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ABSTRACT: Controlling supramolecular polymerization by exter-
nal stimuli holds great potential toward the development of
responsive soft materials and manipulating self-assembly at the
nanoscale. Photochemical switching offers the prospect of regulating
the structure and properties of systems in a noninvasive and
reversible manner with spatial and temporal control. In addition, this
approach will enhance our understanding of supramolecular
polymerization mechanisms; however, the control of molecular
assembly by light remains challenging. Here we present photo-
responsive stiff-stilbene-based bis-urea monomers whose trans
isomers readily form supramolecular polymers in a wide range of
organic solvents, enabling fast light-triggered depolymerization−
polymerization and reversible gel formation. Due to the stability of
the cis isomers and the high photostationary states (PSS) of the cis−trans isomerization, precise control over supramolecular
polymerization and in situ gelation could be achieved with short response times. A detailed study on the temperature-dependent and
photoinduced supramolecular polymerization in organic solvents revealed a kinetically controlled nucleation−elongation
mechanism. By application of a Volta phase plate to enhance the phase-contrast method in cryo-EM, unprecedented for
nonaqueous solutions, uniform nanofibers were observed in organic solvents.

■ INTRODUCTION

As highly organized assemblies, supramolecular polymers play
a distinct role in various areas of chemistry, biology, and
materials science1−10 and as functional systems including
applications in responsive sensors,7,9 electronic devices,8 and
biomedical materials.5,10 They are also ideal candidates for the
formation of supramolecular gels,11−13 which hold great
potential on the basis of their intricate properties,14−17 such
as chiral selection,18 amplification,19 and microactuation.20,21

Elegant mathematical models have been developed for
different types of polymerization mechanisms,1−4 e.g. iso-
desmic,22 cooperative,23,24 and others,25,26 revealing the
dynamic and tunable nature of synthetic supramolecular
systems and providing the tools for controlling their assembly
processes.27,28,67 Recent advances have focused on manipulat-
ing supramolecular polymerization by using external stimuli,
e.g. ultrasound,29,30 light,31,32 and chemicals,33,34 in order to
develop responsive and adaptive materials.5,7,10,35

Among these stimuli, light has the distinct advantage of
allowing the direct control of responsive materials through a
noninvasive action with high spatiotemporal resolution.36−40

One of the main approaches to realize reversibility in
supramolecular assemblies exploits the photoisomerization of
molecular switches,41−45 such as azobenzenes42,43,45 and

dithienylethenes.18,19,46 The majority of the recent studies on
supramolecular assemblies have focused on the photo-
regulation of the responsive properties associated with the
disassembly and reconfiguration of aggregates,14−19 e.g. gel−
sol transition,42 volume,43 and morphology45 changes, while
limited effort has been devoted to trigger the actual
supramolecular polymerization step by using light.31,32

Notably, Meijer and co-workers reported a cooperative
polymerization, where a photoswitchable ligand regulated the
fraction of stacked porphyrin monomers.31 Subsequently,
Takeuchi et al. demonstrated a photoregulated living supra-
molecular polymerization by combining polymerization and
photoisomerization of azobenzene derivatives, in which the
activation of the monomer was achieved by cis to trans
photoisomerization or thermal reversion.32 However, control
of the macroscopic properties of these supramolecular
polymers was not discussed, and these photoinduced supra-
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molecular polymerizations were based on azobenzene mono-
mers32 or ligands:31 this photoswitch has the intrinsic
disadvantage of cis−trans thermal back-isomerization, which
limits the bistability of the system.
Here we report a light-controlled self-assembly process

based on photoresponsive stiff-stilbene bis-urea monomers
which form supramolecular polymers and responsive gels
(Figure 1). Notably, the thermal isomerization between the cis
and trans isomers of stiff-stilbene is negligible at room
temperature due to the high energy barrier for interconver-
sion.44,47,48 This property offers the opportunity to design a
robust bistable system in which supramolecular polymerization
can be controlled by irradiation. A series of responsive
monomers was obtained on the basis of the stiff-stilbene
core bearing two symmetrical urea moieties with different end
groups (SG1−SG3). According to the definition of Meijer et
al.,2,3 the obtained 1D assemblies qualify as supramolecular
polymers. The outstanding ability of the urea groups to self-
assemble has been demonstrated in previous studies by our
group38,49,50 and others.51−53 In the present design, bis-ureas
form intermolecular hydrogen bonds between the trans
isomers, in contrast to the intramolecular hydrogen bond,
formed when the molecule is in its cis form. On the basis of
these different hydrogen-bonding patterns, starting from a cis
isomer (inactive monomer), the polymerization only takes
place after conversion to the trans isomer (active monomer).
In other words, the active monomer can be “unlocked” from
the dormant state upon irradiation. Hence, we could design a
bistable supramolecular system benefiting from the high energy
barrier between isomers and precisely control its assembly with
light in a reversible manner (Figure 1). The mechanism of
temperature-dependent polymerization was studied in detail in
toluene. We further developed these supramolecular polymers
to functional gels with photocontrolled sol−gel transitions.

■ RESULTS AND DISCUSSION

Molecular Design and Synthesis of SGs. The stiff-
stilbene monomers were designed with a photoresponsive core
bearing two urea groups, enabling intermolecular (trans
isomers) and intramolecular hydrogen-bonding (cis-isomers,
see Figure 1). Hexaethylene glycol and hexaethylene glycol
methyl ether served as the end group of SG1 and SG2,
respectively, and were connected to the urea group through
alkyl-linkers.54−56 The detailed synthesis routes for trans and

cis isomers of SGs are summarized in Figure S1, and pure trans
isomers of SG1, SG2, and SG3 as well as cis-SG1 were
obtained. All of the novel structures were confirmed
unambiguously by 1H and 13C NMR and high-resolution
ESI-MS (Figures S17−S52).

Photoisomerization of SGs. The photoresponsive behav-
ior of SG1 was studied in an organic solvent by UV−vis
absorption and NMR spectroscopy at 298 K (Figure 2). A
toluene solution of cis-SG1 (50 μM) has a characteristic strong
absorption band at 320−390 nm in the UV−vis spectrum
(Figure 2a).

Figure 1. Schematic illustrations of the photoisomerization of SGs, the supramolecular polymerization of trans-SG1, and the process of the
assembly and disassembly in organic solvents.

Figure 2. Changes in the UV−vis absorption spectrum (toluene, 298
K) starting from (a) cis-SG1 (50 μM) upon irradiation with 385 nm
light for 2 min to PSS385 and (b) trans-SG1 (30 μM) upon irradiation
with 365 nm light for 1.5 min to PSS365.

1H NMR spectra (DMSO-d6,
298 K, 400 MHz) of (c) trans-SG1 (4 mM), (d) after irradiation with
365 nm light for 15 min to PSS365 (cis:trans = 33:67), and (e) after
subsequent irradiation with 385 nm for 15 min to PSS385 (trans:cis ≥
99:1).
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Upon 385 nm light irradiation for 2 min, the band at 370−
390 nm disappeared with an increase in the absorption maxima
at 340 and 360 nm, indicating the conversion of cis-SG1 to
trans-SG1, in accordance with stiff-stilbene photoisomeriza-
tion.47,48 A clear isosbestic point at 364 nm confirms the
selective unimolecular cis to trans photoisomerization process.
No further spectral change was observed upon prolonged
irradiation, indicating that the photostationary state (PSS385)
was attained. The resulting solution showed the reverse
switching process upon 365 nm light irradiation (Figure S2).
For trans-SG1, a band appears at 370−390 nm with a

decrease in the absorption at 340−360 nm and a clear
isosbestic point at 364 nm upon 365 nm light irradiation for
1.5 min, as a consequence of the photoisomerization process
from the trans to the cis isomer (Figure 2b). A spectrum nearly
identical with that for trans-SG1 was recovered after
subsequent irradiation with 385 nm light for 3 min (Figure
S3). This photoisomerization behavior was also demonstrated
in DMSO by UV−vis absorption spectroscopy (Figure S4). It
was noted that cis-SG1 showed no significant thermally
induced switching to trans-SG1 after heating at 323 K for 16
h or at 313 K for 20 h in toluene and DMSO, respectively
(Figures S5 and S6), indicating the excellent thermal stability
of cis-SG1.
The 1H NMR spectrum of trans-SG1 in DMSO-d6 solution

(4.0 mM) shows distinctive proton shifts upon photo-
isomerization. The proton signal of Ha (δ 7.10 ppm) shifts
downfield to 7.50 ppm, while Hb, Hc, and Hd shift upfield upon
365 nm light irradiation for 15 min (Figure 2c,d), indicating
the conversion from trans-SG1 to cis-SG1. Integration of the

NMR signals established a PSS365 ratio of 33:67 (cis:trans).
Subsequent irradiation with 385 nm light for 15 min resulted
in the full recovery of the initial 1H NMR spectrum of trans-
SG1 with a high PSS385 ratio of around 99:1 (trans:cis, Figure
2e). Essentially identical photoisomerization processes were
observed for SG2 and SG3 (Figure S7, UV−vis spectra of SG2
and SG3; Figure S8, 1H NMR spectra for SG2).

Temperature-Dependent Supramolecular Polymer-
ization in Toluene. To investigate the self-assembly process,
changes in the UV−vis absorption spectrum of trans-SG1 (0.4
mM) in toluene were recorded upon cooling from 340 to 270
K at a rate of 1.0 K/min (Figure 3a). The absorption maxima
at 343 and 359 nm of trans-SG1 decreased in the cooling
process with the formation of a new red-shifted band appearing
at around 373 nm, suggesting the formation of well-defined
aggregates.2,34 The presence of a clear isosbestic point at 366
nm and the red-shifted spectra are characteristic for the
transition from monomeric trans-SG1 to a supramolecular
polymer (SP-SG1). To characterize the assembly morphology
of SP-SG1 in toluene, a Volta phase plate was used with
cryogenic electron transmission microscopy (cryo-TEM).57−59

Because the contrast between carbon-based samples and
carbon-based solvents is low, the standard method (without
a Volta phase plate) of defocusing the image to generate phase
contrast loses the resolution to see tiny assemblies in an
organic solvent. With the phase plate, phase contrast is
generated close to the focus, resulting in a better resolution. To
the best of our knowledge, this is the first time a phase plate
has been successfully used for nonaqueous samples in cryo-
EM. These images show that solutions of SP-SG1 (0.4 mM)

Figure 3. (a) Temperature-dependent changes in the UV−vis absorption spectrum of trans-SG1 (0.4 mM) in toluene during cooling at a rate of
1.0 K/min. (b) Cryo-TEM image of SP-SG1 formed by trans-SG1 (0.4 mM) after supramolecular polymerization in toluene. (c) Calculated self-
assembled structure of trans-SG1 using the ONIOM approach (wB97X-D/def2SVP//wB97X-D/6-31G(d)//UFF). The distance between the urea
groups in the dimer is 1.8 nm. (d) Degree of aggregation (αagg, estimated from the UV−vis absorption at 373 nm) of trans-SG1 (cT = 0.4 mM) as a
function of temperature upon cooling and heating at different rates (0.5−2.0 K/min). (e) Natural logarithm of the reciprocal of cT as a function of
the reciprocal of Te (van’t Hoff plot). (f) Schematic illustration of the nucleation−elongation process of trans-SG1.32

Journal of the American Chemical Society pubs.acs.org/JACS Article

https://doi.org/10.1021/jacs.1c01802
J. Am. Chem. Soc. 2021, 143, 5990−5997

5992

http://pubs.acs.org/doi/suppl/10.1021/jacs.1c01802/suppl_file/ja1c01802_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.1c01802/suppl_file/ja1c01802_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.1c01802/suppl_file/ja1c01802_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.1c01802?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c01802?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c01802?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c01802?fig=fig3&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.1c01802?rel=cite-as&ref=PDF&jav=VoR


prepared following a procedure identical to that used in the
UV−vis studies contained nanofibers with a uniform diameter
of 2.5 nm and hundreds of nanometers in length (Figure 3b).
The diameter (2.5 nm) of the nanofibers is comparable to the
molecular axis of the calculated structure (1.8 nm) using an n-
layered integrated molecular orbital and molecular mechanics
(ONIOM) approach (Figure 3c), while the intermolecular
distance between two monomers was found to be 3.5 Å. The
existence of intermolecular hydrogen bonds was further tested
by variable-temperature NMR experiments (Figure S12). The
proton signals of the ureas (H1 and H2 in Figure S12) shift
upfield upon heating, with Δδ/ΔT = −7.99 and −8.17 ppb/K,
respectively, which is comparable to the shift reported
previously for hydrogen-bond-forming urea groups.68 On the
basis of these observations, the obtained supramolecular
nanofibers of trans-SG1 are likely built by one-dimensional
(1D) stacking of trans-SG1. This 1D stacking mode is
facilitated by the intermolecular hydrogen bonding of the
urea moieties in the designed hydrophobic pockets and by the
π−π interactions between the stiff-stilbene core units (Figure
3c).
To identify the polymerization mechanism, we plotted the

degree of aggregation (αagg),
23,34 estimated from the

absorption at λ = 373 nm, as a function of temperature.
Nonsigmoidal curves were observed for trans-SG1 (0.4 mM)
upon cooling and heating with a sharp transition at the critical
temperatures (Te′ and Te, respectively, Figure 3d), indicating a
nucleation−elongation process.2,22,24,34,60 Notably, we ob-
served a thermal hysteresis for the heating process with the
critical temperature being distinctly higher than for the cooling
process (Figure 3d and Figures S9 and S10). For instance, the
critical temperature Te′ (cooling process) was 303 at 1.0 K/

min, while Te (heating process) was observed at 333 K (Figure
3d, circles). Furthermore, the value of Te′ was decreased from
307 to 301 K upon increasing the cooling rate from 0.5 to 2.0
K/min (Figure 3d, blue scatters). These data imply that the
supramolecular polymerization of trans-SG1 proceeds under
kinetic control.34

In contrast, we did not observe any notable effect of the
heating rate on Te, indicating that the disassembly process
occurs under thermodynamic control (Figure 3d, orange
scatters). We fitted the αagg value as a function of temperature
with the cooperative model proposed by Meijer and co-
workers,24,34 resulting in an elongation enthalpy value of ΔHe
= −48 kJ mol−1 (Figure S10 and Table S1). The degree of
aggregation (αagg) at increasing total concentrations (cT) was
recorded as a function of temperature to afford a van’t Hoff
plot, in which the natural logarithm of the reciprocal of cT
shows a linear relationship with the reciprocal of Te (Figure
3e). The standard enthalpy (ΔH°) and entropy (ΔS°)
associated with the process are −77 kJ mol−1 and −165 J
mol−1 K−1, respectively, resulting in a Gibbs free energy (ΔG°)
value of −28 kJ mol−1 at 293 K, comparable to that of a known
cooperative supramolecular polymerization driven by hydro-
gen-bond formation.32 The ΔH° (−77 kJ mol−1) value
obtained from the van’t Hoff plot is more negative in
comparison to ΔHe (−48 kJ mol−1), resulting from the
cooperative model fitting. This discrepancy might be
attributable to the interactions between toluene molecules
and monomers61 that possibly affect the ΔH° value from the
van’t Hoff plot but not the ΔHe value in the cooperative model
fitting. The unfavorable entropic term (−TΔS > 0) parallels
the loss of degrees of freedom of the monomers upon polymer
formation. Overall, these data suggest that the fibers of trans-

Figure 4. (a) Absorption spectral changes of cis-SG1 (0.4 mM) in toluene at 298 K under 385 nm light irradiation for 2 min and time-dependent
changes during supramolecular polymerization. (b) Cryo-TEM image of SP-SG1 formed by cis-SG1 (0.4 mM) after photoinduced supramolecular
polymerization. (c) Plots of the UV−vis absorption at 373 nm as a function of time during the photoinduced polymerization at different total
concentrations (cT). (d) DFT energy minimized structure of cis-SG1 (B3LYP 6-31G+(d,p), IEFPCM toluene). (e) Schematic illustration of the
photoinduced supramolecular polymerization of cis-SG1.32
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SG1 were formed through a cooperative (nucleation−
elongation) process.
Photoinduced Supramolecular Polymerization. In

stark contrast to trans-SG1, a toluene solution of cis-SG1
(0.4 mM) did not produce any aggregates observable via cryo-
TEM. Moreover, cis-SG1 shows excellent solubility in toluene
and is possibly monomeric, as demonstrated by the invariant
chemical signal of urea moieties in well-resolved 1H NMR
spectra of the compound at different concentrations (Figure
S11). To clarify the reason for this difference, we performed
FTIR measurements on the toluene solutions of cis- and trans-
SG1 (Figure S13). trans-SG1 shows a strong vibrational band
centered at 3333 cm−1, attributed to hydrogen-bonded N−H
in urea moieties.53,69 cis-SG1 shows a broader band centered at
3396 cm−1, at higher wavenumbers in comparison to the band
of trans-SG1 but lower than the free N−H stretching vibration
(ca. 3445 cm−1).70 These results suggest a different hydrogen-
bonding pattern for N−H in the two photoisomers. The
presence of intramolecular urea hydrogen bonds (revealed by
DFT calculations; Figure 4d and Figure S14) might explain the
lower ability of the cis isomer to form a supramolecular
polymer in comparison to the trans form. The distances
between either nitrogen and the oxygen were 3.016 and 3.108
Å, respectively, in the energy-minimized structure of the cis
isomer, which is comparable to those observed for other bis-
urea derivatives.38

Consequently, it should be possible to initiate the supra-
molecular polymerization upon photoisomerization of the cis
to the trans form (Figure 4e). To prove this concept, we
irradiated a toluene solution of cis-SG1 (0.4 mM) with 385 nm
light for 3 min to reach PSS. The solution was kept in the dark
at 298 K to achieve supramolecular polymerization. The
spectral changes upon irradiation revealed a typical cis to trans

photoisomerization in toluene (Figure 4a, purple curves). After
irradiation, the spectra remained unchanged for 2 min,
indicating no apparent formation of intermediates. The present
lag time is associated with the nucleation process.34

Subsequently, a characteristic increase in absorption around
373 nm with an isosbestic point at 366 nm signaled the
formation of aggregates, implying an elongation process
(Figure 4a, green curves). Cryo-TEM images showed the
presence of fibers with a uniform diameter of 2.5 nm and
hundreds of nanometers in length (Figure 4b), confirming the
formation of supramolecular polymers. The morphology of the
photoinduced supramolecular polymers was identical with
those formed by cooling a solution of trans-SG1 (vide supra).
To further understand the mechanism of photoinduced

supramolecular polymerization, we analyzed the time-resolved
UV−vis traces at 373 nm using different concentrations of cis-
SG1 in toluene (Figure 4c). With lower concentrations (0.2
and 0.4 mM), the absorption at 373 nm first decreased due to
cis to trans photoisomerization and then increased after a lag
time (19 and 2 min, respectively), showing a sigmoidal
transition, which is characteristic for an elongation process.
These features confirmed that the photoinduced assembly
process followed the cooperative (nucleation−elongation)
polymerization mechanism.33,34,62 At the highest concentration
(0.6 mM), the lag time is too short to be monitored. The lag
time for the polymerization of monomeric trans isomers to the
supramolecular polymer dramatically decreased with increasing
concentration, indicating that the polymerization is under
kinetic control,34 which is in accordance with the study on the
temperature-dependent process (vide supra). In conclusion, the
supramolecular polymerization in this system is successfully
triggered by light and these experiments confirm the
cooperative (nucleation−elongation) mechanism in toluene.

Table 1. Solubility and Critical Gelation Concentrations of trans-SG1, -SG2, and -SG3 in Different Solvents

trans
isomersa water ethanol tetrahydrofuran chloroform 1,4- dioxane toluene p-xylene cyclohexane hexane 1,4-dimethylcyclohexane cyclooctane octane

SG1 1.0 s 3.0 s 2.5 1.3 1.3 i i i 2.0 i

SG2 2.5 s 7.5 s 5.0 5.0 7.5 i i i 7.5 i

SG3 i gp gp 1.8 gp 1.0 2.0 i i gp 1.8 i
aSolubilities are given in units of mg/mL. Abbreviations: i, insoluble during heating; s, soluble at room temperature; gp, gel-like precipitate.

Figure 5. Images of (a) a toluene solution of cis-SG1 (1.5 mg/mL) and (b) the gel obtained after 385 nm irradiation for 3 min and keeping at room
temperature for 10 min. 1H NMR spectra of (c) a solution of cis-SG1 and (d) the gel obtained after irradiation with 385 nm light (CDCl3, 298 K,
400 MHz). Samples were characterized after drying from toluene. (e) Cryo-TEM image of the gel formed by trans-SG1 (1.5 mg/mL) in toluene.
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Gelation Ability and Solvent Screening. Having
established the supramolecular polymerization of trans-SG1
in toluene, we continued our investigation toward the
development of a supramolecular gel in different solvents. To
our delight, trans-SG1 showed excellent gelation ability in a
wide range of solvents (Table 1; for more details, see the
Supporting Information). As shown in Table 1, the critical
gelation concentration (CGC) of trans-SG1 ranges from 1.3
mg/mL in toluene to 3.0 mg/mL in THF. trans-SG1 can hence
be categorized as a “supergelator”.38,63,64

To explore the influence with respect to gelation ability of
end groups with different polarity,54,71 trans-SG2 and trans-
SG3 bearing hexaethylene glycol and alkyl chains were also
investigated. The CGC values for trans-SG2 are relatively high
(from 2.5 to 7.5 mg/mL), which might be attributed to the
higher polarity of trans-SG2.71 trans-SG3 bearing only an alkyl
side chain formed gels in a range of organic solvents. Long
fibers with a uniform diameter of 2.5 nm were observed by
cryo-TEM in toluene (Figure S15). It should be emphasized
that the incorporation of oligoethylene glycol in trans-SG1 and
trans-SG2 in contrast to trans-SG3 enables these molecules to
gelate not only in organic solvents but also in water. This
property could be beneficial for these structures to be applied
in the area of smart biomedical materials.6,11

In Situ Gelation and Gel−Sol Transition Behavior. As
the supramolecular gel is formed by noncovalent interactions,
it offers the opportunity to realize macroscopic changes
triggered by light.14−16 A toluene solution of cis-SG1 (1.5 mg/
mL) was irradiated with 385 nm light for 3 min in a quartz
cuvette at room temperature (Figure 5a). After irradiation, the
sample gelated within 10 min (Figure 5b) and cryo-TEM
images of the resulting gel showed the presence of fibers
(Figure 5e), which are identical to those formed by
temperature-dependent and photoinduced supramolecular
polymerization (vide supra). The solution and gel samples
were characterized by 1H NMR in CDCl3 after drying (Figure
5c,d). The signals of cis-SG1 (e.g. Ha 7.64 ppm) had almost
disappeared, and a distinct set of signals (e.g. Ha 7.13 ppm)
belonging to the trans isomer was observed, indicating a
trans:cis ratio at PSS385 of 99:1. Upon subsequent irradiation
with 365 nm light for 30 min, the gel transformed to a sol
again. The lower speed of trans to cis photoisomerization in the
gel state in comparison to that in solution, where the PSS was
reached within 15 min, is likely due to the confined space of
molecules in the self-assembled fibers.15,65 To establish the
ratio of trans to cis isomer after the gel to sol process, a gel
formed by pure trans-SG1 (1.5 mg/mL) was irradiated to a sol
using the same procedure and characterized by 1H NMR in
CDCl3 after drying. The trans:cis ratio in the sol sample was
95:5 (Figure S16), indicating that already a small extent of
trans to cis isomerization caused a gel−sol phase transition in
this supramolecular system.66 In other words, the photo-
triggered changes of macroscopic properties of the gel system
on the basis of this responsive supramolecular polymer were
readily achieved through reversible photoisomerization.

■ CONCLUSIONS
In conclusion, we developed three stiff-stilbene-based bis-urea
monomers, characterized by cis isomers acting as inactive
monomers, while the trans isomers serve as the active
monomers for supramolecular polymerization. Thermodynam-
ic studies on the polymerization and depolymerization of the
active monomer (trans-SG1) demonstrated a cooperative

supramolecular polymerization in toluene, which was under
kinetic control. Due to the high energy barrier of thermal cis to
trans isomerization, this supramolecular polymerization can be
precisely triggered by light to form trans monomers at room
temperature. The photoinduced polymerization follows the
nucleation−elongation (cooperative) mechanism. Both pro-
cesses, temperature-dependent and photoinduced polymer-
ization, were monitored by UV-vis absorption spectroscopy
and cryo-TEM with a Volta phase plate. The present study
demonstrates precise photocontrol over a supramolecular
polymerization. The resulting polymers show a remarkable
gelation ability in various organic solvents and reversible
changes of macroscopic properties, i.e. a sol−gel transition,
which creates opportunities for many potential applications in
the field of smart and responsive materials.
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