Skip to main content
. 2021 May 27;24(4):1451–1473. doi: 10.1007/s10044-021-00991-z

Table 6.

Recognition accuracy (%) of proposed face recognition approaches with GSGEF features on various combinations of AR

Individuals/labels Total number samples used for testing Symbolic modeling and similarity Nearest neighbor Support vector machine Probabilistic neural network
A B C A B C A B C A B C
Illumination variation(Subset 1) 480 463 17 96.46 443 37 92.29 431 49 89.80 437 43 91.05
Expression (Subset 2) 420 401 19 95.48 396 24 94.29 390 30 92.86 394 26 93.81
Occlusion(Scarves + Sunglasses) (Subset 3) (73 + 25) = 98 87 11 88.78 75 23 76.53 79 19 80.61 81 17 82.65
Scarves-Illumination(Subset 4) 244 234 10 95.90 233 11 95.49 223 21 91.39 221 23 90.57
Sunglasses-Illumination(Subset 5) 56 49 07 87.50 41 15 73.21 39 17 69.64 45 11 80.36
Total number of images (Subset 1 + Subset 2 + Subset 4 + Subset 5) 1200 1147 53 95.58 1113 87 92.75 1083 117 90.25 1097 103 91.42

A: Number of samples recognized correctly, B: Number of samples misclassified, C: Accuracy (%)