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Abstract

Volumetric placental measurement using 3D ultrasound has proven clinical utility in predicting 

adverse pregnancy outcomes. However, this metric can not currently be employed as part of a 

screening test due to a lack of robust and real-time segmentation tools. We present a multi-class 

convolutional neural network (CNN) developed to segment the placenta, amniotic fluid and fetus. 

The ground truth dataset consisted of 2,093 labelled placental volumes augmented by 300 volumes 

with placenta, amniotic fluid and fetus annotated. A two pathway, hybrid model using transfer 

learning, a modified loss function and exponential average weighting was developed and 

demonstrated the best performance for placental segmentation, achieving a Dice similarity 

coefficient (DSC) of 0.84 and 0.38 mm average Hausdorff distance (HDAV). Use of a dual-

pathway architecture, improved placental segmentation by 0.03 DSC and reduced HDAV by 

0.27mm when compared with a naïve multi-class model. Incorporation of exponential weighting 

produced a further small improvement in DSC by 0.01 and a reduction of HDAV by 0.44mm. Per 

volume inference using the FCNN took 7–8 seconds. This method should enable clinically 

relevant morphometric measurements (such as volume and total surface area) to be automatically 
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generated for the placenta, amniotic fluid and fetus. Ready availability of such metrics makes a 

population-based screening test for adverse pregnancy outcomes possible.

Index Terms—

Medical Diagnostic Imaging; Ultrasonic Imaging; Image Segmentation; Pregnancy; Sonogram; 
Convolutional Neural Networks; Deep Learning; Transfer Learning

I. Introduction

Placental insufficiency is the most common cause of stillbirth [1] as well as other adverse 

pregnancy outcomes such as fetal growth restriction [2] and pre-eclampsia [3]. The 

consequences of a poorly functioning placenta last well beyond pregnancy for the fetus, 

conferring them with an increased risk of developing obesity, diabetes and high blood 

pressure in adulthood [4]. A robust early screening test which can reliably predict those 

pregnancies destined to develop placental insufficiency would allow increased monitoring of 

fetal growth with early delivery if the baby becomes compromised thereby prevent a 

stillbirth occurring. It could also facilitate targeted treatment strategies such as low-dose 

aspirin which, if started in the first trimester, has been shown to reduce the incidence of 

preeclampsia and improved triage of perinatal care. This could have far reaching, long-term 

health benefits globally [4].

A. Clinical Motivation

Placentas destined to fail later in pregnancy already show signs of sub-optimal performance 

in the first trimester, (11–14 weeks) such as reduced volume and vascularity [5]. A 

systematic literature review concluded that placental volume, measured by 3D ultrasound 

(3D-US), could have value when integrated into a multivariable screening method for fetal 

growth restriction in the first trimester [6]. However, volume estimation currently requires 

off-line manual annotation by a trained sonographer which is time-consuming and cannot be 

performed within the 15 minutes in which a standard scan takes place [6]. Furthermore, 

manual labelling is highly operator dependent, inter-observer reproducability studies have 

demonstrated very different intra-class correlation coefficients (ICC; 95% CI)) of 0.59 

(0.33–0.80) [7] and 0.81 (0.68–0.91) [8].

There is a clinical need for a precise, fully automated, method for real-time 3D-US image 

segmentation which can be used to provide an estimation of placental volume and demarcate 

its boundaries (enable identification of the interface between placenta and uterus, thereby 

providing the basis for automated perfusion assessment [9], [10]). These imaging 

biomarkers could then be incorporated into a multi-factorial population-based screening test 

to improve early prediction of adverse pregnancy outcomes.

B. Related Works

Real-time volume estimation has been achieved using fully convolutional neural networks 

(FCNNs) [11] to produce state-of-the-art performance in a range of medical imaging 

modalities [12]. FCNNs are particularly suited to segmentation since the parameters are 
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shared and independent of image size. Segmentation accuracy of FCNNs can be further 

improved with technical enhancements such as loss function modification, which has 

demonstrated improved performance in segmenting the prostate in MRI images [13]. Use of 

multiple pathways, to increase the context of an FCNN, has improved accuracy [14] and has 

been successfully applied to placental segmentation in both MRI [15] and 3D-US [16].

Image analysis in feto-placental ultrasound imaging is relatively understudied compared to 

other areas of medical image analysis. A recent review [17] describes the unique challenges 

of placental segmentation. The placenta has a heterogeneous appearance and can implant on 

any of the uterine walls. Placentas that implant on the posterior uterine wall present a 

significant segmentation challenge as the overlying fetus can attenuate and scatter the US 

signal causing shadows and image artefact.

Attempts at placental MRI segmentation have shown promise. A semi-automated technique 

combining multiple volumes and a single annotated slice, with learned random forest and 

random field features combined with a 4D graph cut, demonstrated a mean Dice similarity 

coefficient (DSC) in 16 cases of 0.89 ± 0.02 (std. dev) [18]. An FCNN method applied to 

placental MRI data using a V-Net architecture in 12 patients provided a mean DSC of 0.75 ± 

0.11 [19]. Using 3D-US, automated methods of segmenting first trimester placentas (n = 13) 

in an anterior position using a joint label fusion and majority vote technique achieved a 

mean DSC of 0.83 ± 0.05 [20], [21]. Yang et al in [22] used a U-Net style encoder/decoder 

FCNN to perform automatic multi-class segmentation of the placenta, amniotic fluid and 

fetus: 104 cases were used to develop the FCNN incorporating a recurrent neural network, of 

which 50 volumes were used to train, 10 to validate and 44 were tested. This achieved a 

mean DSC of 0.64 for the placenta, 0.89 for the amniotic fluid, and 0.88 for the fetus, while 

variability was not reported.

C. Contributions

Previously using 2,393 cases, an FCNN segmented placental volumes to predict small for 

gestational age (SGA) babies [23] which obtained a mean DSC of 0.82 ± 0.10 (std. dev) for 

placental segmentation. The size of the dataset, being ~20 times of that used by Yang et al. 

[22], indicates the obvious benefits of dataset size in improving segmentation accuracy when 

our previous work is compared to a multi-class FCNN trained on a smaller set of data.

This work aims to exploit the strong performance of this large-scale FCNN network and 

incorporate it into a framework that can solve the problem of multi-class labelling. We 

present a number of technical enhancements to solve this problem and present a full 

evaluation of the performance of the new FCNN, which are summarized as follows:

• The use of multiple pathway FCNNs trained on single and multi-class datasets, 

which by addition of a modified loss function, exponential averaging (EA) and 

transfer learning improved average DSC to segment the placenta, amniotic fluid 

and fetus.

• By combining pathways from different models and using these features, our 

previous state of the art segmentation performance on the placenta was combined 

with segmentation of the amniotic fluid and fetus that was comparable to the 
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state of the art as measured by DSC and Hausdorff distance (HD) and compared 

to other works and to more classical U-Net based FCNNs the features of which 

are listed in Table I.

• An evaluation technique to test real-world performance using a comparative 

Turing test indicated that automated segmentation was highly comparable to 

human performance (<50% positive prediction rate; i.e. the automated 

segmentation was selected blindly as better quality more often than the human.). 

Repeatability measured by intra-class correlation coefficients (ICC), showed 

good to excellent repeatability (measured by ICC) for respective organs.

II. Method

The data used was from a research study conducted at a large UK tertiary referral hospital 

with local ethical approval (NHSREC ID: 02-03-033). Following signed, informed consent, 

a 3D ultrasound scan containing the placenta was recorded for singleton pregnancies in 

women at 11+0 to 13+6 weeks of gestation. The 3D-US volume was acquired by 

transabdominal sonography using a GE Voluson™ 730 Expert system (GE Healthcare, 

Milwaukee, WI, USA) using a 3D RAB4/8L transducer [24]. All 2,392 participants went on 

to deliver a chromosomally normal baby. Data were exported for off-line analysis to hard 

drive by USB and converted from scan-line representation into a 3D Cartesian volume [25] 

with an 0.6 mm isotropic voxel spacing. A complete digest of ultrasound settings used can 

be found in the original clinical paper [26].

Segmentation of the placenta used as label map was performed using the semi-automated 

Random Walker algorithm, as described in our previous study [9]. Initialisation or ‘seeding’ 

of the placental segmentation was performed by a clinical expert (SN). These “seedings” 

then underwent quality control with each one being examined by a second, independent, 

clinical expert (MM) and “re-seeded” where mistakes were evident. A third clinical expert 

(SC) examined cases where there was uncertainty or dispute regarding the boundaries of the 

placenta. From the available 2,393 3D-US volumes with an existing placental segmentation, 

300 volumes were randomly selected for multi-class segmentation. The amniotic fluid and 

the fetus were “seeded” (PL and YY) and combined with the placental “seeding” performed 

from the previous study. Initialisation of the amniotic fluid and fetus is much easier than the 

placenta because the edges of the structures are easier to discriminate but any cases where 

there was ambiguity were examined by a clinical expert (SC). These three different classes 

were then segmented as a multi-class label map using the Random Walker algorithm [9], 

[27]. Mean time (± std. dev) to “seed” the two new features in a single volume was 30 ± 10 

min.

A. Placenta segmentation (PS) model

The remaining 2,093 cases were partitioned into 1,893 training cases, 150 validation cases 

and 50 test cases. These were used to train an FCNN, similar in architecture to the U-Net 

[28], extended to 3D and shown in Figure 1a. Image volumes varied in size but were 

typically had dimensions of 200 × 300 × 300 voxels. The volume was decomposed into 

patches that overlapped such that the output of the convolutional neural network that used 
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convolutions without padding was non-overlapping to avoid edge effects. Input patches with 

isotropic dimensions of 863 voxels were passed through three down-sampling blocks, three 

up-sampling blocks, two convolutional layers and a final classification layer. A down-

sampling block used convolution followed by convolution with a stride of 2 voxels wide and 

a 2×2×2 kernel. An up-sampling block used convolution followed by transpose convolution 

of stride 2 and a 2×2×2 kernel. All other kernels had size 3×3×3. Features from layers with 

the same resolution were forwarded from earlier layers to later layers.

The FCNN was trained for 30 epochs (373 steps per epoch), where a single epoch was 

defined as all the patches for the whole dataset. The placenta segmentation (PS) model was 

chosen by selecting the highest mean DSC on the validation set that was not improved upon 

by ten percent within the next five epochs. The parameters: Adam optimizer learning rate, 

β1, β2 and ϵ were set as 0.001, 0.9, 0.999 and 1 × 10−8, respectively. The learning rate 

decayed at a rate of 0.92 every 1000 steps. Variance scaling was used to initialise the 

parameters of the model. L2 regularisation was used with a coefficient of 0.0001. A batch 

size of 40 was used while training the model. Full validation was performed every 1000 

steps. An averaged version of the PS model (PSEA) was created using an exponential 

moving average during training. Exponential moving averaging reduces noise by averaging 

the weights of the model over the training process and favouring more recent values of the 

weights as well as providing computational efficiency, since it does not require the storage 

of all the weights [29].

B. Multi-class (MC) models

The 300 multi-class (MC) cases were sub-divided into 200 training cases, 40 validation 

cases and 60 test cases. Four multi-class models were each trained for 40 epochs with a 

batch size of 30. Firstly, a MC model was trained using a network identical to the 

architecture in Fig. 1a but with four output classes in the layer before the softmax function 

with parameters initialised using variance scaling. Then, a multi-class transfer learning 

(MCTL) model, using the same architecture as the MC model, with the weights and biases 

for all layers except the last taken from the PS model, was trained. By initialising the 

weights and biases of the MCTL model using the PS model, the MCTL had effectively a 

larger training dataset of 1,893 cases in addition to the 200 cases of the MC model. Since the 

PS model was trained to detect placenta, we hypothesised that the MCTL model may better 

segment the placenta at the expense of fetal and amniotic fluid segmentation performance 

compared to the MC model, this will be discussed in later sections.

C. Hybrid (HB) models

To overcome the shortcomings of MC/MCTL models, two hybrid models were used. The 

hybrid model (HB) and hybrid model with exponential averaging (HBEA) both consisted of 

a dual pathway model which were implemented as shown in Fig. 1b. In the top pathway, 

which encoded the placental segmentation, parameters for HB model were initialised using 

the values from the large-scale PS model and the HBEA model were initialised using the 

PSEA model. In the bottom pathway, which encoded the remaining classes, parameters were 

initialised using variance scaling and then trained on the MC data. For both HB and HBEA 

models, parameters in the bottom pathway were allowed to change but for the top pathway 
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were fixed, in order to encorporate the results for placental segmentation from the PS/PSEA 

models. The Adam optimizer parameters were identical to those used in the PS training. 

Batch size and number of epochs were altered to accommodate the differences in number of 

parameters and data used for each model evaluated.

The features of the two pathways were combined as follows: let PBackground, PPlacenta, 

PAmniotic, and PFetus be the confidences that a voxel belongs to the background, placenta, 

amniotic fluid and fetus, respectively. For a given voxel i, the softmax output of the top 

pathway (T) was given as only two values PBackground
T  and PPlacenta

T  that summed to 1. In 

this case, the fetus and amniotic fluid were included in the background. In the bottom 

pathway (B), the softmax of the final layer produced a confidence for membership of a given 

voxel with scalar values of PBackground
B , PPlacenta

B , PAmiotic
B  and PFetus

B  that summed to 1. The 

PBackground
B  indicated the confidence that a voxel is neither placenta, fetus or amniotic fluid.

By design, the regions of the output layer that are characterised as placenta cannot change 

through training. Placental regions will still contribute to the loss but the neural network will 

be unable to modify the parameters to reduce the loss from these regions of the image. This 

motivates the use of a modified loss function to ignore the contribution from placental 

regions to the loss. The loss function L was defined combining the outputs of two pathways 

as

L = ∑
i ∈ M

mi × sl oi/ni , (1)

where M was a binary mask whose value mi was 0 for a voxel i within the placental 

segmentation and 1 otherwise, oi was the output of the bottom pathway B, sl was the 

softmax cross entropy function and ni was the normalisation factor defined as 1 minus 

PPlacenta
T , the confidence of voxel i is placenta from the output from softmax layer of the top 

pathway T.

Since the loss function was masked over the placental region/segmentation, the placenta did 

not contribute to the training of the model. The final confidence vector in the HB model had 

scalar components given as:

PBackground
HB = PBackground

T × PBackground
B

1 − PPlacenta
B (2)

PPlacenta
HB = PPlacenta

T (3)

PAmniotic
HB = PBackground

T × PAmiotic
B

1 − PPlacenta
B (4)
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PFetus
HB = PBackground

T × PFetus
B

1 − PPlacenta
B (5)

where the final segmentation of a voxel was the maximum of the four values defined in Eq. 

2–5. The sum of the terms in Eq. 2,4 & 5 are equal to PBackground
T . From Equation 3, the 

placental segmentation of the HB model was set to the PS model for all voxels where 

PPlacenta
HB > 0.5.

For voxels where 0.25 < PPlacenta
HB < 0.5, a voxel was classified as placenta by the HB model 

but classified as background by the PS model if the remaining classes, PBackground
HB , 

PAmniotic
HB  and PFetus

HB , each had values < PPlacenta
HB .

D. Post-Processing, Implementation & Analysis

The predictions for test data were post processed using morphological filters using the same 

process as described in [23] but performed on each of the three classes. Region fragments of 

the placenta < 40% of the size of the largest region were omitted. Only the largest 

continuous region of amniotic fluid and fetus were retained as part of the final segmentation. 

The segmentation was then grayscale closed using a 3D kernel (3 voxel radii) and a hole 

filling filter was applied. This removed small regions separated from the largest, contiguous 

placental segmented regions, smoothed the boundary of the placenta, amniotic fluid and 

fetus and filled any holes. Ultrasound volumes were processed and visualised using 

SimpleITK (version 1.2.4) [30], ITK [30] and VTK (version 8.2) [31]. R (version 3.3.2) [32] 

was used for data analysis and hypothesis testing and ggplot2 (version 2.2) [33] for plotting. 

The models were implemented in Python (version 3.6) using the open-source OxNNet [34] 

library developed for 3D-US segmentation and Tensorflow (version 1.12) [35]. Training and 

inference was performed on a Linux PC (Intel i7 5820) using a Titan X GPU (NVidia 

Corporation, Santa Clara, CA) with 12Gb VRAM. The CNN models are fully available 

online [36].

E. Evaluation

Comparison between model generated volumetric binary volumes was assessed by similarity 

metrics: Dice similarity coefficient (DSC), Hausdorff Distance (HD) and the average 

Hausdorff distance (HDAV) defined for two segmentations X and Y and a Euclidean 

distance metric d reported in millimetres [23]. The significance threshold was set at P < .05. 

Pairwise comparison between DSC measurements between models were assessed using 

Student’s paired t-test.

Reproducibility of the final placenta, fetus and amniotic fluid volume in millilitres was 

assessed using the ICC (2,1) [37], [38] for inter-observer repeatability between the semi-

automated Random Walker results, regarded as the ground-truth used for performance 

evaluation, and the newly generated FCNN outputs. Finally, a blinded comparison was 

performed to assess an experienced operator’s (GS) ability to discriminate between the 

manual and automated outputs using a side-by-side comparison, akin to a comparative 
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Turing test [39] for the 60 multi-class test cases. The user was presented with two B-Mode 

volumes sliced in 2D and scrolling between both volumes linked using a mouse, the 

contours of each segmentation class were displayed with the Random Walker result 

presented in one randomly assigned viewport and the FCNN contours in the other. The 

operator used the arrow keys to denote which contours deemed ‘best’ once viewed each 

image within the volume through scrolling through. This viewer and test is available online 

[40]. The positive recognition rate (%) or percentage that the operator selected a Random 

Walker based contour set for each model was reported.

III. Results

A. Placental segmentation (PS) model

The PS model obtained the best mean DSC (std. dev) on the validation set of 0.85 (0.09) 

after 17,000 training steps. The performance of the model is shown in Fig. 3. On the 50 test 

cases, the PS model had a mean DSC (std. dev) of 0.85 (0.05) and the PSEA model had a 

mean DSC of 0.85 (0.05)).

The data publicly available and published by [21] was also used to evaluate the performance 

of the PS model. The available images were resampled to the same isotropic spacing and the 

same pre-processing, PS model application and post-processing was applied as described in 

Section II. The mean DSC (std. dev) on this data set was 0.67 (0.24), mean HD was 21.28 

(14.18) mm and mean HDAV was 1.59 (2.27) mm.

B. Multi-class (MC) and Hybrid Models

To compare performance to a reduced dataset size, as per Yang et al, using 50 training data 

the model was trained over 40 epochs. Placental DSC was 0.73 (0.1), amniotic fluid DSC 

was 0.90 (0.06) and fetus DSC was 0.83 (0.08) for the HBEA model. For HD (mm), the 

placenta was 22.48 (8.78), amniotic fluid was 14.20 (9.25) and fetus was 21.74 (11.79). For 

HDAV (mm), the placenta was 1.23 (1.16), amniotic fluid was 0.36 (0.84) and fetus was 

21.74 (11.79).

Comparing the same HB model using the modified loss function defined in Eq. 1 to standard 

cross entropy loss, similarity metrics improved. DSC for placenta increased by 0.01 and 

remained the same for the fetus and amniotic fluid. For surface similarity metrics, small 

increases in HD (mm) (placenta +0.44; amniotic fluid −0.01; fetus 1.4) and decreases in 

HDAV (placenta −0.04mm; amniotic fluid −0.01; fetus 0.0mm) were observed.

For the multi-class models, when trained on the fullest set of data, compared to the dataset 

of 50, results improved for all metrics. The mean DSC of the segmentation of the placenta, 

amniotic fluid and fetus on the validation set during training are shown in Fig. 4. After 40 

epochs, the MC model obtained the lowest placenta DSC of 0.78 (0.09). The MCTL model 

was better at 0.80 (0.09). Both hybrid models were at 0.81 (0.09) for the HB and the HBEA 

model was 0.82 (0.08). Similiar values for amniotic fluid DSC were obtained for the MC 

model at 0.93 (0.04), 0.92 (0.04) for the MCTL model, 0.92 (0.04) for HB and 0.93 (0.04) 

for the HBEA model. The DSC of the fetus was 0.88 (0.05) for the MC model, 0.87 (0.05) 

for the MCTL model, 0.87 (0.05) for the HB model and 0.88 (0.04) for the HBEA model. 
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Fig. 4 shows the expected behaviour for the hybrid models incorporating the PS model, 

where in the DSC did not alter for the placenta over the epochs, as compared to the other 

classes segmented.

The comparison of the performance of the models on the test set after post processing is 

shown in Table II and Fig. 5. The mean (std. dev) of the placenta DSC for the MC, MCTL 

HB and HBEA models were 0.78 (0.09), 0.80 (0.09), 0.81 (0.09) and 0.82 (0.08) 

respectively. The HDAV of the placenta segmentation was lowest for the HBEA model at 

0.58 (0.70) mm. The mean of the amniotic fluid DSC for the MC, MCTL, HB and HBEA 

models were 0.93 (0.04), 0.92 (0.04), 0.92 (0.04) and 0.93 (0.04) respectively. The mean of 

the fetus DSC for the MC, HB and HBEA models were all 0.88 (0.04) but was 0.87 (0.04) 

for the MCTL model. Examples showing segmentations using the Random Walker and 

HBEA model are shown in Fig. 2. DSC was 0.85, 0.85 and 0.71 for the placenta; 0.96, 0.96 

and 0.95 for the amnion and 0.94, 0.92 and 0.90 for the fetus, in the three subjects shown. 

Timings for the inference of each model indicate an average inference of 7–8 seconds per 

image. Statistical comparison of the DSC for all models using a paired t-test showed 

significant differences for the placenta (P < 0.001) and fetus (P < 0.005). There was no 

significant difference for amniotic fluid (P > 0.3).

C. Repeatability

Repeatability as assessed by ICC (95 CI%) for each segmentation across the four models is 

provided in Table III. ICC values for the placenta were lower than for those for the fetus and 

amniotic fluid which reported excellent reproducability. For the placenta, ICC was increased 

for the HB models over the MC models. Using the lower end of the CI reported, it was 

shown the HBEA model was significantly better than the MC model in terms of repeatability 

as reported by ICC. For the other classes, no significant differences were observed although. 

There were small increases in ICC when the HBEA model was compared to the others. The 

positive recognition rates for the Random Walker based ground-truth data when compared to 

the four different models were: MC 52.5%, MCTL 44.0%, HB 56.0% and HBEA 45.8%.

IV. Discussion

In this work, we demonstrated improved performance of a FCNN for segmentation of 

anatomical structures in early pregnancy using 3D ultrasound. By using a combined dataset 

of images, with both single and multi-class label maps generated by Random Walker as 

ground truth, a state-of-the-art performance was achieved for segmentation of the placenta.

Our results show that there are differences in the performance of each multi-class FCNN 

model. The MC and MCTL models have identical architectures but the performance of the 

MC model in segmenting the placenta is reduced in comparison to the MCTL model 

although the amniotic fluid and fetus segmentation is improved. As the MCTL model 

parameters were initialised using the PS model it is unsurprising that it appears to be biased 

towards segmenting the placenta. Additionally, the MC model was trained using only 200 

MC training cases which confirms previous findings that performance is related to the size 

of the training dataset [23]. By adding the PS model as an extra pathway, the performance 

gained from training on 2,093 placentas is added, giving the hybrid model improved 
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placental segmentation when compared to a single pathway model which is only trained on 

300 cases. The HB and HBEA models have an almost constant performance in the placenta 

segmentation, as shown in Fig. 4, reflecting the fixed nature of the parameters of the top 

pathway which we used to exploit the more accurate PS model that has been trained on the 

largest set of cases. Small differences between the PS and HB models can occur, when some 

background voxels can be classified as placenta if their background probability was 

distributed among the other classes such that the placental probability was maximum. We 

also showed that the modified loss function allows for the bottom pathway to focus on 

segmenting the fetus and amniotic fluid. The exponential moving averaged reduced volatility 

in the weights which we propose improved model inference. This is reflected in the HBEA 

model yielding the best performance of the four models.

The performance of the PS model on the publicly available data set in [21] were reduced 

compared to data used for this study. The data used to train our model was translated from a 

toroidal coordinate system [25] while the publicly available data was already in a Cartesian 

geometry and was resampled to have isotropic spacing of 0.6 mm and did not contain the 

full scan region. We speculate that the reduced performance maybe due to error introduced 

from the resampling or the effect on the normalisation due to the cropping of the volume. 

With the availability of multi-class prediction results of placenta, amniotic fluid and fetus on 

this public data set online and the models we would expect that improvements can be made 

by interested researchers [41]. The only other multi-class segmentation work in this field by 

Yang et al. [22] obtained DSC values of 0.64, 0.89 and 0.88 to segment the placenta, 

amniotic fluid and fetus, respectively, using 104 3D-US scans. They also used a 3D 

extension of U-Net [28] and combined the output with a recurrent neural network. This 

strategy uses four times the number of features compared to the FCNN models used in our 

work. Other differences in the implementation included patch size, batch normalisation and 

image spacing. These differences as well as the greater number of training cases used may 

account for the increased performance in this study, particularly in segmenting the placenta 

(DSC of 0.82 compared with 0.64). The ground truths in [22] were obtained using manual 

segmentation. Whilst it has been demonstrated that the much faster Random-Walker 

technique has equivalent performance to manual segmentation in terms of both inter and 

intra-operator variability [9], the same has not been demonstrated for segmentation of the 

fetus or amniotic fluid.

Having shown that performance based on similarity metrics leads to good estimation of the 

organs, we applied clinically used statistics for reproducability assessment. These provide a 

measure of performance from medical studies where human operators have compared their 

performance where commercial software would not allow voxel-wise comparison. As shown 

in Table III, the ICC for amniotic and fetal estimation were excellent based on standard 

interpretations for ICC > 0.75. For the placenta, ICC values increased with the HBEA model 

providing best performance at a moderate level of reported ICC. We went further in this 

assessment, given that the nature of placental segmentation combined with ultrasound 

imaging is a hard task. The standard for evaluation of the performance of the automated 

detection is an operator defined ground truth and the ‘human eye’ is not necessarily always 

accurate. In this problem, the border between the placenta and the surrounding tissue often 

appears very diffuse making it difficult for even highly experienced sonographers to 
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distinguish the boundary between placenta and the uterine myometrium. However, where 

there is a low DSC, trying to ascertain whether the ground truth or the predicted 

segmentation more closely represents the ‘true’ anatomy is extremely difficult. As such, 

using a comparative Turing test we showed < 50% positive prediction rate for the original 

Random Walker labelled result versus the MCTL and HBEA models. This indicates that for 

a blinded observer, the automated labelling would seem be considered more “human” over 

60 cases. This result is encouraging and with additional analysis using multiple observers 

and an increased size of dataset will bolster these findings.

As discussed, this work does have limitations. The 3D-US data were collected a number of 

years ago using an US machine that has been superseded by two newer generations of 

hardware. It is hoped that the image quality will be increased in future studies facilitating 

easier segmentation since signal-to-noise ratio and spatial resolution have significantly 

improved. The use of methods of ultrasound reconstruction such as spatial averaging [42] 

may change the texture of the image and impact the performance of our FCNN which would 

need to be considered. However, in future studies useful features learned by our models 

could still be used with transfer learning on newer modalities. The effect of the many 

parameters within the model have not been investigated with full ablation studies nor full 

evaluation of other post-processing strategies. However, suitable choices of the parameters 

have been suggested and the effect of patch size has previously been studied by other 

authors [14], [43] and we would foresee these only provide minor increases in performance 

compared to increasing the dataset trained on which we have previously shown [23].

The HBEA model had a median segmentation time of 8.46 seconds compared to the 30 

minutes required for semi-automated segmenation. Hence, the model realised in this work 

will allow rapid calculation of not only placental volume but other important morphometrics 

such as shape and surface area of the utero-placental interface since these can now also be 

calculated using the MC segmentation. When combined with power Doppler ultrasound this 

will allow for automated measurement of perfusion of the utero-placental interface [10], 

[44]. These measurements when combined with blood serum and maternal characteristics, 

[45] should improve population-based screening algorithms for the prediction of adverse 

pregnancy outcomes in early pregnancy.

V. Conclusion

We present an automated method based on deep learning that achieves state-of-the-art 

performance, measured using DSC, HD, and HDAV in segmenting the placenta while 

obtaining similar values to the state-of-the-art performance for the amniotic fluid and fetus. 

This was possible by combining a multi-class dataset labelled by a semi-automatic technique 

with a multiple pathway FCNN using a modified loss function. This image analysis 

technique demonstrates a FCNN can now provide estimates of placental volume, surface 

area of the utero-placental interface and other morphometric measurements in real-time to 

facilitate population-based ultrasound screening. These measures, combined with maternal 

characteristics and serum biomarkers, can now be used to develop a first trimester screening 

tool aimed at improving identification of pregnancies at-risk of later complications.
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Fig. 1. 
Convolutional neural network architecture of the models: (a) placental segmentation (PS) 

model; (b) the dual pathway (T - top; B - bottom pathway) hybrid (HB) model, where T 
encodes the PS model. The architectures of the multi-class (MC) and multi-class transfer 

learning (MCTL) models are not shown as they are identical to Fig 1a except for having four 

channels instead of two in the layer before softmax.
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Fig. 2. 
Visualization of multi-class 3D ultrasound (3D-US) segmentation of the placenta ■, 

amniotic fluid ■ and fetus ■ in three subjects (each outlined in black) performed using the 

Random Walker (RW; top) and Hybrid Averaged model (HBEA; bottom) shown as three 

orthogonal views and a semi-opaque 3D rendering (left to right).
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Fig. 3. 
Error plot of median (interquartile range) Dice similarity coefficient (DSC) on the 150 PS 

validation cases during training for the PS model to segment the placenta.
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Fig. 4. 
Median Dice similarity coefficient (DSC) on the 40 MC validation cases during training for 

the placenta, amniotic fluid and fetus, showing the performance difference between the 

multi-class models defined in Table I.
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Fig. 5. 
Histograms of the Dice similarity coefficient (DSC) for the placenta, amniotic fluid and 

fetus for all four FCNN models on 60 MC test cases. The median and mean values are 

shown as red and blue vertical lines, respectively.
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TABLE I

Summary of the features of each fully convolutional neural network (FCNN) describing class (S - Single; M - 

Multiple), use of exponential averaging (EA), application of transfer learning (TL) from other models and 

number of pathways used.

Acronym Model Class EA TL Pathways

PS Placenta Segmentation S N N 1

PSEA Placenta Segmentation with EA S Y N 1

MC Multi-class Segmentation M N N 1

MCTL Multi-class Segmentation with TL M N PS 1

HB Hybrid M N PS 2

HBEA Hybrid with EA M Y PSEA 2
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TABLE III

Intra-class correlation coefficients (95% CI) for each organ volume from a given multi-class FCNN defined in 

Table I to the random walker estimate.

Model Placenta Amniotic Fluid Fetus

MC 0.52 (0.31 – 0.69) 0.98 (0.96 – 0.99) 0.850 (0.76 – 0.91)

MCTL 0.56 (0.36 – 0.71) 0.98 (0.96 – 0.99) 0.839 (0.75 – 0.90)

HB 0.64 (0.45 – 0.77) 0.98 (0.96 – 0.99) 0.831 (0.73 – 0.90)

HBEA 0.69 (0.53 – 0.80) 0.98 (0.96 – 0.99) 0.863 (0.78 – 0.91)
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