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Abstract
Redox compartmentalization in organelles is an effective
evolutionary strategy (Box 1; Jones and Go, 2010). From an
evolutionary perspective, peroxisomes, originating from the
endoplasmic reticulum (ER), were selected to house a range
of metabolic pathways involving the production of certain
reactive oxygen species (ROS) such as H2O2 to avoid toxicity
to other organelles such as mitochondria (Gabaldón, 2018).
Peroxisomes play a diverse range of roles in cell functionality
and in the perception of and responses to changes in their
environment (Sandalio and Romero-Puertas, 2015; Lismont
et al., 2019). The range of functions associated with plant
peroxisomes has increased considerably over the last two
decades (Table 1). As most of these pathways produce ROS
and nitric oxide (NO), disturbances in these metabolic pro-
cesses trigger transitory changes in ROS/reactive nitrogen
species (RNS) production. These changes regulate peroxi-
somal metabolism, leading to peroxisome-dependent signal-
ing and organelle crosstalk, which triggers specific cell
responses (Sandalio and Romero-Puertas, 2015). The biosyn-
thesis of phytohormones jasmonic acid (JA), auxin IAA, and
salicylic acid (SA) associated with the b-oxidation pathway
contributes to the complex role of peroxisomes in develop-
ment and stress responses (Kao et al., 2018; Figure 2A).
Peroxisomes dynamically regulate their number, shape, and

ADVANCES

• Peroxisomal H2O2 regulates pathogen
associated processes, DNA repair systems, cell
cycles and phytohormone-dependent signalling.

• Peroxisomes regulate cellular processes in the
cytosol and other cell compartments through
moonlighting proteins such as CAT3, which is
able to transnitrosylate and degrade GSNOR via
autophagy.

• Peroxisomes are highly dynamic organelles that
are capable of changing their number, size,
morphology and speed in response to
environmental redox changes.

• Peroxules are ROS- and NO-induced dynamic
structures that are regulated by PEX11a, which
connects peroxisomes to chloroplasts,
mitochondria, ER and lipid bodies.

• Under basal and stress conditions, peroxisomal
populations and quality are regulated by
selective autophagy (pexophagy) which is
controlled by ROS and the peroxisomal
protease LON2.
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protein content in response to changing environmental con-
ditions and remain in close contact with other subcellular
compartments such as mitochondria and chloroplasts
(Sandalio and Romero-Puertas, 2015; Shai et al., 2016;
Sandalio et al., 2020). Peroxisomes play a key role in the evo-
lution of the metabolic networks of photosynthetic organ-
isms by connecting oxidative and biosynthetic pathways
operating in different compartments. This review updates
our knowledge of peroxisomal redox homeostasis and the
role of ROS and NO in the functionality, biogenesis and
abundance of these organelles, as well as their role as redox
hubs in metabolic regulation, signaling, and organelle
crosstalk.

Peroxisomes are ROS and NO producers

Peroxisomes produce and scavenge ROS
ROS include an array of molecular oxygen derivatives that
occur as a normal attribute of aerobic life (Figure 1).
Peroxisomes are one of the main sources of cellular ROS
production and one of the most oxidized cellular organelles
(Smirnoff and Arnaud, 2019). However, peroxisomes have a
complex antioxidant system to balance ROS levels, enabling
them to strictly regulate organelle functionality, metabolism,

and signaling networks. The first step in O2 univale O2
.–

(Figure 1), is produced in ureide and nucleic acid catabolism
by xanthine oxidoreductase (XOR) and urate oxidase or uri-
case (UO) reaction (Werner and Witte, 2011; Sandalio et al.,
2013; Figure 2A); in the sulfite oxidation by sulfite oxidase
(SO; Byrne et al., 2009); and in the NADH/NADPH-depen-
dent electron transport chain in the peroxisomal membrane.
Superoxide accumulation is regulated by different superox-
ide dismutases (SOD; reviewed in Sandalio and Romero-
Puertas, 2015; Figure 2B).

In photosynthetic tissue, peroxisomes accumulate the
highest concentrations of organelle H2O2 (the second step
in O2 reduction) with a flux of �10,000 nmol–2 m–2 s–1

(Foyer and Noctor, 2003). The use of H2O2 ratiometric
reporter HyperAs targeting peroxisomes has facilitated the
imaging of changes in peroxisomal H2O2 accumulation in re-
sponse to Cd treatment (Calero-Mu~noz et al., 2019) and the
increase in intraperoxisomal Ca2 + levels (Costa et al., 2010).
The main source of H2O2 in peroxisomes in green tissue
is GOX in the photorespiration cycle (Figure 2A), which
contributes up to 70% of total H2O2 production in plant
cells (Reumann and Weber, 2006; Foyer et al., 2009).
Photorespiration requires coordination of the chloroplast,
peroxisome, mitochondrion, and cytosol; and
photorespiration-dependent H2O2 production increases
considerably under environmental stress conditions such as
heat and drought (Talbi et al., 2015; Walker et al., 2016),
heavy metal (Gupta et al., 2017), high light (Cui et al.,
2016a), and biotic stress (Rojas et al., 2012; Hodges et al.,
2016; Yang et al., 2018). Fatty acid b-oxidation, another
source of H2O2 in peroxisomes by the Acyl-CoA oxidase
(ACX), provides energy during the initial stage of seedling
growth by oxidizing fats stored as triacylglycerol (TAG) in oil
bodies (Rinaldi et al, 2016; Figure 2A). Other b-oxidation
pathways are active in green tissues, including the synthesis
of ubiquinone, hormones such as indole acetic acid (IAA)
and JA, and secondary metabolites such as benzoic acid
(BA) and phenylpropanoids (reviewed in Pan et al., 2020;
Figure 2A). Polyamine catabolism and sarcosine oxidase are
additional peroxisomal sources of H2O2 (Figure 2A; Goyer
et al., 2004; Wang et al., 2019). Peroxisomal H2O2 levels are
regulated by balancing H2O2 generation and scavenging
rates (Figure 2B) by catalase (CAT), which account for
10%–25% of total peroxisomal proteins (Reumann et al.,
2004; Figure 2B). Arabidopsis (Arabidopsis thaliana) plants
contain three CAT genes, CAT1, CAT2, and CAT3, with
CAT2 being the most important defense against

Figure 1 Sequential reduction of O2 and ROS production: superoxide (O2
.–), hydrogen peroxide (H2O2), and hydroxyl (�OH) radicals.

Table 1 Plant peroxisome functions

• ROS and RNS metabolism

• H2O2 and NO signaling

• Photorespiration

• Phytohormones biosynthesis (JA, IAA, SA)

• Fatty acid b-oxidation

• Glyoxylate cycle

• Polyamine catabolism

• Amino acids metabolism

• Indole glucosinolates metabolism

• Ureide metabolism

• Purine catabolism

• Biotin biosynthesis

• Ubiquinone biosynthesis

• Phylloquinone biosynthesis

• Isoprenoids biosynthesis

• BA derivate biosynthesis

• Sulfite metabolism
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Figure 2 Oxygen and nitrogen reactive species metabolism in peroxisomes. A, Principal peroxisomal metabolic pathways associated with peroxi-
somal ROS and NO production. ROS are produced in metabolic pathways such as b-oxidation, photorespiration, ureides metabolism, and poly-
amine oxidation, and in a small electron transport chain associated with the membrane (peroxisomal membrane proteins, PMP18 and PMP29;
Figure 2B). NO is produced in peroxisomes by NOS-like (NOS-l) activity, although other sources, such as XOR, polyamine oxidation, and IBA metab-
olism, could also be involved. ROS, NO, and other RNS may leak out of the peroxisome (dashed arrows) and act as signal molecules that regulate
cell metabolism and gene expression. B, Scheme of peroxisomal antioxidant defenses, RNS scavengers, and NAD(P)H supply. O2

.– is regulated by
SODs, while H2O2 is controlled by CAT, the ASC-GSH cycle, and GPx. Peroxynitrite (ONOO–) and GSNO are produced in peroxisomes by reaction
of NO with O2

.– and glutathione (GSH), respectively. GSNO can negatively regulate MDHAR and CAT through S-nitrosylation and nitration, and
SOD may be regulated by nitration. SOD may indirectly control ONOO– by regulating O2

.– levels. Uric acid acts as an ONOO– scavenger. NAD(P)H
is supplied by the oxidative pentose phosphate pathway (G6PD; 6PGD), ICDH, MDH, and NUDIX19. 6PGD, 6 phosphogluconate dehydrogenase;
AAT, amino acid translocator; AOC, allene oxide cyclase; AOS, allene oxide synthase; APX, ascorbate peroxidase; BADH, betaine aldehyde dehydro-
genase; CAT, catalase; CuAO, copper amine oxidase1; DHAR, dehydroascorbate peroxidase; GOX1,2, glycolate oxidase1,2; G6PD, glucose-6-phos-
phate dehydrogenase; GGT, glutamate–glyoxylate aminotransferase; GlyT, glycerate–glycolate translocator; GR, glutathione reductase; GPx,
glutathione peroxidase; H-Acyl-CoA, 3-hydroxyacyl-CoA; HPR, hydroxypyruvate reductase; IAA, indole-3-acetic acid; IBA, indole-3-butyric acid; IBR3,
acyl-coA dehydrogenase/oxidase-like IBR3; ICDH, isocitrate dehydrogenase; KAT, L-3-ketoacyl-CoA-thiolase; LOX, lipoxygenase; MDH2, malate dehy-
drogenase; MDHAR, monodehydroascorbate peroxidase; MFP, multifunctional protein; OPCL1, OPC-8:0 CoA ligase1; NOS-l, NO synthase-like;
NUDIX19, nudix hydrolase homolog 19; OPR3, OPDA reductase3; PAO3, polyamine oxidase3; PAO3/4, polyamine oxidase 3/4; PNC, peroxisomal
ATP carrier; PXA1, peroxisomal ABC-transporter1; PXN, peroxisomal NAD carrier; SGT, serin–glyoxylate aminotransferase; UOX, urate oxidase.
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photorespiratory H2O2, accounting for 80% of activity
(reviewed in Mhamdi et al., 2012). In fact, physical
GOX-CAT interactions regulated by SA occur in rice leaves
(Zhang et al., 2016). A protective association between CAT
and isocitrate lyase has also been observed in castor bean
glyoxysomes (Yanik and Donaldson, 2005) and CAT2 also
interacts with ACX2/ACX3 regulating their activity and
therefore the SA-mediated regulation of JA biosynthesis,
under biotrophic infection (Yuan et al., 2017). Although the
extraordinarily low affinity of CAT for H2O2, with a Km of
around 43 mM, reduces its efficiency in controlling H2O2

the abundance of CAT compensates for this low affinity
(Foyer and Noctor, 2016). The peroxisomal ascorbate–gluta-
thione cycle, which, in Arabidopsis, composed of ascorbate
peroxidase (APX3 and APX5), monodehydroascorbate reduc-
tase (MDHAR1), dehydroascorbate reductase (DHAR1), and
glutathione reductase (GR1; reviewed in Mhamdi et al.,
2012; Sandalio and Romero-Puertas 2015; Pan et al., 2020;
Figure 2B) also contribute to H2O2 homeostasis. MDHAR
and APX are associated with the peroxisomal membrane
and the higher affinity for H2O2 of APX (100 lM) as com-
pared to CAT, could regulate H2O2 leakage from peroxi-
somes to the cytosol (Del Rı́o et al., 2003; Kaur et al., 2009;
Eastmond, 2007; Figure 2B). Therefore, CAT and APX are po-
sitioned to enable H2O2 to act as a second messenger.
Glutathione S-transferases support peroxide regulation in
these organelles (Pan and Hu, 2018). The ascorbate–glutathi-
one cycle also facilitates regeneration and maintenance of
the peroxisomal redox buffers ASC/DHA and GSH/GSSG.
The use of ratiometric glutathione redox potential reporters,
such as roGFP2, targeting peroxisomes has facilitated the
imaging of peroxisome oxidation under extended dark stress
and the application of elicitors (Bratt et al., 2016).

Peroxisomal NO/RNS production and scavenging
Although NO is a well-known signaling molecule in plants,
its metabolism has not been fully elucidated (León and
Broseta, 2020). Peroxisomal NO production has been associ-
ated with a NO synthase-like activity (NOS-l; Figure 2A;
Barroso et al., 1999), the conversion of IBA to IAA by b-
oxidation (Figure 2A; Schlicht et al., 2013), polyamine catab-
olism (Figure 2A; Wimalasekera et al., 2011; Agurla et al.,
2018), and the XOR reaction (Figure 2A; Antonenkov et al.,
2010; Wang et al., 2010). Other nitrogen-derived species,
such as peroxynitrite (ONOO–), resulting from the O�2 /NO
reaction, and nitrosoglutathione (GSNO), resulting from the
combination of NO and GSH and considered a cellular NO
reservoir, have been detected in peroxisomes (Figure 2A;
Ortega-Galisteo et al., 2012; Corpas and Barroso, 2014).
Peroxisomal SOD could regulate ONOO– accumulation by
controlling O2

.– availability and CAT could degrade it, as
reported in animal cells (Gebicka and Didik, 2009), and thus
play a key modulatory role at the cross-point between H2O2

and NO/ONOO–-mediated signaling pathways (Figure 2B).
Urate, a well-known peroxynitrite scavenger (Hooper et al.,
2000; Alamillo and Garcı́a-Olmedo, 2001), may contribute
also to regulate ONOO– in peroxisomes (Figure 2B).

S-nitrosoglutathione reductase (GSNOR), which balances
NO and S-nitrosothiol levels, has been proteomically identi-
fied in plant peroxisomes (reviewed in Sandalio et al., 2019),
although this requires validation.

NADH/NADPH regeneration in peroxisomes
The concept of redox stress (oxidative and reductive)
reflected by changes in NAD(H)/NADP(H) has gained
increasing attention. The NAD(P)H cofactor is required to
b-oxidation and antioxidative defenses MDHAR and GR.
NAD(P)H regeneration in peroxisome take place by the oxi-
dative pentose phosphate pathway (OPPP; Corpas et al.,
1999; Reumann et al., 2007; Lansing and Doering, 2020;
Figure 2B), NADP-dependent isocitrate dehydrogenase
(ICDH; Corpas et al., 1999; Reumann et al., 2007; Figure 2B),
NADH phosphorylation by NADH kinase 3 (NADK3; Waller
et al., 2010) and possibly betaine aldehyde dehydrogenase
(ALDH19; Hou and Bartels, 2015). The peroxisomal NADH
pool is supported by malate dehydrogenase MDH2 (Cousins
et al., 2008; Figure 2B). Peroxisomes also contain pyrophos-
phatase Nudix Hydrolase Homolog 19 (NUDT19), which
hydrolyzes NADPH to NMNH, as well as 20,50-ADP and
NADH to NMNH and AMP (Lingner et al., 2011).

ROS- and NO-dependent PTMs in peroxi-
somal metabolism regulation
Analysis of peroxisomal proteomes shows that a large num-
ber of peroxisomal proteins (35%) are targeted by multiple
PTMs (Sandalio et al., 2019). Peroxisomal-dependent ROS/
RNS can fine-tune post-translational redox changes in
proteins, regulating stability, activity, location, and protein–
protein interactions (Duan and Walther, 2015; Hashiguchi
and Komatsu, 2016; Sandalio et al., 2019; Foyer et al., 2020)
supporting peroxisomes capacity to regulate their metabo-
lism and dynamics in response to environmental changes.
Hydrogen peroxide leads to rapid and reversible oxidative
protein modifications such as sulfenylation, sulfinylation, and
intra- and intermolecular disulfide bond formation, which
contribute to coordinated regulation of cellular processes,
while overoxidation by sulfonylation appears to be an irre-
versible process (reviewed in Noctor et al., 2018; Young
et al., 2019; Sandalio et al., 2019; Sies and Jones, 2020). Given
their transient nature, these sulfur modifications are
regarded as redox switches (Huang et al, 2018). Peroxisomal
antioxidant defenses, fatty acid b-oxidation, and photorespi-
ration are prone to H2O2-dependent redox regulation
(reviewed in Sandalio et al., 2019). The glyoxalase 1 (GLX1)
homolog is a putative sulfenylated protein involved in
protection against carbonyls (Schmitz et al., 2018).

NO, in turn, modifies proteins through covalent PTMs
including S-nitrosylation (Martı́nez-Ruiz et al., 2011; Sánchez-
Vicente et al., 2019). Putative peroxisomal S-nitrosylated
proteins also include antioxidants and enzymes from the
photorespiration cycle (Romero-Puertas and Sandalio, 2016;
Sandalio et al., 2019) suggesting that S-nitrosylation plays
an important role in regulating peroxisomal H2O2
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concentrations under physiological and stress conditions
(Ortega-Galisteo et al., 2012). Recently, the noncanonical
catalase CAT3, identified as a “repressor of” GSNOR1
(ROG1), was reported to transnitrosylate GSNOR1 to pro-
mote its degradation by autophagy, while CAT1 and CAT2
do not do it, thereby CAT3 positively regulates NO signaling
and according to Arabidopsis rog1 mutants are more sus-
ceptible to NO than WT (Chen et al., 2020). CAT3 is local-
ized in peroxisomes, the cytoplasm, and the plasma
membrane (Li et al., 2015; Zou et al., 2015) and is recruited
into the nucleus by the cucumber mosaic virus (CMV) 2b
protein (Inaba et al., 2011; Murota et al., 2017). Zhan et al.
(2018) have reported that S-nitrosylation induces selective
autophagy of Arabidopsis GSNOR1 during hypoxia
responses. CAT3 also interacts with other proteins in the cy-
tosol and plasma membrane, thus increasing the likelihood
that these proteins are also substrates of CAT3 transnitrosy-
lase activity (Chen et al., 2020). These findings suggest NO
self-regulation and ROS/NO crosstalk. Zhang et al. (2020)
have reported that glutathione denitrosylation is required to
maintain the upregulation of GSNOR activity; thus coordi-
nating GSNOR activity with protein S-nitrosylation levels
to ensure appropriate signaling involving the SA pathway in
response to H2O2.

Some fatty acid b-oxidation enzymes, including ACX2,
3, may be S-nitrosylation targets (Sandalio et al., 2019).
OPC-8:0 CoA Ligase1 (OPCL1), involved in activating JA bio-
synthetic precursors in leaf peroxisomes (Koo et al., 2006), is
also a putative target of S-nitrosylation, pointing to NO/JA-
crosstalk. Proteomic analyses suggest that BRI1 suppressor 1
(BSU1)-like 3 is targeted by S-nitrosylation (Sandalio et al.,
2019) suggesting NO-dependent brassinosteroids signaling.
NO-dependent nitration also inhibits peroxisomal antioxi-
dants such CAT (Lozano-Juste et al., 2011; Chaki et al., 2015)
and SOD (Holzmeister et al., 2015). Therefore, NO and ROS,
apart from self-regulation (Romero-Puertas and Sandalio,
2016), may also regulate specific proteins and/or metabolic
pathways and metabolite channeling, depending on the re-
dox environment both inside and outside the peroxisome.

Peroxisome-dependent redox regulation of
transcriptional responses
ROS act as secondary messengers that are sensed by specific
redox-sensitive proteins, which activate signal transduction
pathways and alter gene expression (Suzuki et al., 2012;
Mittler, 2017). Different ROS trigger different protein modifi-
cations, as shown by different gene expression patterns
(Møller and Sweetlove, 2010; Mor et al., 2014). The subcellu-
lar site, where the ROS/oxidation state is modified, acts as a
specific cellular redox network signal (Foyer and Noctor,
2003; König et al., 2012; Foyer et al., 2017) and leaves a spe-
cific imprint on the transcriptome response (Rosenwasser
et al., 2011). The selective reactivity, stability, and diffusibility
of H2O2 make it an ideal signaling molecule (Sewelam et al.,
2014; Sies and Jones, 2020). Mutants lacking peroxisomal
CAT2 (cat2) have been extensively studied in Arabidopsis

and tobacco (Nicotiana tabacum) plants under control and
stress conditions, showing that altering peroxisomal H2O2

induces changes in gene expression profiles (Vandenabeele
et al., 2003, 2004; Chaouch et al., 2010; Queval et al., 2012).
This profile showed specificity with transcriptional responses
that differ from those induced by chloroplast-derived H2O2

(Sewelam et al., 2014). Analyses of WT plants grown at spe-
cific atmospheric CO2 levels to boost photorespiration and
production of H2O2 (Chaouch et al., 2010; Queval et al.,
2012) and of WT plants treated with aminotriazole, a cata-
lase inhibitor (Gechev et al., 2005), have also shown that
peroxisomal H2O2 plays a role in signaling, as a transcrip-
tomic footprint have been linked to peroxisomes
(Rosenwasser et al., 2013). However, little is known about
how peroxisome-derived H2O2 coordinates or relays signal-
ing events. Although peroxisome-dependent gene regulation
involves several metabolic categories (reviewed in Sandalio
and Romero-Puertas, 2015; Su et al., 2019), those related to
protein repair responses under stress conditions are regu-
lated in cat2 mutants (Queval et al., 2007; Sewelam et al.,
2014); suggesting that peroxisomes are involved in acclima-
tion and survival processes under changing environmental
conditions. The triple mutant cat1 cat2 cat3 shows serious
redox disturbance and growth defects under physiological
conditions, with differentially expressed genes belonging to
plant growth regulation, as well as abiotic and biotic stress
response categories. Some of these genes belong to tran-
scription factor and receptor-like protein kinase categories
(Su et al., 2019). The ROS signals derived from different cell
compartments are proposed to connect in the cytoplasm
with MAPK pathway to regulate the expression of nuclear
genes (Noctor and Foyer, 2016). Several genes related to
MAPK cascade pathways, such as MPK11, MPK13, and ser-
ine/threonine kinase oxidative signal inducible 1 (OXI1), are
severely altered in the triple cat mutant (Su et al., 2019).
Thus, peroxisomal H2O2 appears to participate in retrograde
signaling, although little is known about the underlying
molecular mechanisms and crosstalk with ROS from
other compartments (Sandalio and Romero-Puertas, 2015;
Su et al., 2019).

Redox-dependent regulation of peroxisomal
plasticity

Peroxisome biogenesis and proliferation
Their high plasticity enables peroxisomes to adapt their
number, morphology, movement, and metabolic pathways
to changes in their environment (Figure 3). However, why
certain signals and molecules trigger these changes, when
these changes occur, and how dynamic peroxisomal changes
function in relation to tolerance are not well understood.
Some evidence shows that peroxisomal proliferation through
the division of preexisting peroxisomes is regulated by ROS
(López-Huertas et al., 2000; Figure 3; Box 2). Peroxisome pro-
liferation occurs in response to abiotic stresses associated
with ROS production: ozone (Oksanen et al., 2004),
clofibrate (Nila et al., 2006; Castillo et al., 2008), salinity
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(Mitsuya et al., 2010; Fahy et al., 2017), cadmium (Romero-
Puertas et al., 1999; Rodrı́guez-Serrano et al., 2016), drought
(Ebeed et al., 2018), ABA (Ebeed et al., 2018), and senescence
(Pastori and del Rı́o, 1997). Interestingly, NO has recently
been reported to be involved in regulating peroxisome pro-
liferation in response to Cd (Terrón-Camero et al., 2020).

Proteins involved in peroxisome biogenesis and maintenance
are called peroxins (PEXs; Baker et al., 2016; Reumann and
Bartel, 2016; Kao et al., 2018; Reumann and Chowdhary,
2018). Peroxisome proliferation under abiotic stress appears
to be regulated by specific PEX11 genes which contain five
members (PEX11a-PEX11e; Lingard and Trelease, 2006; Orth
et al., 2007) and under abiotic stressspecific PEX11 appears
to regulate peroxisome proliferation. Thus, salinity upregu-
lated PEX11a and PEX11c in A. thaliana (Fahy et al., 2017),
while PEX11a and PEX11e were upregulated in response to
Cd exposure in Arabidopsis plants (Rodrı́guez-Serrano et al.,
2016; Terrón-Camero et al., 2020), and PEX11b, PEX11c, and
PEX11d were upregulated by hypoxia (Li and Hu, 2015).
Gene coexpression analysis in Arabidopsis plants under
drought conditions shows clustering of photorespiratory
genes and peroxisomal abundance, suggesting that H2O2

plays a role in peroxisomal abundance regulation (Li and
Hu, 2015). This is supported by the absence of peroxisome
proliferation in gox2 Arabidopsis mutants exposed to Cd
(Calero-Mu~noz et al., 2019). However, genome analyses of
Physcomitrium, A. thaliana, and Triticum aestivum show
upregulation of b-oxidation in response to drought, dehy-
dration, and ABA (Ebeed et al., 2018). Interestingly, PEX11
gene family expression differs between drought-sensitive and
resistant wheat genotypes, although the significance or not
of these differences for drought tolerance has not been
established (Ebeed et al., 2018). These findings suggest that
peroxisomal H2O2 could be involved in environmental
change perception and acclimation through differential
PEX11 regulation and peroxisome proliferation. Plant peroxi-
some proliferation could be a protective response to ROS
overflow in cell compartments due to highly efficient peroxi-
somal antioxidant defenses, as reported during protoplast
transition from G0 to G1 (Tiew et al., 2015) and in response
to salt stress in Arabidopsis and Oryza sativa by reducing

Figure 3 Hypothetical scheme showing changes in peroxisomal dy-
namics and their regulation, as well as their contribution to cell
responses to abiotic stresses such as metal toxicity. Cd stress promotes
the generation of ROS and NO, which activate peroxins (PEX11a and
PEX11e), probably through ROS-/NO-dependent post-translational
modifications (PTMs). PEX11a promotes the formation of peroxules,
which may control ROS/NO accumulation and ROS-dependent gene
expression. Peroxisomal elongation, constriction, and proliferation,
which are regulated by ROS and NO, were later observed. Longer ex-
posure periods increase the speed of peroxisome movement (D
SPEED), which is also controlled by ROS. The number of peroxisomes,
as well as oxidized, damaged peroxisomes, can be regulated by pex-
ophagy or via a process independent of autophagy involving chloro-
plast vesicle interactions with PEX11 (CV-PEX11), both of which
processes are regulated by ROS. All these changes in peroxisomal dy-
namics may be involved in redox homeostasis and redox-dependent
signaling, leading to plant acclimation to the stress. Red color, ROS;
yellow color, NO. DRPs, dynamin-related proteins; FIS1A-B, fission
protein1A-B; LON2, lon protease homolog 2.

Box 1 SUBCELLULAR REDOX COMPARTMENTALIZATION

As oxygen-dependent redox reactions came to control life after O2 appeared in the atmosphere, cells developed
complex mechanisms to detect and regulate these changes to maintain metabolic functionality. Redox compart-
mentalization in organelles is an effective evolutionary strategy, which regulates physiological and stress condi-
tions through site-specific footprinting (Jones and Go, 2010). This redox circuit flexibility facilitates rapid
responses to changes in intracellular redox equilibrium, which, in turn, favors beneficial signaling and detrimental
oxidative stress. Photosynthetic organisms have developed efficient redox control systems using redox signals as
the most fundamental forms of information (Foyer and Noctor, 2016). The thiol/disulphide couples GSH/GSSG
and Cys/CySS, the ASC/DHA couple and a broad range of redox dependent proteins, which are counterparts of
ROS such as H2O2 and other oxidants, form the core of the redox state and regulate the cell signaling, structure
and activity of proteins and transcription factors. Apart from ROS, RNS are also redox signaling molecules, which
include NO and peroxynitrite (ONOO–). Both ROS and RNS regulate covalent, often reversible, modifications,
mainly targeting Cys, which regulates metabolic shifts and triggers signaling cell responses (Noctor et al., 2018;
Sánchez-Vicente et al., 2019). Although irreversible oxidation products, such as sulfonic acid, carbonylation, and
nitration, adversely affect proteins and lipids, they may be also involved in oxidative signaling (Foyer et al., 2017).
Analyses of redox potential in plant tissue identified peroxisomes as some of the most oxidized cellular organ-
elles, with a redox potential of approximately –360 mV (Bratt et al., 2016; Smirnoff and Arnaud, 2019).
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both Na + accumulation and oxidative stress (Cui et al.,
2016b; Fahy et al., 2017). However, in quinoa plants,
principal component analyses show a negative correlation of
peroxisome abundance with yields in plants exposed to
heat, drought or both (Hinojosa et al., 2019). Therefore, the
capacity to maintain H2O2 homeostasis and peroxisome
quality control/abundance could determine the success of
plant adaptation to adverse conditions.

ROS/RNS-dependent formation of peroxules
In vivo observation of plant tissues, with fluorescent proteins
targeting peroxisomes, reveals the rapid formation of tubular
peroxisome extensions called peroxules, induced in response
to changes in ROS levels (Figure 3; Sinclair et al., 2009;
Barton et al., 2013; Rodrı́guez-Serrano et al., 2016). Short
periods of Cd exposure (15–30 min) induce peroxule forma-
tion, which is considerably reduced by H2O2 scavengers and
in rboh mutants, suggesting regulation by external ROS
(Rodrı́guez-Serrano et al., 2016). Confocal images show per-
oxule contacts with chloroplasts and mitochondria under
Cd treatment and high light (Sinclair et al., 2009; Sandalio
et al., 2013; Jaipargas et al., 2016; Rodrı́guez-Serrano et al.,
2016). Peroxule formation in response to Cd and As is de-
pendent upon PEX11a, while pex11a Arabidopsis mutants
show altered ROS-dependent signaling networks (Rodrı́guez-
Serrano et al., 2016). Peroxule production and peroxisome-
dependent signaling are compromised in nia1 nia2
Arabidopsis mutants, which have lower NO levels than wild-
type plants in response to Cd treatment, demonstrating the
important role of NO in peroxule formation (Terrón-
Camero et al., 2020). This could be due to oxidative changes

and S-nitrosylation patterns in the antioxidant system
(Terrón-Camero et al., 2020), which affect cellular redox bal-
ance. PEX11a and peroxule formation therefore play a key
role in regulating stress perception and rapid cell responses
to environmental cues (Rodrı́guez-Serrano et al., 2016;
Terrón-Camero et al., 2020; Figure 3). Given rapid peroxule
induction and no significant changes in PEX11a expression
in nox1 mutants (Terrón-Camero et al., 2020), PEX11a can
reasonably be assumed to be regulated by specific ROS- and
NO-dependent PTMs. Activation of yeast peroxin Pex11p
depends on redox changes in its cysteines (Knoblach and
Rachubinski, 2010; Schrader et al., 2012).

Although there is no direct evidence, peroxules could
participate in the transfer of H2O2 and other metabolites to
mitochondria and chloroplast (Figure 4). Stromules, which
are dynamic structures similar to peroxules in chloroplasts,
transfer H2O2 from chloroplasts to nuclei as part of a retro-
grade signaling process (Caplan et al., 2015; Kumar et al.,
2018); however, to our knowledge, no connection between
peroxules and nuclei has been established so far. Peroxules
could also be involved in protein transport such as the
transfer of the sugar-dependent 1 (SDP1) lipase from the
peroxisomal membrane to the lipid body (Thazar-Poulot
et al., 2015; Figure 4).

Peroxisomal speed is regulated by ROS
Time course analyses of peroxisomes in response to Cd in
Arabidopsis seedlings have highlighted a considerable in-
crease in peroxisomal speed after 24 h of treatment which is
regulated by ROS produced by RBOHs and Ca2 + ions
(Figure 3; Rodrı́guez-Serrano et al., 2009, 2016). Increased

Box 2 PEROXISOME BIOGENESIS AND PROLIFERATION

Plant peroxisome abundance is governed by (1) biogenesis, associated with physiological processes and division
(fission) of a preexisting peroxisome, (2) proliferation, which is related to stress responses, and (3) pexophagy, a
selective peroxisome degradation mechanism (Kao et al., 2018; Olmedilla and Sandalio, 2019). Proteins involved
in peroxisome biogenesis and maintenance are called peroxins (PEXs; Kao et al., 2018). The import of peroxisomal
membrane proteins (PMPs) in Arabidopsis involves peroxins PEX19, acting as the chaperone for PMPs, PEX3 act-
ing as the membrane anchor for PEX19, and PEX16, which recruits PEX3 to the ER before the formation of pre-
peroxisomes. Arabidopsis PEX16 also recruits PMPs to the ER in a PEX3/PEX19-independent manner (Pan et al.,
2020). The import of peroxisomal matrix proteins containing the C-and N-terminal targeting signals PTS1 and
PTS2, respectively, take place by the soluble receptors PEX5 (for PTS1) and PEX7 (for PTS2) in the cytosol (Baker
et al., 2016; Reumann and Chowdhary, 2018). PEX5 is recycled from the peroxisomal matrix back to the cytosol
by the ubiquitin conjugating enzyme PEX4 and its membrane anchor PEX22, three RING-type ubiquitin ligases,
PEX2, PEX10 and PEX12, and two AAA ATPases, PEX1 and PEX6 (reviewed in Reumann and Bartel, 2016; Kao
et al., 2018).
Peroxisomes proliferate through the division of preexistent peroxisomes, which involves peroxisome elongation
regulated by PEX11, organelle constriction and fission, governed by dynamin-related proteins (DRP3A and
DRP3B) and fission proteins (FIS1A and FIS 1B; Pan et al., 2020; Su et al., 2019). The PEX11 gene family in
Arabidopsis contain five members: PEX11a, PEX11b, PEX11c, PEX11d and PEX11e, (Lingard and Trelease, 2006;
Orth et al., 2007). FIS1A and FIS1B are shared by peroxisomes and mitochondria; DRP3A and DRP3B regulate per-
oxisomal and mitochondrial fission; and DRP5B is involved in peroxisome and chloroplast fission (Kao et al.,
2018), indicating a highly coordinated regulation of organelles populations.

28 | PLANT PHYSIOLOGY 2021: 186; 22–35 Sandalio et al.



peroxisomal movement could improve antioxidant defenses
where Cd and other factors promote ROS accumulation
and/or could aid signaling transduction and metabolite
exchanges in different parts of the cell (Rodrı́guez-Serrano
et al., 2009). Information on the role of peroxisomal motility
under stress conditions is scarce; however, in myosin loss-of-
function Arabidopsis mutants and in Arabidopsis treated
with the herbicide 2,4-D, inhibition of organelle movement
negatively affects plant growth (Rodrı́guez-Serrano et al.,
2014; Ryan and Nebenführ, 2018). Oikawa et al. (2015)
found that light-adapted Arabidopsis peroxisomes are much
more mobile than dark-adapted peroxisomes (Oikawa et al.,
2015) and, by using photorespiratory mutants shmt1 (defec-
tive in serine hydroxymethyltransferase) and ped2 (defective
in PEX14), they concluded that both, peroxisome mobility
and peroxisome–chloroplast interactions observed under
light, are regulated by photosynthesis rather than by photo-
receptors or photorespiration (Oikawa et al., 2015).

Pexophagy and peroxisomal homeostasis are
regulated by oxidative processes.
Excessive numbers of peroxisomes and those containing ob-
solete or dysfunctional proteins need to be eliminated to
control cellular redox homeostasis. Some evidence shows
that ROS and oxidative damage to peroxisomes regulate the

degradation of oxidized whole peroxisomes by selective
autophagy termed pexophagy (Figure 3; Shibata et al., 2013;
Yoshimoto et al., 2014; Olmedilla and Sandalio, 2019).
Autophagy-related genes (ATGs) regulate autophagy in all
eukaryotic cells including those in plants (Avin-Wittenberg
et al., 2018). During photomorphogenesis, several authors
have reported pexophagy using Arabidopsis atg mutants
(Farmer et al., 2013; Kim et al., 2013; Shibata et al. 2013);
however, unlike in mammals and yeast, the mechanism in
plants is not fully understood. Shibata et al. (2013) have
observed high levels of oxidized CAT and clusters of peroxi-
somes in atg mutants. Peroxisomal clusters were also ob-
served in H2O2-treated Arabidopsis plants (Yoshimoto et al.,
2014) and in atg5 and atg7 Arabidopsis mutants exposed to
Cd treatment where phagophore and peroxisome colocaliza-
tion was observed (Calero-Mu~noz et al., 2019). Some evi-
dence shows the important role of oxidative processes in
pexophagy induction: (1) ubiquitinated CAT is accumulated
in Arabidopsis mutants defective in NBR1 (nbr-1), a pexoph-
agy adaptor (Zhou et al., 2013); (2) ATG8/CAT–CAT/NBR1
interactions have been observed in Arabidopsis plants ex-
posed to Cd (Calero-Mu~noz et al., 2019); (3) CAT activity is
involved in starvation-induced pexophagy (Tyutereva et al.,
2018); and (4) clustered peroxisomes in Arabidopsis atg
mutants mainly accumulate in the aerial parts of plants,
where oxidative metabolism is higher than in roots (Zhou
et al., 2013; Yoshimoto et al., 2014). Glucose-mediated regu-
lation of root meristem activity requires pexophagy to main-
tain ROS and auxin cellular homeostasis in Arabidopsis
plants (Huang et al., 2019). The chaperone activity of peroxi-
somal protease LON2 negatively regulates pexophagy
(Figure 3; Farmer et al., 2013; Young and Bartel, 2016).
In plants, specific peroxisomal receptors have not been
clearly identified, and the role of adaptors, such as NBR1-like
proteins, which specifically interact with ubiquitinilated
proteins, is under debate (Olmedilla and Sandalio, 2019;
Young et al., 2019). The possibility of both NBR1-dependent
and independent pexophagy cannot be ruled out. An alter-
native process independent of autophagy, induced under
high CO2 and increased H2O2 conditions, involves chloro-
plast vesiculation (CV) proteins which interact with PEX11-1
in rice (Figure 3; Umnajkitikorn et al., 2020).

Peroxisome crosstalk with other organelles
To optimize their multiple functions, peroxisomes collabo-
rate and communicate with other cell organelles by ex-
changing substrates. Photorespiration is the best example of
metabolic cellular interorganelle communication. However,
peroxisomes are also cellular redox communication hubs, as
well as guardians and modulators of H2O2 levels (Fransen
and Lismont, 2019) given the following findings: (1) peroxi-
somes contain enzymes involved in producing and scaveng-
ing H2O2 and NO; (2) they contain proteins regulated by
ROS- and NO-dependent PTMs and therefore act as ROS/
NO sensors; (3) they regulate NAD(P) + /NAD(P)H, ascorbic
(Asc)/dehydroascorbic acid (DHA) and GSH/GSSG pools;

Figure 4 Redox-dependent interorganellar crosstalk. Peroxisomes
(P) collaborate and communicate with other cellular organelles, mito-
chondria (M), and chloroplasts (CH) by exchanging molecules such as
H2O2 and redox metabolites, as well as Ca2 + and proteins. These
exchanges could take place through porins or MCSs. Peroxule forma-
tion contributes to ROS/RNS, metabolite, and protein exchanges such
as the transfer of TAG lipase sugar-dependent 1 (SDP1) to lipid bodies
(LB). ROS/RNS-dependent posttranslational modifications regulate
peroxule formation, MCSs, interorganellar crosstalk, and signaling
transduction. Peroxisomal ROS/RNS interferes with cytosolic redox
state and signaling processes and vice versa; the cytosolic redox state
regulates peroxisomal protein import by affecting the redox state of
peroxin 5 (PEX5). The peroxisomal redox state can also regulate redox
changes in the nucleus (N), chloroplasts, and mitochondria.

Plant Physiology, 2021, Vol. 186, No. 1 PLANT PHYSIOLOGY 2021: 186; 22–35 | 29



and (4) H2O2 and NO act as second messengers in a wide
range of developmental, physiological, and stress processes
(Fransen and Lismont, 2019; Sandalio et al., 2020).

There is an intimate relationship between the peroxisomal
redox state and changes in the redox state of other organ-
elles. In mammalian systems, H2O2 released from peroxi-
somes into the cytosol diffuses into mitochondria, oxidizing
directly or indirectly cysteine residues of mitochondrial pro-
teins (Lismont et al., 2019). Chlamydomonas mutants defi-
cient in peroxisomal NAD + -dependent MDH2 show that
MDH2 plays a key role in the reverse coupling of redox/
H2O2 signals from peroxisomes to chloroplasts (Kong et al.,
2018). Peroxisomal NAD(P) + /NAD(P)H pools in Arabidopsis
regulate photosynthesis performance to meet the demand
for reducing equivalents under fluctuating light (Li et al.,
2019). Peroxisomal basal H2O2 levels greatly affect antioxida-
tive defense regulation in cytosol and chloroplasts, as
observed in peroxisomal apx4 knockdown rice plants (Sousa
et al., 2018). The inhibition of CAT activity in apx4
Arabidopsis mutants significantly affected networks involved
in photosynthetic performance under adverse conditions
promoting oxidative stress and favoring antioxidant enzyme
accumulation in cytosol and chloroplasts (Sousa et al.,
2018).

Despite the central role of H2O2 in peroxisome metabo-
lism and cell functionality, no peroxiporin-like proteins have
been identified in the peroxisomal membrane. Although
porins are present in plant peroxisomes (Reumann et al.,
1997; Corpas et al., 2000; Figure 4), their role in H2O2 perme-
ability remains unclear. In yeast, Pex11A, Pex11B, and
Pex11G have been reported to facilitate the permeation of
molecules up to 400 Da (Mindthoff et al., 2016) and could
be candidates to diffuse H2O2 through the peroxisomal
membrane. However, recently, Lismont et al. (2019)
provided evidence that neither the porin PXMP2 nor
PEX11B is essential for H2O2 permeation across the peroxi-
somal membrane. Throughout membrane contact sites
(MCSs), ROS accumulation could directly facilitate interorga-
nelle signal transmission using as-yet-unknown ROS trans-
porters (Figure 4; Yoboue et al., 2018). Electron microscopy
images of leaf cells show physical contact between peroxi-
some and chloroplasts and, interestingly, H2O2 accumulation
inside peroxisomes in the contact site with chloroplasts and
vacuoles, suggesting a relationship between ROS accumula-
tion and organelle communication (Romero-Puertas et al.,
2004). Using femtosecond laser and optic tweezer techni-
ques, tethering between the chloroplast and peroxisomes
has been demonstrated (Oikawa et al., 2015; Gao et al.,
2016). The area of peroxisomes interacting with chloroplasts
increases under light conditions, whereas, in the dark, perox-
isomes lost their connection with chloroplasts (Oikawa
et al., 2015). The PEX10 Zn RING finger interacts with the
chloroplast envelope’s outer membrane, which is necessary
for full photorespiration functionality and could be a candi-
date for MCSs in plant peroxisomes (Schumann et al., 2007;
Figure 4). Although the role of PTMs in regulating protein–

protein interactions at interorganelle contact sites remains
unexplored, it is reasonable to assume that tethering is regu-
lated by specific PTMs.

The translocation of peroxisomal proteins to other cell
compartments is part of interorganelle communication and
signaling, although the mechanism(s) by which this occurs is
still unknown. Thus, CAT interacts with nonperoxisomal
proteins including cytosolic calcium-dependent kinase
CDPK8 (Zou et al., 2015), plasma membrane-associated cal-
cium-dependent kinase OsCPK10 (Bundó and Coca, 2017),
cytosolic salt overly sensitive 2 (SOS2; Verslues et al., 2007),
lesion simulating disease1 (LSD1; Li et al., 2013), receptor-like
cytoplasmic kinase STRK1 (Zhou et al., 2018), chloroplast/cy-
tosolic nucleoside diphosphate kinase 2 (NDPK2), no cata-
lase activity 1 (NCA1; Hackenberg et al., 2013; Li et al.,
2015), and nucleoredoxin 1 (NRX1; Kneeshaw et al., 2017) in
addition to GSNOR (mentioned above), which are all inte-
gral stress-signaling proteins. It is unclear whether CAT is
translocated from peroxisomes by the ER-associated degra-
dation (ERAD)-like system involved in the export of PEX5
from the peroxisome membrane and export of matrix per-
oxisomal proteins to be degraded (Lingard et al., 2009) or is
retained in the cytosol under oxidative conditions as in the
case of mammalian cells (Walton et al., 2017). Walton et al.
(2017) have reported that Cys-11 of human PEX5 acts as a
redox switch that modulates the import of peroxisomal ma-
trix proteins such as CAT. Under oxidative stress conditions,
CAT is retained in the cytosol where it can protect against
H2O2-mediated redox changes and reinforce cellular
defenses to prevent oxidative damage out of peroxisomes
(Walton et al., 2017). Oxidative and nitrosative stress could
enable swift control of CAT localization in compartments,
thus helping to regulate redox signaling pathways.

In the case of dual-targeted OPPP enzymes, targeting deci-
sions appear to depend on the cytosolic redox state. This
has been suggested in relation to Arabidopsis G6PD1/
G6PD4 (Meyer et al., 2011), PGL3 (Hölscher et al., 2014), and
PGD2 upon interaction with nonperoxisomal isoforms PGD1
or PGD3, which retain heteromeric enzymes in the cytosol
(Lutterbey and von Schaewen, 2016). NADPH-oxidase and
peroxisomal AtPAO3 cross-talk to balance intracellular O2

.–/
H2O2, which in turn, affect the cyt-c/AOX pathways in mito-
chondria and regulates pollen tube elongation (Wu et al.,
2010). As catalase (cat2)-deficient Arabidopsis mutants show
upregulation of ASC-GSH components in the cytosol
(Mhamdi et al., 2010), peroxisomes can interfere with cyto-
solic redox state. Cytosolic redox changes, in turn, impact
the dual targeting of 6-phosphogluconolactonase 3 (PGL3)
of chloroplasts and peroxisomes in Arabidopsis leaves, a pro-
cess requiring thioredoxin m2 (Trxm2) in the cytosol
(Hölscher et al., 2014).

Future perspectives
Many challenges in peroxisome redox biology remain to be
addressed (Outstanding questions). One of them is to
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determine the nature of proteins involved in peroxisomal
NO production. We need to amplify our limited knowledge
of the mechanisms underlying NO regulation of peroxisome
dynamics, metabolism, and signaling, together with NO and
ROS crosstalk with hormones, such as JA. Additional analy-
ses of the interplay and hierarchy of ROS-, NO-dependent,
and other peroxisomal PTMs such as phosphorylation and
persulfidation are required. Peroxisome-dependent regula-
tory components also need to be characterized by analyzing
gene network structures and by identifying downstream
responses induced by peroxisomal ROS and NO. The com-
ponents of contact sites and the factors involved in peroxule
production, as well as the regulatory role of ROS and NO in
both these areas, also need to be determined. Analysis of
tethering techniques, specific fluorescence proteins, and ROS
mutants, combined with meta-analyses of organelle prote-
ome datasets, should provide a better understanding of per-
oxisomal dynamics and interorganelle interactions. Finally,
identification of pexophagy receptors and adaptors and their
regulation by ROS, NO, and S2H should enable us to inte-
grate biochemical processes and organelle dynamics into our
understanding of cellular regulatory systems.
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