Skip to main content
. 2021 Mar 26;86(8):5792–5804. doi: 10.1021/acs.joc.1c00239

Table 1. Experimental Rate Constantsa and Calculated Reaction Barriers and Rate Constantsb.

    method Ac
method Bd
dipolarophile log(kexp × 109) ΔGA (kcal/mol) log(kcal × 109) ΔGB (kcal/mol) log(kcal × 109)
R1e 7.06 23.1 4.85 18.3 8.37
R2e 6.00 25.6 3.02 20.8 6.54
R3e 5.41 24.3 3.97 19.6 7.42
R4e 4.40 29.6 0.09 23.7 4.41
R5 4.29 30.0 –0.21 23.9 4.27
R6e 2.38 32.5 –2.04 26.4 2.43
R7 1.95 32.9 –2.33 26.7 2.21
R8 1.60 32.3 –1.90 27.8 1.41
R9 1.38 33.8 –3.00 28.4 0.97
R10 1.18 33.3 –2.63 27.6 1.55
R11 0.52 35.0 –3.88 28.9 0.60
R12 1.43 33.4 –2.70 27.9 1.33
R13 1.46 33.5 –2.78 27.7 1.48
R14 1.53 32.5 –2.04 26.3 2.51
R15 1.60 33.3 –2.63 27.0 1.99
R16 1.86 33.4 –2.70 27.3 1.77
R17 2.03 32.7 –2.19 28.0 1.26
R18 2.92 31.7 –1.46 25.9 2.80
R19 2.99 31.5 –1.31 26.4 2.43
R20 3.02 31.5 –1.31 26.6 2.29
R21 3.40 31.3 –1.16 25.6 3.02
a

For different dipolarophiles, the corresponding cycloaddition was performed in a particular solvent (carbon tetrachloride or benzene) at 25 °C.30

b

For different dipolarophiles, the calculated reaction barriers and rate constants are values in a specific solvent (carbon tetrachloride or benzene), which was chosen according to what was used in the experiment.30

c

ωB97X-D/aug-cc-pVTZ-CPCM(solvent)//ωB97X-D/6-31+G(d,p)-CPCM(solvent).

d

B2PLYP-D3/aug-cc-pVTZ-CPCM(solvent)//ωB97X-D/6-31+G(d,p)-CPCM(solvent).

e

In the experimental study, the reaction solvent was benzene for these dipolarophiles and carbon tetrachloride for the other dipolarophiles.30