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ABSTRACT: Metal-oxide nanoparticles find widespread applications in mundane life today, and cost-effective evaluation of their
cytotoxicity and ecotoxicity is essential for sustainable progress. Machine learning models use existing experimental data and learn
quantitative feature−toxicity relationships to yield predictive models. In this work, we adopted a principled approach to this problem
by formulating a novel feature space based on intrinsic and extrinsic physicochemical properties, including periodic table properties
but exclusive of in vitro characteristics such as cell line, cell type, and assay method. An optimal hypothesis space was developed by
applying variance inflation analysis to the correlation structure of the features. Consequent to a stratified train-test split, the training
dataset was balanced for the toxic outcomes and a mapping was then achieved from the normalized feature space to the toxicity class
using various hyperparameter-tuned machine learning models, namely, logistic regression, random forest, support vector machines,
and neural networks. Evaluation on an unseen test set yielded >96% balanced accuracy for the random forest, and neural network
with one-hidden-layer models. The obtained cytotoxicity models are parsimonious, with intelligible inputs, and an embedded
applicability check. Interpretability investigations of the models identified the key predictor variables of metal-oxide nanoparticle
cytotoxicity. Our models could be applied on new, untested oxides, using a majority-voting ensemble classifier, NanoTox, that
incorporates the best of the above models. NanoTox is the first open-source nanotoxicology pipeline, freely available under the GNU
General Public License (https://github.com/NanoTox).

■ INTRODUCTION

Nanotechnology has delivered the promise of “plenty of room at
the bottom” with transformative applications for human
welfare.1 The distinctive properties of nanoscale materials
have been indispensable in industrial and medical applications,
including the delivery of biologically active molecules and
development of biosensors for human health and disease.2

Engineered metal-oxide nanoparticles are characterized by a
concentration of sharp edges and lend themselves to a variety of
uses (e.g., ref 3). However, there is a potential caveat to
nanobiotechnology: the differential nanoscale behavior of
nanomaterials might also result in emergent toxic side effects
in the biological domain and ecological realm.4−7 These hazards
are related to the capacity of nanomaterials to engender free
radicals in the cellular milieu, which inflict damaging oxidative

stress. Such events could trigger inflammatory responses, which
could balloon out of control, leading to apoptosis and
cytotoxicity8−11 as well as genotoxicity.12

The mundane use of nanoparticles has necessitated vigorous
safety assessment of toxicity, in the interests of sustainable
progress.13−16 Such methods could also help discern safe-by-
design principles that could guide adjustments to the nano-
particle formulation and thereby mitigate adverse effects at the
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source. Intelligent and alternative testing strategies could
accelerate rational design of nanoparticles for optimal
functionality and minimal toxicity.17−20 Various computational
methods have been applied to predicting toxicity of engineered
nanomaterials,21−31 but with the accumulation of high-quality
data, machine learning methods have shown the most
promise.32 Such techniques provide a noninvasive “instanta-
neous” readout of nanoparticle toxicity33−35 and originate from
the evolution of quantitative structure−activity relationship
(QSAR) models.36 Machine learning models of nanoparticle
toxicity have tended to be either generalized37 or tissue-
specific38,39 and are built from experimental toxicity data that
have been scored, standardized, and curated into databases like
the safe and sustainable nanotechnology db (S2NANO).40−42

Earlier studies have tended to neglect systematic multi-
collinearity among the predictor variables, which would lead to
confounding and data snooping. Second, gross imbalance
between the numbers of nontoxic and toxic instances usually
exists, which could lead to overfitting to the “nontoxic” class.43

Third, we were motivated to develop a model that would be
agnostic of in vitro characteristics, such as cell line, cell type, and
assay method. A truly general model of nanoparticle
cytotoxicity, independent of in vitro factors, would lead to
significantly broader interpretability and wider applicability.44

Our study departs also from the notion that tissue-specific
models are superior to generalized models39 and demonstrates
that model interpretability is best achieved using a minimal
nonredundant feature space, consistent with Occam’s parsi-
mony. We have deployed insights from our study into a
majority-voting ensemble classifier, with a view to increasing
reliability. Finally, the end-to-end pipeline of our work, including
the ensemble classifier, is made freely available as a user-friendly
open-source nanosafety prediction system, NanoTox, under
GNU GPL (https://github.com/NanoTox). All implementa-
tions were carried out in R (www.r-project.org).

■ METHODS
Problem and Dataset. In vitro parameters such as cell type,

cell line, cell origin, cell species, and type of assay could be
extraneous to modeling the intrinsic hazard posed by a
nanoparticle to cellular viability and the environment. This
motivated us to formulate the problem in a feature space devoid
of biological predictors. The machine learning task is stated as:
given a certain nanoparticle at a certain dose for a certain
duration, would its administration prove cytotoxic? To address
this problem, we used a hybrid dataset building on the
physicochemical descriptors and toxicity data found in Choi et
al’s study.36 All in vitro features were removed from the dataset,
as noted above. Extrinsic physicochemical properties, namely,
dosage and exposure duration, were retained.45 The periodic
table properties of metal-oxide nanoparticles published in Kar et
al.46 were used to augment the dataset. Only complete cases
were considered in the process of matching the two datasets.
This process yielded a final dataset of 19 features of five metal-
oxide nanoparticles: Al2O3, CuO, Fe2O3, TiO2, and ZnO (Table
1). Cytotoxicity was used as the outcome variable, encoded as
“1” (true) if measured cell viability was <50% with respect to the
control, and “0” (false) otherwise. The novel dataset is available
on NanoTox.
Elimination of Multicollinearity. A nonredundant feature

space would translate into an optimal hypothesis space. A simple
inspection of the properties in Table 1 suggested the existence of
correlated features. Correlated features would adversely impact

model performance as well as complicate model interpretation.
Multicollinearity is an even deeper problem in the pursuit of a
nonredundant feature space.47 The training set alone was used
for the feature selection process, to prevent any data leakage
from the test set. The dataset was randomly split into a 70:30
train/test ratio stratified on the outcome variable.48 The
existence of highly correlated (Pearson’s ρ ≥ 0.9) variables
was ascertained. To address multicollinearity, we used a
systematic variance inflation factor (vif) analysis. Each
independent variable was regressed on all of the other
independent variables in turn, and the goodness of fit of each
of these models (fraction of variance explained; R2) was
estimated. The vif score for each independent variable was then
calculated using eq 1. In each iteration of the vif analysis, the
variable in the current set that had the largest vif score when
regressed on all of the other variables was eliminated. This
process was continued until a set of variables all of whose vif
scores <5.0 was obtained. Note that a vif score of 1.0 is possible
only when a variable is perfectly independent of all other
variables (all pairwise Pearson’s ρ identically zero).

= − Rvif 1/(1 )2 (1)

Feature Transformation. The feature space could be
vulnerable to heteroscedastic effects, given the varying scales for
the variables. It is necessary to preprocess and prevent features
with large variances from swamping out the rest. Positively
skewed features could be stabilized using the log transformation.
Ec values, which are negative, were first offset by +6.17, then log-
transformed. Dosage spanned many orders of 10 and was log10-
transformed. Exposure time spanned 2 orders of magnitude, so
we performed a log2 transformation. Surface charge whose
values could be either positive or negative was standardized (i.e.,
Z-transformed). All of the other features were log-transformed
(to the base e).

Table 1. Physicochemical Features of MeOx Nanoparticles
Considered in Our Study

s no type of feature feature shorthand

1 intrinsic physicochemical
properties

core size CoreSize
2 hydrodynamic size HydroSize
3 surface charge SurfCharge
4 surface area SurfArea
5 conduction band energy Ec
6 valence band energy Ev
7 standard enthalpy of

formation
Hsf

8 Mulliken
electronegativity

MeO

9 enthalpy of formation of
cation

enthalpy

10 polarization ratio ratio
11 periodic table properties pauling electronegativity Eneg
12 summation of

electronegativity
esum

13 molecular weight MW
14 number of oxygen atoms NOxygen
15 number of metal atoms NMetal
16 ratio of esum to

Noxygen
esumbyo

17 oxidation state ox
18 extrinsic physicochemical

properties
exposure time Time

19 dosage Dose
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Class Rebalancing. The cost of missing a toxic instance is
manifold higher than the cost of missing a nontoxic instance, and
the imbalance between toxic vs nontoxic instances could
exacerbate this problem. In such situations, where the essential
problem is to learn the minority outcome class effectively,
resampling techniques could be useful.49 We addressed the class
skew problem using Synthetic Minority Over-Sampling
TEchnique (SMOTE).50 SMOTE synthesizes new minority
samples from the existing ones, without influencing the
instances of the majority class, thereby increasing the number
of “toxic” instances relative to the number of nontoxic instances.
Balancing the dataset thus would normalize the learning bias
arising from unequal representation of the outcome classes.
Predictive Modeling. The overall workflow of our

approach is summarized in Figure 1. The normalized training

dataset was balanced using SMOTE, and a variety of
classification algorithms were tried and tested, namely, logistic
regression,51 random forests,52 SVMs,53 and neural net-
works.54,55 Table 2 shows the classifiers and their hyper-
parameters considered in our work. The optimal values of the
hyperparameters were found using 10-fold internal cross-
validation.56 The performance of each optimized model was
evaluated on the normalized and unseen test set. To penalize
false positives and false negatives equally, we used an objective
measure of performance

= +balanced accuracy (specificity sensitivity)/2 (2)

Applicability Domain.The specification of the applicability
boundaries of machine learning models would increase their
reliability and utility.44 This would define the perimeter of
model generalization to new instances and safeguard against
application to atypical data. We used a Euclidean nearest-
neighbor approach to define the applicability domain (AD) of
the machine learning models.57 For each instance in the training
set, its distances to all of the other training instances were found.
The nearest neighbors of each instance are then defined as the k
smallest values from this set, where k is an integer parameter set
to the square root of the number of instances in the training set.
The mean distance of an instance to its k-nearest neighbors is
found, and this process is repeated for all instances to yield the
sampling distribution of these mean distances. The mean and
standard deviation of this sampling distribution were designated
as μk and σk, respectively. The applicability domain is then
defined as follows

μ σ= + ·zAD k k (3)

where z is an empirical parameter (related to the z-distribution)
that characterizes the width of belief in the model, which is here
set to 1.96.

■ RESULTS
Our dataset consisted of 483 instances of the five metal-oxide
nanoparticles with 19 features and one outcome variable.
Correlogram plots identified the existence of high correlation
among these 19 variables (Figure 2) and especially among the
periodic table properties (Figure S1). Three clusters of high
correlation were revealed: one cluster of enthalpy, Hsf, ratio, ox,
Noxygen, and esumbyo; a second cluster of Ec and Ev; and a
third cluster of esum, NMetal andMW. Based on the vif analysis,
we were able to obtain a feature space of just nine uncorrelated
nonredundant variables (Table 3). The highest vif of any
variable in this feature space was <2.02, indicating little residual
multicollinearity (Figure 3). This optimal feature space included
two periodic table properties (Eneg, NOxygen), five other
intrinsic physicochemical properties (CoreSize, HydroSize,
SurfArea, SurfCharge, Ec), and both the extrinsic physicochem-
ical properties (Dose, Time). This final dataset of 483 instances
with nine features and one outcome variable is available at
NanoTox.
The nine features were normalized, producing acceptable

skew values for HydroSize, SurfArea, Ec, and Time (Table 4).
The normalized dataset was partitioned using a random 70:30
split stratified on the outcome variable, providing a training
dataset of 339 instances (with 55 toxic instances), and an
independent test dataset of 144 instances (with 23 toxic
instances). The training dataset (and not the test dataset) was
balanced for the minority toxic instances using SMOTE
resampling, yielding 165 toxic and 220 nontoxic instances, for
a training dataset of 385 instances. This normalized and
balanced dataset was used to train the various classifiers. The
optimal hyperparameters of each classifier were determined
using the R e1071 package for SVMs (Figure S2), and the R
caret package for the neural networks, both one layer (Figure 4)
and two layers (Figure S3). The full set of model-wise optimal
hyperparameters could be found in Table S1. The trained,
optimized classifiers were then evaluated on the unseen test
dataset. All of the models, except the SVM with polynomial
kernel, achieved perfect sensitivity to the toxic instances, i.e., all

Figure 1. Workflow of the study up to predictive modeling.
Preprocessing refers to both normalization and class balancing. Only
the training dataset was used for feature selection; the test set was kept
invisible during the model development process.
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cytotoxic nanoparticles were classified correctly. The models
were not perfectly specific to the nontoxic instances, however.
On this count, the random forest and neural network one-layer
models outperformed all of the others. They were each

frustrated by eight false positives, resulting in a balanced
accuracy of 96.69%. Bootstrapping the test set 500 times yielded
standard errors of ∼0.0189 for both the random forest and
neural network one-layer models, indicating performance
robustness. All of the classifiers achieved balanced accuracy
>90%. Table 5 summarizes the performance of all of the models
on the test set. Five nontoxic instances were classified incorrectly
by all of the models, representing refractory instances and
constituting a challenge to perfect learning. One of these
instances was only marginally viable (0.52), indicating the
possible source of refractoriness.

Deployment. The applicability domain was calculated with
the normalized train data, prior to SMOTE balancing.
Substituting k = 19 and z = 1.96 in eq 2 yielded the AD
threshold = 2.23. About 95% of the test instances (i.e., 137/144
instances) were located within the AD radius. It must be noted
that the misclassified instances did not coincide with these
outliers. We have provided a workflow, deployment.R (available

Table 2. Classifiers Used in Our Study and Their Respective Hyperparametersa

no. classifier type/Basis package/function hyperparameters optimization

1 logistic regression algebraic glm threshold (= 0.5) n/a
2 random forest rule-based randomForest 1 #trees (= 500) caret::train

2 mtry

3 support vector machine geometric e1071 1 Kernels (linear, radial, polynomial) e1071::tune
2 cost
3 γ
4 degree

4 neural networks connectionist RSNNS 1 #hidden layers = 1,2 caret::train, caret::mlpML
2 size of each hidden layer
3 decay rate

amtry represents the number of features used for each split in the random forest model.

Figure 2.Correlogram of the 19 features. The correlation between a row feature and a column feature is shown by a dot in the corresponding cell. The
size of the dot represents the magnitude of the correlation, and color represents the sign of the correlationblue: positive; red: negative. White
indicates a value near 0, i.e., independence.

Table 3. Vif Scores for the Features in the Final Reduced Seta

s. no. feature variance inflation factor

1 CoreSize 1.65
2 HydroSize 1.24
3 SurfCharge 1.85
4 SurfArea 1.58
5 Ec 1.50
6 time 1.19
7 dose 1.21
8 Eneg 2.02
9 NOxygen 1.60

aThe maximum vif score is ∼2.0, corresponding to maximum R2 ∼
0.5 (cf. eq 1).
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at NanoTox), for prediction on new, untested oxides. The
prediction is executed by a majority-voting ensemble classifier,58

since bagging the predictions of the best models on the test set
improved the performance to just five false positives (∼98%
balanced accuracy). Any new instance for classification supplied
by the user is preprocessed (normalized), and its “typicality” is
determined by calculating its distances to the instances in the
original train data and finding the mean, Di, of the 19 closest
distances. If Di is greater than the AD threshold, then the
instance is deemed atypical for requesting the ensemble model.
Predictions are obtained using the top two models, the random
forest and the neural network one layer, and a consensus
prediction is sought. In the absence of a consensus, an ensemble
of the top five classifiers, all with balanced accuracy >94%
(highlighted in Table 5), is used. In the end, the majority
prediction of the ensemble classifier is the predicted cytotoxicity

of the given instance. Deployment.R automates this pipeline for
a batch of new, untested oxides of any size. Furthermore, the
RDS images of all of the models trained in our study are
provided on NanoTox, for the interested scientist.

■ DISCUSSION

The results are encouraging since the test set constitutes an
independent validation dataset. It is clear that SMOTE
balancing made a difference in the ability of the classifiers to
detect the under-represented toxic instances. Filtering based on
applicability domain and use of an ensemble classification
strategy further mitigate model uncertainty given the ‘no free
lunch’ theorem.59 Benchmarking our results with Choi et al.,37

we see that the best model in each classifier from our work
outperformed the corresponding best models of their work
(Table 6). The overall best models in our work (random forest
and neural network one layer) yielded a balanced accuracy of
∼97% compared to 93% for their best overall model (“neural
networks”). All of the five models from this work with balanced
accuracy >93% are deployed in an ensemble classifier to further
mitigate uncertainty in prediction.
Measures of variable importance are central to mechanistic

insights.60 Variable importance was assessed using the varImp
caret function for the logistic regression model (Figure S4a),
neural network one-layer model (Figure S4b), and random
network model (Figure 5a). Dose emerges as the consensus key
attribute for prediction; however, there are subtle ranking
differences among the different models. NOxygen is a key
attribute in both the random forest and neural network one-layer
models, but not so for the logistic regression model. Time
emerges as another consensus key attribute in all of the models.
Logistic regression provides us with not only the effect size
(coefficients) of the individual variables but also an estimate of
their significance, in terms of the p-value of the coefficients

Figure 3. Optimal hypothesis space. A correlogram of the optimized feature space shows that no subset of variables in this set would yield
multicollinearity.

Table 4. Dataset Normalizationa

features
skewness
before

type of
normalization

skewness
after

range (min−
max)

CoreSize 0.92 log −0.2 2.01−4.82
HydroSize 1.76 log 0.14 4.30−7.52
SurfCharge 0.45 z-score 0.45 −1.62 to

+1.98
SurfArea 2.14 log −0.23 1.95−5.35
Ec 2.68 log, with offset −0.23 0.00−1.54
Time 1.36 rescale, log −0.48 0.00−4.58
Dosage 1.74 log10 −1.5 −5.00 to

+2.48
Eneg 1.46 log 1.26 0.43−0.64
Noxygen 0.66 none 0.66 1−3

aLog-transformation was performed to the base e. Skewness was
controlled, and the range of all predictors was brought into the same
order of magnitude.
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(Table S2). The sign of the coefficient of each variable indicates
the class outcome to which the respective variable contributes. It
is notable that the two periodic table properties (Eneg,
Noxygen) and the quantum chemical property, Ec, show large
effect sizes but poor significance, while all of the other variables
remain highly significant. Relative importance plots of the neural

network models add a direction representing the favored binary
outcome61,62 and obtain concurrence to these findings (Figures
5b and S5). Dose emerges as the key variable determining
nanoparticle toxicity, and Time, HydroSize, and Eneg are the
other variables influencing the toxic prediction. NOxygen
emerges as the key predictor influencing the nontoxic
prediction, and SurfArea, Ec, and CoreSize are the other
predictors in this category. The numeric variable importance
scores are given in Tables S3 and S4.
NeuralNetTools was used to visualize the best-performing

one-layer neural networkmodel, with the individual connections
weighted by their importance63 (Figure 6). The two-layer neural
network model was also visualized (Figure S6). Consensus
among the models is necessary for explainable AI,64 and in this
direction, we performed a Lek sensitivity analysis with the neural
network one-layer model.65 How does the response variable
change with changes in a given explanatory variable, given the
context of the other explanatory variables? On investigating the
effect of one explanatory variable, all of the other explanatory
variables are clustered into a specified number of lakes with like
members. While the unevaluated explanatory variables are held
constant at the centroid of one lake cluster, the explanatory
variable of interest is sequenced from minimum to maximum in

Figure 4.Hyperparameter tuning, for the neural network1 layer model. It is seen that the cross-validation accuracy is sensitive to the choice of the set
of hyperparameters.

Table 5. Performance of the Various Modelsa

train set test set

id classifier accuracy balanced accuracy cross-valid accuracy accuracy balanced accuracy

model_1 logistic regression 0.94 0.94 0.93 0.91 0.95
model_2 random forest 0.98 0.98 0.94 0.94 0.97
model_3a SVM-Linear 0.94 0.95 1 0.9 0.94
model_3b SVM-Radial 0.94 0.94 1 0.86 0.92
model_3c SVM-Poly 0.98 0.98 1 0.84 0.85
model_4a neural network1L 0.96 0.96 0.94 0.94 0.97
model_4b neural network2L 0.96 0.95 0.95 0.91 0.95

aModels with balanced accuracy >94% are highlighted.

Table 6. Benchmarkinga

balanced accuracy (%)

model Choi et al.b present work

logistic regression 92 94.63
random forest 91 96.69
SVM 91 (a) 94.21

(b) 91.74
(c) 85.21

neural networks 93 (a) 96.69
(b) 94.63

aSVM (a), (b), and (c) correspond to linear, radial, and polynomial
kernels. Neural networks (a) and (b) refer to one and two hidden
layer(s), respectively. No information regarding model hyper-
parameters were available in Choi et al. The best-performing models
from our work are highlighted. bRef 37.
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100 quantile steps, with the response variable predicted at each
step, yielding a sensitivity curve. This process is iterated for each
lake of the unevaluated explanatory variables, yielding the
sensitivity profile of the response variable with respect to the
specific explanatory variable in the context of the unevaluated
explanatory variables. We set the number of clusters to 10, to
visualize a sufficient number of response curves for each
explanatory variable. In this way, the sensitivity profiles of the
response variable are obtained for each predictor (Figure 7).
The two input variables that decisively differentiate the

outcome are Dose and Noxygen. Dose appears to exert a nearly
thresholding effect on the toxic class. The consistent sigmoidal
effect seen in the “dose−response” curve, independent of the
lake of unevaluated explanatory variables, echoes the maxim
attributed to Paracelsus, “The dose makes a thing poison.” The
attributes influencing toxicity also included: (i) Time, with a

pronounced effect depending on the lakes of the unevaluated
variables; and (ii) HydroSize, with a steady nonlinear effect on
toxicity that is also sensitive to the context of the unevaluated
explanatory variables. The response profile for Eneg is almost flat
at all lakes, indicating little to no effect in changing the outcome.
The interpretation of the response with respect to SurfCharge
remained obscure. NOxygen emerged as the attribute with the
clearest inverse effect on toxicity, with a response profile
displaying a tipping point to nontoxic class at most, but not all, of
the centroids. Other attributes seen to dial down the toxicity
include SurfArea, CoreSize, and Ec. These observations of effect
size may be tempered with significance analysis toward a
complete understanding.
In summary, the ML models of our work are represented by a

purely numeric feature space of just nine predictors, and it is
possible to consider them in their entirety, similar to the

Figure 5. (a) Normalized variable importance for the Random Forest model computed with caret. Dose is by and far the attribute with the greatest
effect on the toxicity in the Random Forest model. (b) Relative importance plot for the NeuralNet-1L. Positive values correspond to the “true” (i.e.,
toxic) class, and negative values correspond to the nontoxic class. It is seen that Dose and NOxygen exert the maximum importance on the outcome
class, though in opposite directions.

Figure 6. Schematic of the trained neural network one-layer model, with the weights of the connections indicated by the linewidth. Black lines indicate
positive weights, and gray lines indicate negative weights. Two bias units are seen, one for the hidden layer and the other for the output layer.
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interpretability of a classical QSAR model. The models conform
to the Findable, Accessible, Interoperable, Reusable (FAIR)

principles and are presented in a unified ensemble prediction
engine, NanoTox (https://github.com/NanoTox). In the

Figure 7. (a) Lek sensitivity analysis of attributes with positive effect on the outcome class. The steep effect of Dose is evident, with the location of the
tipping point moving slightly with the cluster of the unevaluated variables. Increasing exposure times and HydroSize are also seen to tip to toxicity. (b)
Lek sensitivity analysis of attributes with relatively consistent negative effect on the outcome class: CoreSize, Ec, NOxygen, and SurfArea. The number
of lakes of the unevaluated variables is set to 10 in both the cases.
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interest of reproducible research, all the scripts necessary to
replicate, apply, and extend our analysis are available at
NanoTox. Our methods may be extendable to other classes of
engineered nanomaterials requiring urgent, sustainable, and
rapid hazard estimation prior to induction in practical uses.66−69

■ CONCLUSIONS
We have optimized the problem formulation of cytotoxicity
modeling of nanoparticles using a principled approach agnostic
of in vitro characteristics. The feature space is trimmed for
multicollinearity, tunable hyperparameters were optimized, and
the training data were corrected for class imbalance. These steps
led to an optimal hypothesis space, thereby improving the
performance of the generated ML models to >96% balanced
accuracy. The benefits of a parsimonious approach to modeling
nanoparticle toxicity include enhanced model interpretability
and generalizability. We have embedded our models into an
unambiguous ensemble classifier that surpasses ∼98% balanced
accuracy. Our entire workflow is available as a free open-source
resource for use and enhancement by the scientific community
toward proactive noninvasive testing and design of nanoparticles
for varied applications.
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