Skip to main content
. 2021 May 27;24(4):1451–1473. doi: 10.1007/s10044-021-00991-z

Table 5.

Recognition accuracy (%) of proposed face recognition approaches with SGEF features on subsets of AR dataset

Individuals/labels Total number samples used for testing Symbolic modeling and similarity Nearest neighbor Support vector machine Probabilistic neural network
A B C A B C A B C A B C
Illumination variation(Subset 1) 480 463 17 96.46 469 11 97.71 458 22 95.42 449 31 93.54
Expression (Subset 2) 420 408 12 97.14 413 07 98.33 407 13 96.90 392 28 93.33
Occlusion(Scarves + Sunglasses) (Subset 3) (73 + 25) = 98 89 09 90.82 83 15 84.69 79 19 80.61 76 22 77.55
Scarves-Illumination (Subset 4) 244 231 13 94.67 239 05 97.95 226 18 92.62 224 20 91.80
Sunglasses-Illumination (Subset 5) 56 47 09 83.92 51 05 91.07 45 11 80.36 50 06 89.29
Total number of images (Subset 1 + Subset 2 + Subset 4 + Subset 5) 1200 1149 51 95.75 1172 28 97.67 1136 64 94.67 1115 85 92.92

A: Number of samples recognized correctly, B: Number of samples misclassified, C: Accuracy (%)