > c
  

  
y − c

 ─ c    y < c
     (2)

where y and c are the values of the experimental group and control 
group, respectively.

Machine learning regression
RF models were trained using scikit-learn in Python 3.7. According 
to different labels, the datasets were split into 15 subsets (12 immune 
response subsets and 3 burden subsets) that corresponded to 15 re-
gression models. The RF models used 500 random decision trees and 

selected 5 random features at each node, which were determined by 
the grid search method (53). RF is based on bootstrapping to avoid in-
herent overfitting (54, 55). A 10-fold cross-validation (ShuffleSplit) 
method was used for each machine learning algorithm to prevent 
overfitting, with 90% of the samples in each subset chosen as train-
ing sets and 10% chosen as test sets. Approximately 36.8% of 
the samples in the training set, which were called OOB data, were 
used as the validation sets and not used during the training pro-
cess (56). The percentage of OOB was calculated by the follow-
ing formula

   lim  
m→∞

     (  1 −   1 ─ m   )     
m

  =   1 ─ e   ≈ 0.368  (3)

where m is the frequency of sampling and e is the natural constant 
with a value of approximately 2.71828. Each model was trained 10 
times, and the average of the R2 and RMSE values between the pre-
dictions and observations were calculated to measure the model 
performance.

Two-layer fully connected ANN models were trained using 
Keras in Python 3.7. The workflow was similar to that of the RF re-
gression except that 25% of the samples in the training set were split 
randomly as validation data to monitor overfitting. Multilayer feed-
forward neural networks with different layers and different units in 
the hidden layer were trained to find the optimal configuration, and 
57 and 55 units in the hidden layers were adopted in the ANN 
immunotoxicity and burden models, respectively. Stochastic gradient 
descent was used as the optimizer, and a small learning rate decay 
(less than 0.0001) was set to prevent overfitting during the training 
process. SVM models were trained using scikit-learn in Python 3.7. 
Tenfold ShuffleSplit method was also applied. “Rbf” was chosen as 
the kernel function. The regularization parameter was set to 1.

Overfitting test
To judge whether the RF models used were overfitted, we adopted a 
permutation test method. In each process of 10-fold cross-validation, 
20, 40, 60, 80, and 100% of the label values in the training set were 
randomly replaced by random values within the original label range, 
and the corresponding cross-validation coefficients (Q2) were cal-
culated. The calculation formula of Q2 is as follows

   Q   2  = 1 −   
 ∑ i=1  n     ( y  i   −   ̂  y  )   2 

 ─ 
 ∑ i=1  n     ( y  i   −   ̄  y  )   2 

    (4)

where yi is the observed label value,    ̂  y    is the predicted label value, 
and    ̄  y    is the average of the label. The permutation of each ratio (20, 
40, 60, 80, and 100%) was performed 10 times, resulting in 500 per-
mutation Q2 values for each model (5 ratio × 10 times/ratio × 10 folds). 
Subsequently, linear regressions were performed on the Q2 values 
and the correlation coefficients between the original labels and the 
permutation labels. The intercept of the regression result on the 
y axis less than 0.05 proves that the model is not overfitting (30).

NP preparation and characterization for model verification
Three types of MWCNTs with axial lengths ranging from approximately 
0.5 to 2 m were obtained from XFNANO (China): S-MWCNTs 
(production number XFM10; diameter, 8 to 15 nm; purity > 95%), 
M-MWCNTs (production number XFM16; diameter, 10 to 20 nm; 
purity > 95%), and L-MWCNTs (production number XFM28; 
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diameter, 30 to 50 nm; purity > 95%). All the MWCNTs were pro-
duced by the chemical vapor deposition method. To investigate the 
effects of surface modification on immune responses, nano-TiO2 
(production number XFI02; diameter, 20 to 40 nm; purity > 99%) 
and hydroxylated MWCNTs (production number XFM16; diameter, 
10 to 20 nm; purity > 95%) functionalized with triethoxycaprylylsilane 
(F-MWCNT) were synthesized. Functionalization was carried out by 
stirring a mixture of 100 mg of hydroxylated MWCNTs with 10 mg 
of triethoxycaprylylsilane (DB, Shanghai) in 100 ml of 90% ethanol 
solution at 70°C for 8 hours. The mixture was then centrifuged at 
1699g for 15 min, washed with Milli-Q water (18.2 megaohm cm−1), 
and then vacuum freeze-dried. To calculate the sizes of the NPs, 
transmission electron microscopy (TEM) images were obtained on 
a TEM instrument (JEM-2010 FEF, JEOL, Japan). Fourier transform 
infrared (FTIR) spectroscopy (Bruker Tensor 27, Germany) with a 
resolution of 2 cm−1 from 4000 to 400 cm−1 was used to confirm the 
synthesis of F-MWCNTs. Zeta potentials were determined by a 
ZetaSizer Nano instrument (BI-200SM, Brookhaven, USA). BET 
surface areas were measured with a surface area and porosity ana-
lyzer (ASAP 2460, Macrometrics, USA). The results of characteriza-
tion were given in the supplementary note S2 and tables S4 and S5.

Animal experiment
Male Institute of Cancer Research (ICR) mice with a body weight 
range of 24 to 26 g were purchased from Vital River Laboratories 
(Beijing, China) and acclimated for 2 weeks in animal facilities sup-
plied with normal food and water. All animal studies were performed 
in accordance with the guidelines and regulations of the Human and 
Animal Experiments Ethical Committee of the Nankai University. The 
four types of NPs were individually suspended in sterile phosphate- 
buffered saline (PBS) at 1 mg/ml. Suspensions were processed with 
ice-bath ultrasonication before instillation to ensure even dispersion. 
ICR mice (n = 6 per group) were treated individually with a single 
intratracheal instillation of 25 l of (1 mg/kg) NPs. Equal volumes 
of PBS were instilled as a control.

Immune response analysis
Frozen sections (thickness, 5 m) of lung lobes were made by a clin-
ical cryostat (CM1850, Leica, Germany) for immunofluorescence. 
Anti–nuclear factor B (NF-B) p65 with Alexa Fluor 555 (bs-
0465R-AF555, Bioss, China) and anti–IL-1 with fluorescein iso-
thiocyanate (FITC) (bs-0812R-FITC, Bioss, China) were used to label 
NF-B p65 and IL-1, respectively. 4′,6-diamidino-2-phenylindole 
(DAPI) was used to stain the nuclei throughout the lung section. 
Immunofluorescence images of NF-B (red), IL-1 (green), and 
DAPI (blue) were obtained with a confocal laser scanning micro-
scope (LSM880 with Airyscan, Zeiss, Germany) at 543, 488, and 
405 nm, respectively.

Model validation
Model validation was composed of two parts: animal experimental 
and validation sets. In terms of animal experiments, the characteri-
zation data and experimental conditions of NPs were input into the 
trained RF models to obtain predicted values. To validate the accu-
racy of the model, the immunofluorescence intensity of the IL-1 
protein was statistically analyzed and compared with the predicted 
IL-1 results. The interval formed by ±RMSE was considered to be 
the allowable error bound of the model (11). As the validation set, 
random seeds were set to randomly sample the validation set (n = 5) 

for each subset before modeling. The five validation sets covered the 
NPs with a wide range of responses. The validation set did not 
participate in the construction of the model at all to ensure that the 
model did not learn them during the cross-validation. During the 
10-fold cross-validation process, the average predicted values of 
10 times were obtained for comparison with the observed values. 
According to the data source, the animal experiment validated the 
three critical NP properties (diameters, SSA, and zeta; see table S4), 
and the validation set validated all features.

Feature selection
Models were optimized using a SBS procedure. This method 
started from the full set of features to eliminate redundant fea-
tures one by one to find the optimal feature subset. The R2 of 
each selection process was calculated and recoded to compare 
the performances of different feature combinations. To avoid 
the models losing too much information, we set the minimum 
number of features selected by SBS to not be less than one-half of 
the total number of features.

Feature importance analysis of TBRFA
Feature importance analysis was based on the “randomForest” and 
“randomForestExplainer” packages in R 4.0.2. To avoid the bias 
produced by a single indicator (i.e., MSE) used in comment RF, a 
total of four indicators (MSE increase, node purity increase, P value, 
and mean minimal depth) were selected to represent different per-
spectives and to comprehensively evaluate the importance of fea-
tures. MSE increase is based on the decrease in predictive accuracy 
of the forest after perturbation of the variable; node purity increase 
is based on changes in node purity after splits on the variable; and 
P value is based on the one-sided binomial test to evaluate the sig-
nificance of feature importance (40, 53). The mean minimal depth 
is based on the structure of the forest. The significant and important 
features were screened by calculating the MSE and node purity 
(measured by residual sum of squares) increase and the P value. 
During the training process, feature importance was also reflected 
by the mean minimal depth of the feature among trees. In this 
study, five random features were set to be randomly sampled as 
candidates at each node and one of the five that contributed the 
most to the overall split was retained at the node. Therefore, fea-
tures near the root were more important than others.

Feature interaction network analysis of TBRFA
The conditional minimal depth of features represents the strength 
of the interaction between two features. The original condition-
al minimal depth of features was initially calculated using the 
randomForestExplainer package. Four groups of strong interaction 
features were selected for the double-variable partial dependence 
analysis. However, there was actually no specific interaction be-
tween some features. To improve the present method and weaken 
the influence of the feature importance (minimal depth) on the 
interaction among features, we explored the conditional minimal 
depth of each feature in each tree of an RF model and used the 
occurrences of interaction among the feature and its corresponding 
root feature to normalize its conditional minimal depth. The inter-
action coefficient is defined as follows

   ρ  A:B   =   O  A:B   _  O  B     ×  
 ∑ i=1  ntree    D  T   −  D  A:B   − 1 _  D  T     

 _  O  A:B      (5)
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where A and B are two of the features, A:B means the interaction of 
B and the maximal A-subtree [see the description by Ishwaran et al. 
(40)], A:B is the directed interaction coefficient, OA:B is the occur-
rence of the interaction of B and the maximal A-subtree among 
the trees (ntree = 500), OB is the occurrence of B among the trees 
(ntree = 500), DT is the tree depth, and DA:B is the minimal depth of 
B in the maximal A-subtree, that is, the conditional minimal depth. 
All interaction coefficients in each RF model were calculated, and the 
interaction coefficients that had two directions (using average values) 
were merged. Then, the importance of features was combined to build 
feature interaction networks, and new strong interaction features 
for double-variable partial dependence analysis were screened out.

Statistical analysis
A two-sided Kolmogorov-Smirnov test was implemented in R software 
to test whether the distribution of the data was normal (P > 0.05).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/22/eabf4130/DC1

View/request a protocol for this paper from Bio-protocol.
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