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Abstract
Plant mitochondria are indispensable for plant metabolism and are tightly integrated into cellular homeostasis. This review
provides an update on the latest research concerning the organization and operation of plant mitochondrial redox systems,
and how they affect cellular metabolism and signaling, plant development, and stress responses. New insights into the or-
ganization and operation of mitochondrial energy systems such as the tricarboxylic acid cycle and mitochondrial electron
transport chain (mtETC) are discussed. The mtETC produces reactive oxygen and nitrogen species, which can act as signals
or lead to cellular damage, and are thus efficiently removed by mitochondrial antioxidant systems, including Mn-
superoxide dismutase, ascorbate–glutathione cycle, and thioredoxin-dependent peroxidases. Plant mitochondria are tightly
connected with photosynthesis, photorespiration, and cytosolic metabolism, thereby providing redox-balancing.
Mitochondrial proteins are targets of extensive post-translational modifications, but their functional significance and how
they are added or removed remains unclear. To operate in sync with the whole cell, mitochondria can communicate their
functional status via mitochondrial retrograde signaling to change nuclear gene expression, and several recent break-
throughs here are discussed. At a whole organism level, plant mitochondria thus play crucial roles from the first minutes
after seed imbibition, supporting meristem activity, growth, and fertility, until senescence of darkened and aged tissue.
Finally, plant mitochondria are tightly integrated with cellular and organismal responses to environmental challenges such
as drought, salinity, heat, and submergence, but also threats posed by pathogens. Both the major recent advances and out-
standing questions are reviewed, which may help future research efforts on plant mitochondria.

Introduction
Mitochondria most likely evolved by endosymbiosis of
bacteria are related to alpha-proteobacteria with a host cell
related to free-living Lokiarchaeota (Archaea) of the
“Asgard” superphylum (Sagan, 1967; Spang et al., 2015;
Martijn et al., 2018). This successful endosymbiotic interac-
tion likely allowed the anaerobic host, previously fermenting
organic substrates, to produce ATP far more efficiently
using the endosymbiont’s aerobic respiration pathways

(Roger et al., 2017; Seitz et al., 2019; Spang et al., 2019).
Furthermore, adoption of these mitochondrial ancestors
provided many additional biochemical pathways, giving the
eukaryotic cell its metabolic flexibility.Over time, most of
the endosymbiont’s genetic information was transferred to
the nuclear genome. Surprisingly, most endosymbiont pro-
teins no longer operate in mitochondria, but rather in the
cytosol or elsewhere, or have been lost entirely. The complex
mitochondrial proteomes are therefore mosaics of bacterial,
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host, and bacteriophage origin, along with new proteins that
have evolved often in lineage-specific ways (Szklarczyk and
Huynen, 2009, 2010; Huynen et al., 2013; Lama et al., 2019).
Mitochondria have thus become an intrinsic and largely es-
sential part of the eukaryotic cell, involved in energy produc-
tion, biosynthesis, catabolism, and redox balancing. This
requires mitochondria to be integrated into various sensing
and signaling systems that affect the individual cell, but also
the multicellular organism as whole. This review provides an
update on our understanding of plant mitochondrial organi-
zation and the various ways in which plant mitochondria
and their redox systems are involved in cellular metabolism,
signaling, and plant life in general (Figure 1).

Organization and structure of plant mitochondrial
energy systems
The structure of plant mitochondria is relatively similar
to that in other eukaryotes, and is crucial for how they
function as efficient energy factories (Box 1; Friedman et al.,
2015). Besides classic mitochondrial electron transport chain
(mtETC) components like Complexes I–IV and ATP syn-
thase (Complex V; Ikon and Ryan, 2017), plant mitochondria
contain many components that are not present in many
eukaryotes, such as alternative NADH dehydrogenases (NDs)
and alternative oxidases (AOXs; Millar et al., 1994;
Rasmusson et al., 2008; Vanlerberghe, 2013). Many other
conserved mitochondrial complexes contain plant-specific
subunits, such as respiratory complexes (Rao et al., 2017),
and translocon of the inner/outer membrane (TIM/TOM)
mitochondrial protein translocon complexes (Duncan et al.,
2013) and mitochondrial ribosomes (Rugen et al., 2019;
Waltz et al., 2019; Waltz and Giege, 2020). Other mitochon-
drial proteins are completely unique to plants or even

individual plant families (Zhang et al., 2014; Lama et al.,
2019), suggesting the plant mitochondrial proteome is still
not fully fixed. In contrast, some plant species have surpris-
ingly lost well-known mitochondrial components, like the
hemiparasitic mistletoe (Viscum sp.), as found by sequencing
the mitochondrial genome (Petersen et al., 2015).
Biochemical characterization subsequently showed that mis-
tletoe lacks a functional ND Complex I, while Complexes II,
IV, and V also are divergent with much lower activities
(Maclean et al., 2018; Senkler et al., 2018). In contrast,
alternative mitochondrial pathway and cytosolic glycolysis
activities were increased.This mitochondrial flexibility is to
a large extent due to the plant alternative mtETC (NDs
and AOXs; Millar et al., 2011). Although they do not trans-
locate protons to drive mitochondrial ATP synthesis, they
do allow a functional—if energetically more wasteful—
electron transfer from, for example, NAD(P)H and succi-
nate to oxygen (O2) when the cytochrome c (cyt c) path-
way is compromised. While ND or AOX mutants tend to
have mild phenotypic defects during optimal conditions
(Giraud et al., 2008; Smith et al., 2011; Wallström et al.,
2014a, 2014b; Wallström et al., 2014a, 2014b), they are af-
fected when the cyt c pathway is inhibited (Dahan et al.,
2014). Their effects are particularly noticeable in double
mutants of cyt c and alternative pathway components,
which perform poorer than the respective single mutants
(Kuhn et al., 2015). If the alternative pathway cannot be
induced sufficiently upon inhibition of the cyt c pathway,
the plants rely more extensively on fermentation
(Vanlerberghe et al., 1995; Wallström et al., 2014a, 2014b;
Van Aken et al., 2016a, 2016b). Amino acids can also be
directly used as substrates to maintain the mtETC during
carbohydrate starvation (Cavalcanti et al., 2017), for exam-
ple, via the electron-transfer flavoprotein:ubiquinone oxi-
doreductase (ETF/ETFQO) pathway located in the inner
mitochondrial membrane (IMM) which is activated during
senescence and drought (Pires et al., 2016).

Significant progress was made in our understanding of the
plant Krebs/tricarboxylic acid (TCA) cycle, which appears to
operate as a holistic process or “metabolon.” Using large-scale
interactomics, 158 protein–protein interactions were identi-
fied involving TCA cycle components (Zhang et al., 2017a,
2017b, 2017c). These include interactions between subunits of
sequential and nonsequential enzymes. Furthermore, sub-
strate channeling of citrate and fumarate was shown, indicat-
ing a tight co-operativity between many TCA cycle enzymes,
again likely to improve efficiency (Pineau et al., 2013; Petereit
et al., 2017; Zhang et al., 2017a, 2017b, 2017c). TCA cycle
intermediates can also fine-tune other mitochondrial proteins,
like AOX isoforms that can be activated to various degrees by
2-oxoglutarate (2OG) and oxaloacetate (OAA; Selinski et al.,
2018), as well as by pyruvate (Millar et al., 1993). Metabolites
such as phosphoenolpyruvate and amino acids can stimulate
(e.g. Pro and Ala) or repress (e.g. Lys) night-time mitochon-
drial respiration, involving Target Of Rapamycin kinase signal-
ing (O’Leary et al., 2020).

ADVANCES

• Improved quantitative MS-based approaches
have accelerated the study of mitochondrial
protein abundance, turnover and PTMs.

• Mitochondrial enzymes and cellular
compartments operate interactively and
efficiently exchange substrates.

• Roles for mitochondrial retrograde signaling in
plant growth, during physiologically relevant
stress conditions and in interaction with other
organelles such as the chloroplasts, have been
clarified.

• Further insights into mitochondrial antioxidant
and peroxidase systems and how they affect
other redox systems, enzymes, and whole plant
growth have been generated.

• Our understanding of how mitochondria help
plants power development and cope with
adversity has improved.
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Progress in proteomics now gives us much more detail
into relative protein abundance (Rao et al., 2017; Fuchs
et al., 2020), (super)complex composition (Senkler et al.,
2017), and protein turnover rates (Li et al., 2017; Huang
et al., 2020; Petereit et al., 2020). It is estimated that a single
average mitochondrion contains 41.4 million individual
proteins, covering up to 2,000 different types (Fuchs et al.,
2020). Some proteins are extremely abundant, such as
voltage-dependent anion channels (440,000 units per mito-
chondrion), while others may be present less than once per
mitochondrion (some RNA-binding pentatricopeptide re-
peat proteins). The TOM complex appears to be 420�
more abundant than translocase of the IMM TIM22 and
TIM23 complexes. In the IMM, ATP synthases are most
abundant, followed by ADP/ATP carriers and Complex I.

The mitochondrial matrix is heavily packed with TCA cycle
enzymes (up to 16% of the matrix volume), which helps ex-
plain TCA cycle operation as a metabolon using substrate
channeling (Zhang et al., 2017a, 2017b, 2017c). Individual
proteins and complexes can range from 510 kDa up to
supercomplexes of 1,500 kDa (I + III2 supercomplex). Some
proteins are short-lived (e.g. less than a few days) while
others may stay around for weeks (Nelson et al., 2013).
These protein turnover processes are regulated by a wide
set of mitochondrial proteases (Li et al., 2017; Heidorn-
Czarna et al., 2018; Opalinska and Janska, 2018; Opalinska
et al., 2018; Petereit et al., 2020). Together, this much-
improved sense of scale is central to obtaining a realistic
view of how mitochondria operate, are regulated, and
maintained.

Figure 1 Plant mitochondria as hubs in redox metabolism, signaling, and plant growth. Plant mitochondria have a typical structure consisting of
an outer membrane, inner membrane, and intermembrane space (IMS). The IMM forms large folds called cristae. The MTL complex is important
for the formation of cristae at the cristae junction, and potentially interacts with TOM and mtETC components. The cristae lumen is thought to
be important for the concentration of protons and protein complexes, improving metabolic efficiency. The TCA cycle uses substrates derived
from glycolysis, photosynthesis, and amino acid metabolism to reduce NAD(P) + to NAD(P)H. NADH is used to drive the mitochondrial electron
transport chain (Complexes I–IV and AOXs and NDs), consuming O2. The cyt c pathway drives proton translocation from the mitochondrial ma-
trix into the IMS, which can flow back via ATP synthase (green complex) to produce ATP or via UCPs without producing ATP. ATP can be
exported into the cytosol and acts as a major energy source for a variety of cellular processes. Reductant from photosynthesis is transported to
the mitochondria via the malate valve, which may be important to dissipate excess reductant from photosynthesis via the TCA cycle and mtETC.
Excess citrate may leave the mitochondria via the citrate valve to be used in cytosolic metabolism. Other TCA cycle intermediates can be ex-
changed with the cytosol via mitochondrial carrier proteins to support metabolism. A TP-3PGA shuttle is thought to export NADH/ATP equiva-
lents from the chloroplast into the cytosol. The mtETC inevitably produces superoxide as a by-product, especially under stress, which is rapidly
scavenged by MnSOD, producing H2O2. H2O2 is further reduced in the Asc-GSH cycle, or by other peroxidase systems such as GPXs and Prxs.
These peroxidase systems are regenerated by the Trx/ NTR system, ultimately using NADPH as a reductant. Mitochondrial GRXs mainly play a
role in Fe–S cluster protein biosynthesis. Some of the H2O2 may either enter or leave mitochondria (via VDAC or aquaporins), which may have a
signaling role. The functional status of mitochondria is communicated to the cellular nucleus via MRR. A key pathway that is activated during mi-
tochondrial dysfunction is mediated by ANAC017-related transcription factors, which are anchored into the endoplasmic reticulum membrane.
Upon stress, the NAC transcription factors are thought to be released by proteases and regulate gene expression of alternative mtETC compo-
nents and other mitochondrial dysfunction stimulon genes. Other ANAC017-independent retrograde pathways are also likely to be active and
may steer mitochondrial biogenesis. Overall, plant mitochondria act as redox, metabolism, and signaling hubs that affect all aspects of plant devel-
opment and stress response.
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Mitochondrial reactive O2 and nitrogen species
production
Inevitably, electrons can leak from electron transport chains
directly onto molecular O2, producing a wide variety of reac-
tive oxygen species (ROS) including superoxide, hydrogen
peroxide (H2O2), singlet O2, and hydroxyl radicals (Noctor
and Foyer, 2016). In plant cells, various compartments con-
tribute to ROS production, particularly the chloroplasts in il-
luminated conditions, the plasma membrane, apoplast,
endoplasmic reticulum, peroxisomes, and mitochondria
(Czarnocka and Karpinski, 2018; Smirnoff and Arnaud,
2019). These ROS molecules can damage cellular compo-
nents such as DNA, lipids, and proteins, but also fulfill cru-
cial signaling roles that help plants develop and deal with
their everchanging environments. Therefore, the cell has
evolved a wide range of antioxidant, sensor, and signaling
systems to keep an appropriate redox balance.

In plant mitochondria mainly superoxide is initially pro-
duced, which is rapidly converted into H2O2by Mn superox-
ide dismutase (MnSOD; Blokhina and Fagerstedt, 2010). The
half-life of H2O2 is much longer than that of superoxide, so
superoxide is unlikely to traverse longer distances and act di-
rectly as an inter-organellar signaling molecule. Superoxide
can directly damage Fe–S clusters, which are present in
many mitochondrial enzymes, including Rieske iron–sulfur
protein in Complex III, aconitase, and MnSOD itself
(Morgan et al., 2008; Schwarzländer and Finkemeier, 2013).

The primary sites of superoxide formation in plant mito-
chondria are Complexes I and III (Juszczuk et al., 2012;
Huang et al., 2016), each with different rates and topologies

of production (Murphy, 2009). Both chemical and genetic
inhibition results in overreduction of the mtETC, increasing
the probability of electrons directly passing on to O2, pro-
ducing superoxide (Meyer et al., 2009; Belt et al., 2017).
Malate “circulation” from active chloroplasts to mitochon-
dria (see the section on interactions of mitochondria with
photosynthesis) can also trigger mitochondrial ROS produc-
tion by, for example, Complexes I/III, and in excessive cases
can even cause programmed cell death (PCD; Wu et al.,
2015; Zhao et al., 2018), though the physiological impor-
tance under normal conditions is unclear.

Complex II (succinate dehydrogenase, SDH) also contrib-
utes to plant mitochondrial ROS production (Belt et al.,
2017; Shin et al., 2020). Interestingly, low concentrations of
salicylic acid (SA) increased Complex II ROS production,
likely by stimulating SDH activity at or near the ubiquinone-
binding site (Belt et al., 2017), while high SA concentrations
may have an inhibitory effect on the mtETC (Norman et al.,
2004; Poor, 2020).

Plant mitochondria also produce nitric oxide (NO) via re-
duction of nitrite by Complexes III/IV and AOX (Lazaro
et al., 2013), particularly when O2 as electron acceptor is
lacking (Gupta et al., 2011). NO can react with superoxide
to form peroxynitrite, which is a highly reactive and poten-
tially damaging molecule (Vandelle and Delledonne, 2011).
Addition of nitrite and subsequent NO formation can,
however, have a protective and ROS suppressive effect at
low O2 levels (Gupta et al., 2011), by acting as an alternative
electron acceptor to O2 and thereby maintaining membrane
potential and ATP production (Gupta et al., 2017). Mainly

BOX 1 MITOCHONDRIAL ORGANIZATION AND ITS EFFECT ON ENERGY METABOLISM

Mitochondria are organized similarly in plants compared to most eukaryotes, with a double-membrane structure
consisting of an OMM, intermembrane space, IMM, and a central matrix. The IMM usually has large folds form-
ing the characteristic mitochondrial cristae. Cristae formation greatly enlarges the membrane area available to
biochemical reactions such as the mtETC. Furthermore, it provides sub-compartments like the cristae lumen and
cristae junctions with the IMM perimeter. These cristae compartments are crucial for maximal energy efficiency
and concentration of protons, mtETC- and ATP synthase (super)complexes (Ikon and Ryan, 2017).
Abundant “non-bilayer” phospholipids like phosphatidyl-ethanolamine and mitochondrion-specific cardiolipin re-
sult in curved tubular membrane structures, which are likely important for cristae formation (Ikon and Ryan,
2017). “Mitochondrial contact site and cristae organizing system” (MICOS) protein complexes help demarcate
these cristae junctions (Friedman et al., 2015).
In plants, loss of cardiolipin by mutating cardiolipin synthase results in various defects at the mitochondrial and
whole plant level, including altered mitochondrial ultrastructure with unusual shapes and sizes, and fewer cristae
(Pineau et al., 2013). Loss of cardiolipin resulted in a general loss of respiratory capacity, which could not be
solely explained by reduced protein abundances, but rather pointed toward reduced overall mtETC efficiency
(Petereit et al., 2017). In Arabidopsis, MICOS-related AtMIC60 interacts with OMM (e.g. TOM40) and IMM (e.g.
Rieske iron–sulfur protein) proteins, and DGD suppressor 1 (DGS1), forming the “mitochondrial transmembrane
lipoprotein” (MTL) complex (Michaud et al., 2016; Li et al., 2019). AtMIC60 appears to be involved in lipid traf-
ficking, while the loss of DGS1 resulted in large mitochondria with fewer cristae and altered lipid composition, re-
duced protein import, and respiratory capacity (Michaud et al., 2016; Li et al., 2019). Various lipids and proteins
thus help shape and support plant mitochondrial cristae, resulting in improved mitochondrial and plant
performance.
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the Q-cycle of mitochondrial Complex III is thought to gen-
erate NO, while AOX may reduce NO production by reduc-
ing electron flow through Complex III (Alber et al., 2017). A
recent study further underlined that the way mtETC com-
ponents contribute to NO production is very much depen-
dent on the O2 availability (Jayawardhane et al., 2020). For
instance, AOX was shown to prevent NO and superoxide
production under normoxia, while under hypoxia it pre-
vented superoxide generation and stimulated NO produc-
tion. AOX was also found to be particularly important
during reoxygenation following a hypoxia period by prevent-
ing nitro-oxidative stress. Overall, AOX appears to contrib-
ute positively to leaf energy status under various O2 levels.

Mitochondrial antioxidant systems in plants
ROS can be both damaging and beneficial depending on
their abundance, location, and timing. Therefore, mitochon-
dria contain several enzymatic and nonenzymatic antioxi-
dant systems, keeping ROS production within an optimal
range by either scavenging ROS or preventing ROS produc-
tion (Blokhina and Fagerstedt, 2010; Huang et al., 2016).

AOX gives the plant mtETC increased flexibility, allowing
electron flow from reducing equivalents produced by the
TCA cycle and photosynthesis to O2, even when the cyt c
pathway is inhibited by stress, high membrane potential,
chemicals, or mutations. Thus, the alternative respiratory
pathway prevents excessive ROS production, rather than re-
moving ROS that has already been produced (Cvetkovska
and Vanlerberghe, 2013; Cvetkovska et al., 2014). When the
basal alternative pathway capacity is superseded, AOX and
ND components are rapidly induced at the transcriptional,
protein, and activity level (Maxwell et al., 1999; Escobar
et al., 2006; Van Aken et al., 2009; Vanlerberghe, 2013).

Mitochondrial uncoupling proteins (UCPs) provide an ad-
ditional way to manage excess mtETC activity, by allowing
protons to bypass ATP synthase across the IMM. UCPs play
roles in thermogenesis, ROS homeostasis, and signaling, and
regulation of energy metabolism (Barreto et al., 2016, 2017,
2020). UCPs are also important to facilitate efficient photo-
synthesis by maintaining mtETC redox poise (Sweetlove
et al., 2006).

When ROS are produced in mitochondria, the first line of
defense is the MnSOD, which converts superoxide into
H2O2. MnSOD is among the most abundant proteins pre-
sent in the mitochondrial matrix with around 10,000 units
per average mitochondrion, in the same range as aconitase
(Fuchs et al., 2020). Furthermore, MnSOD has a very high
activity, indicating that MnSOD capacity in plant mitochon-
dria vastly exceeds likely superoxide production rates by
several thousand fold. This apparent excess may prevent di-
rect damage of superoxide to Fe–S clusters present in many
mitochondrial proteins (Halliwell and Gutteridge, 2015).
Superoxide will therefore be converted almost instantly to
H2O2, which thus is likely the most present ROS type in
plant mitochondria.

It is, therefore, no surprise that many antioxidant systems
in plant mitochondria prevent excessive H2O2 build-up.
Ascorbate (Asc; vitamin c) and the tri-peptide glutathione
(GSH) are crucial for mitochondrial H2O2 detoxification and
redox balance (Foyer and Noctor, 2011). These seemingly
distinct molecules operate together in the Asc–GSH cycle,
where Asc reacts with H2O2 via Asc peroxidase (APX) to
form monodehydroascorbate (MDHA). MDHA is also highly
reactive and is neutralized using reduced GSH. The reducing
power driving these reactions is provided by NAD(P)H, and
at the end Asc and GSH are recycled, and H2O2 is neutral-
ized to water. The GSH pool in plant mitochondria is kept
in a highly reduced state under normal conditions
(Schwarzländer et al., 2008) and is maintained relatively sep-
arate from the rest of the cell. For instance, it was found
that despite 80% reduction of cellular GSH content in phyto-
alexin-deficient pad2-1 mutants, the mitochondrial GSH
levels were stable (Zechmann et al., 2008). During mitochon-
drial inhibition the GSH pool may be more oxidized, which
could alter protein thiol redox state (Zsigmond et al., 2011).

A second mitochondrial peroxidase system uses GSH per-
oxidase (GPX)-like enzymes, which can scavenge H2O2 and
other peroxides (Navrot et al., 2006). Despite their name,
plant GPXs are not regenerated by GSH but by thioredoxins
(Trxs; Marti et al., 2009; Yoshida et al., 2013). In Arabidopsis
(Arabidopsis thaliana), one isoform GPX6/GPXL6 is targeted
to mitochondria, but may be dual-localized in the cytosol
(Attacha et al., 2017; Senkler et al., 2017). Rice (Oryza sativa)
OsGPX3 is also mitochondrially targeted and is mainly
expressed in roots, where it can be induced by cold and
H2O2 (Passaia et al., 2013). Silencing OsGPX3 resulted in a
20–30� higher release of H2O2 in rice roots (Passaia et al.,
2013), indicating that GPX-like enzymes indeed play a signifi-
cant role in peroxide removal from plant mitochondria.

Peroxiredoxins (Prxs) form a third major peroxidase sys-
tem in plant mitochondria. Just like GPXs, they are thiol per-
oxidases that function in peroxide detoxification (Liebthal
et al., 2018). The peroxidatic Cysp is modified by the perox-
ide substrate to sulfenic acid, which can be subjected to fur-
ther redox modifications such as sulfinic acid derivatives.
These must be reduced by, for example, Trxs, sulfiredoxins,
or NADPH-dependent Trx reductase (NTR) C to regenerate
Prxs (Pulido et al., 2010; Iglesias-Baena et al., 2011).
Interestingly, Prxs have also been implicated as redox sen-
sors, and may act as primary ROS sensors (Liebthal et al.,
2018). Plant mitochondria contain Prx IIF, which can form
multimers and reduce a wide range of peroxides (Finkemeier
et al., 2005). Under normal conditions, loss of Prx IIF func-
tion can be compensated by an increase in APX and GPX
activity, but it appears to be important under stress condi-
tions like CdCl2 excess and inhibition of AOX activity. In
yeast (Saccharomyces cerevisiae), the mitochondrial Prx con-
trols the oxidation state of GSH in the mitochondrial matrix
in response to H2O2 that diffuses into the mitochondria
from the cytosol via porins/voltage-dependent anion chan-
nels (Calabrese et al., 2019). Hyperoxidation of yeast Prx
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may function as an off-switch to limit mitochondrial GSH
oxidation, thereby preventing cell death. A similar role for
Prxs in plants has not been determined, so their role as a
sensor or switch remains speculative.

To allow sufficient detoxification of peroxides, the above
systems must be continuously regenerated. In plant mito-
chondria, this reducing power is provided by Trx/NTR and
GSH/glutaredoxin (GRX) systems, which themselves are ulti-
mately supplied with electrons from NAD(P)H (Box 2;
Daloso et al., 2015; Ortiz-Espin et al., 2015; Riemer et al.,
2015, Calderon et al., 2018). Our view of plant mitochondrial
antioxidant systems has improved over the last years, show-
ing it is a partially redundant network that can affect, for ex-
ample, TCA cycle activity, the mtETC, and ROS production
(Box 2).

Interactions of mitochondria with photosynthesis,
photorespiration, and central metabolism
Mitochondria do not function in isolation but form an inte-
gral part of a plant’s energy metabolism. Plant mitochondria
are thought to act as a release valve for excessive reductants
produced by the chloroplasts during photosynthesis, for
instance under high light conditions, or during drought
(Noguchi and Yoshida, 2008; Dahal et al., 2014). Especially
AOX and NDs are thought to be important as they can

dissipate excess energy without producing more ATP
(Noguchi and Yoshida, 2008). The AOX pathway also plays
a significant role in maintaining electron flow in the chloro-
plast ETC and reducing ROS production (e.g. via Asc) when
the mitochondrial cyt c pathway is inhibited (Borisjuk et al.,
2007; Benamar et al., 2008; Vishwakarma et al., 2015;
Vishwakarma et al., 2018). AOX respiration could play an
increasingly important role in carbon and energy balance
under elevated CO2 conditions due to climate change, by
preventing restriction of chloroplast ATP synthase activity
(Dahal et al., 2017; Dahal and Vanlerberghe, 2018; Alber and
Vanlerberghe, 2019).

An important part of this interaction between respiration
and photosynthesis is the way reductant is shuttled from
the chloroplast to the mitochondrion. A key component is
the “malate valve,” in which malate is produced and trans-
ported out of the chloroplasts, where it can be consumed
by malate dehydrogenases in the cytosol, mitochondria, and
peroxisomes (Selinski and Scheibe, 2019). Such “malate cir-
culation” to the mitochondria could regenerate NADH,
which could drive Complex I but also contribute to mito-
chondrial ROS production, potentially even leading to PCD
(Zhao et al., 2018; Zhao et al., 2020). A “citrate valve” is also
potentially operating, where high NADH levels cause the
Krebs cycle to operate as an incomplete “hemicycle.” Citrate

BOX 2 PLANT MITOCHONDRIAL TRXS AND GRXS

Trx/NTR and GSH/GRX systems regenerate the peroxidase systems, driven by NAD(P)H. Plant mitochondrial Trxs
reduce a wide range of mitochondrial proteins, for example, Prxs, GPXs, AOX, and mtETC components, ATPase
subunits (Marti et al., 2009; Yoshida et al., 2013). AOX activity is redox-regulated in vitro by Trx (Yoshida et al.,
2013), but absence of Trxo1 does not reduce and actually increases AOX activation in vivo (Florez-Sarasa et al.,
2019). Other thiol redox systems in the cell may compensate for Trx loss and keep AOX in its reduced state,
rather than regulating its activity. Mitochondrial NTR A/B and Trxo1 are proposed as master regulators of TCA
cycle enzymes, with some enzymes stimulated and others deactivated (Daloso et al., 2015), suggesting differential
redox regulation.
These enzymes contain conserved cysteine residues, which makes them potential Trx targets. Trxs may post-
translationally regulate the activity of mitochondrial enzymes like SDH, fumarase, and ATP- citrate lyase (Daloso
et al., 2015). A relative increase in flux through the TCA cycle occurs in trxo1 mutants, which may cause the in-
creased AOX activity (Florez-Sarasa et al., 2019). Overexpression of Trxo1 in tobacco could alleviate H2O2-in-
duced damage and maintained GSH redox state (Ortiz-Espin et al., 2015). Absence of mitochondrial Trxo1 did
not lead to visible phenotypes under normal or salinity conditions (Calderon et al., 2018), while others reported
alterations in Arabidopsis rosette size by 6 weeks of age (Daloso et al., 2015; Florez-Sarasa et al., 2019). Recent
work shows that the CBS-domain containing protein CBSX3 interacts with Trxo2 and SDH1, and CBSX3 could
stimulate Trxo2 activity (Shin et al., 2020). CBSX3 overexpression led to increased ROS production, while cbsx3 si-
lencing and Trxo2 knockdown surprisingly led to reduced mtETC ROS production (Shin et al., 2020).
Our understanding of mitochondrial GRXs also increased significantly. The mitochondrial monothiol GRXS15 is
important for Fe–S protein maturation in Arabidopsis (Moseler et al., 2015; Ströher et al., 2016). GRXS15 can co-
ordinate and transfer Fe–S clusters, powered by GSH, which is especially important for lipoic acid-dependent
enzymes like GDC H protein. In contrast, GRXS15 has very low deglutathionylation and antioxidant reduction ac-
tivity (Ströher et al., 2016).
GRXS15 loss-of-function plants displayed embryo-lethality or severe root growth reductions, showing that it has
a crucial function most likely via its role in mitochondrial protein biogenesis, but unlikely for its potential role in
antioxidant reduction (Moseler et al., 2015; Ströher et al., 2016).
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is exported from the mitochondria into the cytosol where it
is proposed to regulate NADPH/NADP + balance, contribut-
ing to biosynthesis of amino acids and other compounds
during photosynthesis (Igamberdiev, 2020). Together, the
malate and citrate valves may balance the redox state of
photosynthetic cells (Igamberdiev, 2020). The triose
phosphate/3-phosphoglycerate (TP-3PGA) shuttle can also
export ATP and NADH from the chloroplast to the cytosol
(Shameer et al., 2019). Flux balance modeling suggested that
mitochondrial ATP synthesis and export of chloroplast
NADPH is also required to fulfill cytosolic ATP requirements
even in daytime light conditions where chloroplast ATP syn-
thesis is dominant (Shameer et al., 2019).

During photorespiration, where RuBisCO incorporates O2

instead of CO2 leading to photosynthetic losses, 3-PGA
must be recovered by a complex interaction of enzymes in
the chloroplast, peroxisomes, and also mitochondria.
Mitochondrial glycine decarboxylase (GDC) converts glycine
to serine during photorespiration, using NAD + and releasing
ammonia and CO2 (Douce et al., 2001; Araujo et al., 2014).
The mitochondrial redox systems also impact on photores-
piration function. Trx h2 (located in mitochondria and cyto-
sol) regulates the redox status of the GDC L-subunit and
can deactivate GDC-L in vitro (da Fonseca-Pereira et al.,
2020). Trx h2 mutants showed alterations in photorespira-
tion and respiration metabolites, indicating an important
role. Impairing mitochondrial Trx o1 also resulted in re-
stricted GDC activity under high-light conditions (Florez-
Sarasa et al., 2019) and shifts from high to low CO2

(Reinholdt et al., 2019). These studies provide clear examples
of how mitochondrial redox systems can directly affect mi-
tochondrial and whole plant metabolism.

Plant mitochondria can also support cytosolic pathways.
Methylglyoxal is a toxic by-product generated by glycolysis
in the cytosol and is rapidly scavenged by the glyoxalase sys-
tem, resulting in D-lactate production (Welchen et al.,
2016). The mtETC accepts electrons from mitochondrial D-
lactate dehydrogenase in the intermembrane space via cyt c,
protecting against methylglyoxal and D-lactate toxicity
(Welchen et al., 2016). The plant mtETC also plays a role in
balancing cellular redox state in response to changes in ni-
trate/ammonium nutrition balance, for instance by affecting
GSH redox metabolism (Podgorska et al., 2018; Rasmusson
et al., 2020). Recent development of in vivo cytosolic
NADH/NAD + sensor lines using peredox-mCherry further
showed that inhibition of the mtETC results in a gradual
reduction of the cytosolic NAD pool, indicating that the
cytosolic NAD redox state depends on mtETC activity for
instance via external NDs or metabolite transport (Steinbeck
et al., 2020).

All these interactions of mitochondria with cellular
metabolism depend on the efficient transport of organic
compounds, ions, and cofactors into and out of the mito-
chondria. A large family of mitochondrial carrier proteins is
present on the IMM, which are primarily driven by the mi-
tochondrial proton gradient and transmembrane potential
(Lee and Millar, 2016). Substrates include acetyl-CoA,

adenosyl nucleotides, TCA cycle intermediates, amino acids,
and inorganic ions, but the directionality and specificity of
each transporter protein have been a challenge to study.
Novel in vivo sensor tools will be useful in obtaining more
detailed insights (De Col et al., 2017; Wagner et al., 2019;
Arce-Molina et al., 2020; Galaz et al., 2020). It is also unclear
how they regulate or are regulated by redox signals and
post-translational modification (PTM). The mitochondrial
ATP/ADP carrier AAC1-3 was found to be acetylated, but
the implications of this are unknown (Konig et al., 2014a,
2014b). A mechanosensitive channel-like protein, MSL1 was
also shown to be targeted to plant mitochondria, where it
acts as an ion channel to dissipate excessive transmembrane
potential (Lee et al., 2016). MSL1 can be induced during
mitochondrial dysfunction (Van Aken et al., 2007), and un-
der selected stress conditions loss of MSL1 resulted in a
higher oxidation state of the mitochondrial GSH pool (Lee
et al., 2016), suggesting it has a role in oxidative stress relief.

Post-translational modification of mitochondrial
proteins
Mitochondrial proteins are subjected to PTMs, which has
been increasingly clear by improved proteomics methodolo-
gies as recently reviewed (Møller et al., 2020). PTMs on
mitochondrial proteins include cysteine/tryptophan/methio-
nine oxidation, nitrosylation, carbonylation, phosphorylation,
lysine acetylation/succinylation, and more (Konig et al.,
2014a, 2014b; Akter et al., 2015; Lu et al., 2018; Zhou et al.,
2018; Møller et al., 2020; Nietzel et al., 2020). Such modifica-
tions are affected by kinases, (de)acetylases, ROS, and the
mitochondrial redox systems described above, and can po-
tentially change protein activity much faster than for in-
stance transcriptional regulation. Classic examples like Cys
disulfide bridges change protein structure and can affect
metal ion binding. Phosphorylation introduces negative
charges which can affect protein interactions, recognition,
signaling, or affect activity, while acetylation neutralizes posi-
tive charges and adds hydrophobicity. PTMs on sensor pro-
teins that act as on/off switches in redox and ROS signaling
have been much sought after, but remain largely elusive
(Liebthal et al., 2018). Despite the very long lists of PTMs on
mitochondrial proteins, only few examples exist where these
PTMs have a shown function, and a lot of the PTMs are
considered “molecular noise” that arises chemically. It is not
well understood if PTMs could act in a (semi-)quantitative
way, where the number of PTMs per protein affects the
function in a variable way. For instance, the oxidation state
of AOX can be affected by Trx in vitro, but a lack of mito-
chondrial TrxO1 did not affect AOX redox state in vivo and
even lead to an increase in activity (Box 2; Florez-Sarasa
et al., 2019). In the case of GDC, redox-induced PTMs by
Trx systems were shown to inhibit its activity resulting in
in vivo effects (Reinholdt et al., 2019; da Fonseca-Pereira
et al., 2020). In addition, many of the enzymes that add and
remove these PTMs are still unknown (Konig et al., 2014a,
2014b). It will thus be a significant task to come to an
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accurate view of how PTMs dynamically modulate the vari-
ous functions of plant mitochondria.

Mitochondria-to-nuclear “retrograde” signaling
Most proteins operating in the mitochondria are encoded in
the nuclear genome, so if there is a specific need to alter
their production, the mitochondria must be able to relay
this information to the nucleus. Furthermore, as mitochon-
drial function has far-reaching effects on the plant as a
whole, retrograde signaling is used to regulate transcription
of many nonmitochondrial proteins, thereby affecting plant
growth and defense. An early observation of plant mito-
chondrial retrograde regulation (MRR) was the induction of
AOX transcripts and protein in response to stress and inhi-
bition of mitochondrial function (Maxwell et al., 1999).
Many studies have now shown MRR occurs in response to
chemical and genetic inhibition of mitochondrial function
(Schwarzländer et al., 2012; Van Aken et al., 2016a, 2016b).
Mechanistic insight was obtained into how plant MRR is
controlled, by identification of mainly transcription factors
that regulate or modulate expression of MRR target genes
including ABI4, WRKY, MYB29, and NAC transcription fac-
tors (Giraud et al., 2009; Vanderauwera et al., 2012; De
Clercq et al., 2013; Ng et al., 2013; Van Aken et al., 2013;
Ivanova et al., 2014; Zhang et al., 2017a, 2017b, 2017c).
Especially a class of membrane-bound NAC transcription
factors plays a crucial role in plant MRR, with ANAC017 the
most prominent in Arabidopsis (Van Aken et al., 2016a,
2016b). ANAC017 is anchored into the ER membrane, where
it is cleaved upon mitochondrial dysfunction (probably by
rhomboid proteases) and translocates to the nucleus to ini-
tiate expression of genes encoding mitochondrial (e.g.
AOX1a) and nonmitochondrial (e.g. auxin glucosyltransferase
UGT74E2) proteins (De Clercq et al., 2013; Ng et al., 2013). It
operates in a positive feedback loop by activating similar
genes like ANAC013 (De Clercq et al., 2013), but is repressed
by negative feedback from auxin signaling (Ivanova et al.,
2014; Kerchev et al., 2014). Other factors like radical-induced
cell death protein RCD1 bind the ANAC017-related tran-
scription factors and repress their activity when not required
(Shapiguzov et al., 2019). Recent work has shown that the
ANAC017 pathway is most likely the functional equivalent
of mitochondrial unfolded protein response-related (UPRmt)
pathways that have been studied extensively in mammalian
systems (Haynes et al., 2010; Pulido et al., 2010; Moullan
et al., 2015; Quiros et al., 2017; Wang and Auwerx, 2017;
Kacprzak et al., 2020). Although each eukaryotic kingdom
appears to have evolved their own set of upstream regula-
tors, the UPRmt target genes have been well conserved, af-
fecting mitochondrial functions such as chaperones, import
components, and respiratory components, as well as sys-
temic growth and defense regulators (Tran and Van Aken,
2020). MRR pathways also appear to overlap or interact
with chloroplast retrograde pathways (Van Aken and
Pogson, 2017; Pfannschmidt et al., 2020; Wang et al., 2020),
and an ANAC017-independent MRR pathway may even
control plastid gene expression in response to simultaneous

inhibition of Complex IV and AOX (Zubo et al., 2014;
Adamowicz-Skrzypkowska et al., 2020). Chemicals that in-
hibit mitochondrial function can trigger divergent MRR
responses in light or dark conditions, indicating
complex interactions also with chloroplast physiology (Alber
and Vanlerberghe, 2019).

A key knowledge gap remains in how mitochondrial dys-
function is sensed. Many potential physiological parameters
or second messengers that could be affected by mitochon-
drial function could be considered as players including ATP,
NAD(P)H/NAD(P) + ratio, Ca2 + , pH, transmembrane poten-
tial, thiol switch proteins, PTMs, ROS, TCA cycle intermedi-
ates, oxidized peptides, etc. (Møller and Sweetlove, 2011;
Vestergaard et al., 2012; Schwarzländer and Finkemeier,
2013). The clearest association is between MRR and H2O2,
with many overlapping transcriptional responses between
MRR and H2O2 treatment (Ng et al., 2013; Wagner et al.,
2018). It is, however, unclear whether MRR and ROS pro-
duction occur in parallel, or whether ROS formation is a key
signaling component. Mitochondrial Ca2 + fluctuations are a
less likely candidate, as mutants with defects in mitochon-
drial Ca2 + transport do not have typical MRR-related
changes in, for example, AOX activity and resistance to
Complex III inhibitor antimycin A (Wagner et al., 2015).
Alternatively, one may argue that a lack of MRR-phenotypes
in mitochondrial Ca2 + transport regulator mutants rather
suggests that fluctuations in mitochondrial Ca2 + transport
may be needed for MRR. With key regulators like ANAC017
residing in the ER, mitochondrial-ER contact sites may be of
particular importance for MRR in plants (Michaud et al.,
2016; Li et al., 2019; Liu and Li, 2019).

Mitochondrial function from seed to senescence
The biochemical and signaling functions of mitochondria
not only affect cellular homeostasis, but the impact on the
whole plant. Many single or multiple mutants in nuclear
genes encoding mitochondrial proteins have embryo-lethal
phenotypes, underlining their essential role for plant viability
(Carrie et al., 2010; Zhang et al., 2012; Moseler et al., 2015),
even if some species have highly reduced mitochondrial
functionality (Maclean et al., 2018). In the last 5 years, many
more reports showed the importance of mitochondria both
as energy factories and signaling components during plant
development.

Shortly after seed imbibition, mitochondrial energy metab-
olism is crucial to move from a desiccated state into a
functioning seedling with enough reserves to establish itself
until the light is perceived and photosynthesis begins.
Mitochondrial functions can already affect the sensitivity to
germination by affecting abscisic acid (ABA) and gibberellic
acid levels (Wang et al., 2014). Within minutes after imbibi-
tion, energy metabolism and respiration are started, mito-
chondrial transmembrane potential is established and ATP
levels in the cytosol are increased (Paszkiewicz et al., 2017;
Nietzel et al., 2020), well before transcriptional regulation
could take effect (Law et al., 2012). The redox machinery
also starts up very quickly, leading to rapidly reduced GSH
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pools in mitochondria and cytosol. This results in the reduc-
tion of cysteine residues in mitochondrial proteins belonging
for example, to the mtETC and TCA cycle, which could act
as thiol switches to regulate their activity (Nietzel et al.,
2017; Nietzel et al., 2020). Especially the cysteines of NTRA/
NTRB, GSH reductase (GR) 2, and Trx-o1 appear redox regu-
lated, and mutants in these genes show delayed germina-
tion, suggesting redox regulation of the TCA cycle and
mtETC plays an important role in efficient germination.
When seeds have germinated under severe nutrient defi-
ciency, they can remain in a stagnant phase for many weeks,
from which they can recover upon nutrient supplementa-
tion (Rethore et al., 2019). Although cyt c mtETC capacity
was the highest during the first stages of germination even
under severe nutrient starvation, AOX capacity became
dominant after several days during the transition to photo-
autotrophy in low-nutrient germination conditions.
Alternative mtETC activity, together with photorespiration,
is thus likely to be important for energy dissipation from
photosynthesis as well as maintaining mitochondrial carbon
metabolism. Plant mitochondrial quality is also important
for seed maturation and longevity, as mitochondrial
mutants can show accelerated seed aging (Sew et al., 2016;
Ratajczak et al., 2019). From a morphological perspective,
mitochondria in dry and newly imbibed seeds are mostly
spherical, but form a tubular network in the later stages of
germination that partially envelopes the nucleus, which facil-
itates the mixing of mtDNA (Paszkiewicz et al., 2017).
Mitochondrial motility thus increases once germination con-
ditions are met, resulting in increased rates of mitochondrial
fusion. When germination is completed, the mitochondrial
network becomes more fragmented and heterogeneously
distributed across the cell, in preparation for autotrophic
growth of the growing seedling.

A recent study showed that mitochondrial function can
affect apical hook formation during dark germination, which
may protect meristems from damage during soil emergence
(Merendino et al., 2020). ANAC017 and AOX1a play a role
in this seemingly exaggerated ethylene response during ger-
mination, but it is unclear how it would work, as ANAC017
and ethylene signaling operate relatively independently
(Wang and Auwerx, 2017; Kacprzak et al., 2020).

Plant meristem activity is also highly dependent on mito-
chondrial function, with many genes encoding mitochon-
drial proteins most highly expressed in meristematic tissues
(Van Aken et al., 2007; Wang et al., 2019). These rapidly
growing cells would have a high energy demand, so mutants
in mitochondrial proteins concomitantly show reduced mer-
istematic activity, often with underlying defects in mito-
chondrial morphology (Van Aken et al., 2007; Dolzblasz
et al., 2018; Liu et al., 2019; Wang et al., 2019). These defects
are often associated with increased ROS levels, deregulated
auxin balance, and activation of MRR (Van Aken et al., 2007;
Passaia et al., 2013, 2014; Yang et al., 2014; Kong et al., 2018;
Liu et al., 2019). MRR may operate to repress auxin abun-
dance and signaling for instance by induction of auxin-
conjugating enzymes, affecting auxin transport (Tognetti

et al., 2010; Ivanova et al., 2014; Liu et al., 2019) and through
interactions of NTR/GSH pathways and auxin signaling
(Bashandy et al., 2010; Passaia et al., 2014). Some results also
suggest ROS production in mitochondria could affect devel-
opmental regulators such Plethora 1/2 and ERF transcription
factors to control meristem activity (Yang et al., 2014; Kong
et al., 2018).

Mitochondria affect later stages of plant development in-
cluding fertility via cytoplasmic male sterility, which has
been used in plant breeding (Dewey et al., 1987; Bohra et al.,
2016). A wide range of mutants in mitochondrial proteins
also show reduced fertility, for instance by defects in pollen
germination or anther dehiscence (Selles et al., 2018; Shin
et al., 2020), which may involve mitochondrial Ca2 + regula-
tion and mtETC ROS production. Retrograde signaling
seems to be important to at least partially rescue fertility in
plants with mitochondrial defects (Van Aken et al., 2016).

Recycling of stored resources is crucial to allow survival
under dark periods or to provide energy reserves for seed
production. Mitochondria appear to be part of this recycling
until the last stages of leaf senescence (Keech et al., 2007;
Chrobok et al., 2016). Under complete darkness, mitochon-
drial metabolism is needed to extend plant survival by using
branched-chain amino acids and cell wall-degradation prod-
ucts to produce ATP (Law et al., 2018). Mitochondrial retro-
grade signaling can affect plant senescence, with
observations that continuous mitochondrial stress can ex-
tend plant life span (Wang and Auwerx, 2017), although it
is hard to differentiate between an overall growth retarda-
tion and true suppression of aging. ANAC017 has also been
suggested to affect plant senescence, though contradicting
reports showing senescence stimulating (Meng et al., 2019)
or repressing roles (Kim et al., 2018) need to be clarified.
Selective autophagy of mitochondria (mitophagy) is poorly
understood, but it appears to be important for optimal re-
source recycling during senescence (Li et al., 2014a, 2014b;
Broda et al., 2018). The balance between cellular survival
and PCD also affects whole-plant growth and survival. Plant
mitochondria are involved in PCD, though unlikely via cyt c
release as observed in animal systems, with both protective
and PCD-promoting properties likely involving mitochon-
drial ROS production (Bi et al., 2014; Zhang et al., 2014; Van
Aken and Van Breusegem, 2015; Wu et al., 2015; Zhang
et al., 2017a, 2017b, 2017c; Zhao et al., 2018; Zhang et al.,
2020a, 2020b).

Mitochondria and stress tolerance
Many genes encoding mitochondrial proteins are highly
stress-inducible at the transcript and protein level (Van
Aken et al., 2009), and many studies have shown that mito-
chondria can play a significant role in plant stress response
and survival (Berkowitz et al., 2016). Drought and salinity
tolerance are clearly impacted by mitochondrial function
and signaling, with many studies highlighting the role of
AOX (Giraud et al., 2008; Skirycz et al., 2010; Dahal et al.,
2014). It is thought that AOX maintains respiration during
drought, providing an electron sink needed for
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photosynthesis and preserving chloroplast ATP synthase
protein levels and activity (Dahal et al., 2014). AOX also
appears to reduce oxidative damage (for instance, protein
carbonylation) in chloroplasts and mitochondria during
extreme drought (Dahal and Vanlerberghe, 2017). An un-
known signal from the photosynthetic ETC may coordi-
nate AOX and light-harvesting complex (LHCB) amounts
particularly during stresses (Dahal et al., 2017). Similarly,
overexpression of UCP1 in Nicotiana tabacum allowed to
maintain higher respiration and lower H2O2 production
during drought, while regaining water faster after rewater-
ing (Barreto et al., 2017). Mitochondria affect stomatal
function, for instance AOX may reduce NO levels that
could act as a signal to close stomata (Cvetkovska et al.,
2014). A functional alternative mitochondrial ETF/ETFQO
pathway was found to improve drought tolerance by sup-
porting electron transfer into the mtETC (Pires et al.,
2016). The putative mitochondrial pyruvate carriers
NRGA1 and MPC1 negatively regulate guard cell signaling
in response to ABA, with nrga1 and mpc1 mutant plants
displaying increased ABA sensitivity in guard cells and in-
creased drought tolerance (Li et al., 2014a, 2014b; Shen
et al., 2017). The authors suggest that increased pyruvate
content in the mutants induces stomatal closure by

activating slow-type anion channels, which require
NADPH oxidases and ROS (Shen et al., 2017).

The Trx system may also contribute to drought resistance
in plants, as ntra ntrb and trxo1 mutants displayed im-
proved recovery in photosynthetic capacity (Fv/Fm) after
consecutive drought events (da Fonseca-Pereira et al., 2019).
A number of ANAC017 MRR target genes can positively af-
fect drought/salinity tolerance including auxin glycosyltrans-
ferase UGT74E2 (Tognetti et al., 2010), outer mitochondrial
membrane (OMM) ATPase OM66 (Zhang et al., 2014), SA
sulfotransferase AtSOT12 (Baek et al., 2010), and AOX1a
(Giraud et al., 2008). This indicates that MRR has a role also
during water-stress responses (Ng et al., 2013; Bui et al.,
2020; Meng et al., 2020), likely by affecting hormone
balance.

During flooding and submergence mitochondria are af-
fected by O2 deprivation, and mitochondrial signaling plays
an important role in flooding tolerance (Box 3). Several O2

sensors have been suggested in plants including cysteine oxi-
dases that oxidize N-termini of ERF-VII transcription factors
via cysteine–sulfenylation, leading to their degradation via
the N-degron pathway and thus repressing hypoxic
responses (Abbas et al., 2015; White et al., 2018). A role for
Complex IV in acute hypoxia sensing was proposed in

BOX 3 THE IMPORTANCE OF RETROGRADE SIGNALING UNDER PHYSIOLOGICAL CONDITIONS

O2 deprivation directly inhibits mitochondrial function, which plants face during flooding or germination in com-
pact and/or anoxic soils. Low O2 availability may directly inhibit Complex IV and AOX, although Complex IV has
higher affinity for O2 (Millar et al., 1994). Gene expression changes to low O2 are highly similar to for example,
Complex III inhibition (Wagner et al., 2018), affecting many ANAC017-dependent MRR target genes.
Physiological parameters like cytosolic ATP concentration, pH, and redox state respond very similarly to inhibi-
tion of the mtETC and low O2, indicating mitochondrial dysfunction is important for hypoxia response (Wagner
et al., 2019).
Accordingly, ANAC017 is an important positive regulator of Arabidopsis tolerance to submergence (Bui et al.,
2020; Meng et al., 2020). ANAC017-target genes were more methylated during adulthood in accordance with
higher susceptibility of adult plants to submergence (Bui et al., 2020). ANAC017 operates in parallel with WRKY
transcription factors that co-regulate gene expression of genes encoding mitochondrial proteins (Van Aken et al.,
2013; Meng et al., 2020).
Simultaneous inhibition of cyt c and AOX pathways resulted in repression of chloroplast gene expression, which
was also observed during hypoxia (Adamowicz-Skrzypkowska et al., 2020). Submergence and hypoxia increase fer-
mentation and lactate formation (Barreto et al., 2016), which may be suppressed by ANAC017- signaling (Van
Aken et al., 2016b). UCP1 overexpression in tobacco also induced hypoxia marker genes, suggesting a conserved
response. Interestingly, priming with low antimycin A concentrations protect adult plants against flooding dam-
age, most likely via MRR activation (Bui et al., 2020). How (and which) MRR target genes precisely protect
against hypoxia damage requires further investigation. This may involve interplay between NO and ROS produc-
tion via AOX and cyt c pathways, but both NO producing and repressing roles for AOX have been suggested un-
der hypoxia and normoxia, respectively (Gupta et al., 2011; Alber et al., 2017; Gupta et al., 2017; Vishwakarma
et al., 2018; Jayawardhane et al., 2020). Potentially, AOX drives ATP production and the hemoglobin-NO cycle via
NO generation under anoxic conditions (Vishwakarma et al., 2018). NO produced under low O2 conditions is
likely to inhibit Complex IV activity to avoid the tissue reaching severe anoxia, for instance in a germinating seed
(Borisjuk et al., 2007; Benamar et al., 2008). O2 sensing and light perception are important for seedling establish-
ment, so mitochondrial function and MRR may have an important role during soil emergence, which needs fur-
ther study (Abbas et al., 2015; Merendino et al., 2020).
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mammalian systems, potentially via hypoxia-induced super-
oxide production leading to MRR signaling (Sommer et al.,
2017). The potential role of plant mitochondrial compo-
nents as O2 sensors thus needs further exploration.
Mitochondria help plants to cope with heavy metal and
toxin-induced stress. The mitochondrial GrxS15 partially
protects plants from arsenic toxicity, most likely indirectly
through its role in iron-cluster transfer (Ströher et al., 2016).
Many mitochondrial membrane channels and transporters
have also been linked to heavy metal resistance.
Mitochondrial pyruvate carriers prevent cadmium accumula-
tion in Arabidopsis by driving the TCA cycle and GSH syn-
thesis, which in turn support ATP levels to drive Cd2 +

efflux transporters on root epidermal cells (He et al., 2019).
MSL1 also appears to be required to maintain mitochondrial
redox balance and GSH levels after exposure to Cd2 + and
high temperature (Lee et al., 2016).

Finally, several studies have shown the importance of mi-
tochondrial factors during biotic stress. Overexpression of
outer membrane AAA ATPase AtOM66 caused increased
sensitivity to PCD induction, resulting in resistance to bio-
trophic pathogen Pseudomonas syringae, but hypersensitivity
to necrotrophic pathogen Botrytis cinerea (Zhang et al.,
2014). Although the mechanism is unclear, the AtOM66 OX
plants contained increased levels of SA, which could affect
their pathogen response. Such increased levels of SA have
also been observed in mutants of mitochondrial ribosome
RPS10 (Adamowicz-Skrzypkowska et al., 2020). AOX can re-
press mitochondrial superoxide bursts after inoculation with
P. syringae pv. Phaseolicola (Cvetkovska and Vanlerberghe,
2013). This mitochondrial ROS burst appears to be required
but not sufficient to cause PCD via the hypersensitive re-
sponse (HR). Surprisingly, the superoxide burst induced by
P. syringae pv. maculicola and antimycin A was delayed in
plants lacking AOX, suggesting that the mtETC is a target
during HR. A link between SDH1 expression and SA-based
defense pathways has also been shown by several studies.
SDH1, potentially via its ROS producing capacity, may con-
tribute to SA production, which was suggested to improve
resistance to a range of virulent bacterial and fungal patho-
gens (Gleason et al., 2011; Belt et al., 2017; Zhang et al.,
2020a, 2020b). Several genes encoding mitochondrial pro-
teins such as OM66 and dicarboxylic acid carriers are also in-
corporated into JA-dependent touch- and wounding
defense networks, but their role here is still unclear (Van
Aken et al., 2016a).

Concluding remarks
The last years have seen a tremendous increase in our un-
derstanding of the inner workings of plant mitochondria,
how they function within whole-cell metabolism and how
they help plants coordinate development and stress re-
sponse. This is to a significant extent due to improved ex-
perimental methods, but also by building on increasing
knowledge, and a very active research community.
Fortunately, many key questions remain unanswered, which

should provide interesting research challenges for years to
come (see Outstanding Questions).
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