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Abstract

Recent histological analyses of human brains show that small-vessel type injuries in the setting of 

type-2 diabetes are colocalized with deposits of amylin, an amyloid-forming hormone secreted by 

the pancreas. Amylin inclusions are also identified in circulating red blood cells in persons with 

type-2 diabetes and stroke or cardiovascular disease. In laboratory models of type-2 diabetes, 

accumulation of aggregated amylin in blood and the cerebral microvasculature induces brain 

microhemorrhages and reduces cerebral blood flow leading to white matter ischemia and 

neurological deficits. At the cellular level, aggregated amylin causes cell membrane lipid 

peroxidation injury, downregulation of tight junction proteins and activation of pro-inflammatory 

signaling pathways which, in turn, induces macrophage activation and macrophage infiltration in 

vascular areas positive for amylin deposition. We review each step of this cascade based on 

experimental and clinical evidence, and propose the hypothesis that systemic amylin 

dyshomeostasis may underlie the disparity between glycemic control and stroke risk and may be a 

therapeutic target to reduce the risk of small-vessel ischemic stroke in patients with type-2 

diabetes.

There is a disparity between the level of glycemic control and the risk of macrovascular 

events such as myocardial infarction and stroke in persons with type-2 diabetes mellitus.1,2 

Amylin, an amyloidogenic peptide synthesized and co-secreted with insulin by pancreatic β-

cells,3 is overexpressed in individuals with prediabetic insulin resistance,4–6 and forms 

pancreatic amyloid in those with type-2 diabetes.7–9 Low molecular weight amyloidogenic 

proteins such as amylin and the Alzheimer’s disease biomarker β-amyloid peptide generate 

a variety of cytotoxic aggregates.10–13 Studies from multiple research teams find that 

diabetic states (prediabetic insulin resistance and type-2 diabetes) are associated with 

Corresponding authors: Florin Despa, PhD, Professor, Lewis Honors Faculty, Departments of Pharmacology and Nutritional Sciences, 
and Neurology, College of Medicine, University of Kentucky, Wethington Building, Room 459, 900 S. Limestone, Lexington, 
Kentucky, 40536, USA. Phone: 859-218-0291. Fax: 859-257-3646. f.despa@uky.edu. Larry B. Goldstein, MD, FAAN, FANA, FAHA, 
Ruth L. Works Professor and Chairman, Department of Neurology, Co-Director, Kentucky Neuroscience Institute, Co-Director, UK 
Neuroscience Research Priority Area, Interim Director, UK-Norton Stroke Care Network, KY Clinic - University of Kentucky, 740 S. 
Limestone Street, J401, Lexington, KY 40536, Phone: (859) 218-5039, Fax: (859) 323-5943, larry.goldstein@uky.edu. 

Disclosures
Dr. Goldstein and Dr. Despa report a patent on “Compositions and methods for enhancing neuro-repair” (Amylin skin test, USPTO 
16/395,742)
Dr. Despa reports a patent on “Diagnosis of diabetes by detecting aggregated amylin in erythrocytes” (WO 2020/102566 A1)

HHS Public Access
Author manuscript
Stroke. Author manuscript; available in PMC 2022 June 01.

Published in final edited form as:
Stroke. 2021 June ; 52(6): e244–e249. doi:10.1161/STROKEAHA.121.034363.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



increased circulating levels of aggregated amylin14,15 and amylin deposition in extra-

pancreatic tissues,14–26. including the brain microvasculature.14,16–20. By using rats with 

genetically manipulated amylin secretion, our team showed that accumulation of aggregated 

amylin in the blood and microvasculature causes brain microhemorrhages and reduced 

cerebral blood flow leading to white matter ischemic changes and neurological deficits.16. At 

the cellular level, amylin inclusions in vascular walls cause lipid peroxidation-related cell 

membrane injury, loss of endothelial cell coverage, and downregulation of tight junction 

proteins (Figure 1, red code pathway). Lipid peroxidation vascular injury contributes to a 

pro-inflammatory state affecting endothelial cells which, in turn, induces macrophage 

activation and macrophage infiltration in vascular areas positive for amylin deposition and 

microhemorrhages (Figure 1, magenta code pathway). Furthermore, amylin inclusions are 

identified in red blood cells (RBCs) of individuals with type-2 diabetes and stroke or 

cardiovascular disease.26 Amylin-coated RBCs directly activate hypoxia signaling (Figure 1, 

green code pathway), have increased adhesion to vascular endothelial cells, and a tendency 

to aggregate.26 Thus, amylin-mediated microvascular injury, macrophage infiltration, and 

reduced RBC flux due to amylin deposition on RBCs and endothelial cells may increase the 

risk of small vessel-type ischemic stroke (Figure 1, navy code pathway). Each step of this 

cascade is discussed in detail based on experimental and clinical evidence.

Circulating aggregated amylin induces brain microhemorrhages.

Radiographically-defined brain microhemorrhages (vascular microlesions)27,28 correspond 

histologically to hemosiderin-laden phagocytic microglia.29–31 They are associated with 

cerebral amyloid angiopathy, hypertension, and cerebral hypoperfusion associated with 

arteriolosclerosis, in addition to other conditions.21–34

We found that amylin aggregation in pancreatic islets leads to a feed-forward pathologic 

process by which aggregated amylin is secreted into the blood, deposits in brain blood 

vessels, and provokes brain microvascular injury by degrading endothelial cell coverage and 

tight junctions in rats that express amyloid-forming human amylin within pancreatic β-cells 

(HIP, human amylin insulin promoter transgenic rats).16 This amylin deposition in cerebral 

small blood vessels is associated with vessel wall disruption and abnormal surrounding 

neuropil in patients with type-2 diabetes and vascular dementia,16 in HIP rats,16,35 and in 

amylin knockout rats infused with aggregated amylin.16 In HIP rats, amylin-mediated injury 

in the cerebral microvasculature leads to accelerated aging,16 neuroinflammation,35 brain 

parenchymal loss,16 and impaired neurological functioning.16,35. These data identify amylin 

deposition in cerebral small vessels as a trigger of brain microhemorrhages and neurologic 

deficits that are modulated by the circulating level of aggregated amylin.16,35.

Amylin-induced vascular microlesions activate Interleukin-1β (IL-1β) pro-

inflammatory pathways.

In pancreatic islets, aggregated amylin induces oxidative stress11,12 leading to NLRP3 

inflammasome activation and release of IL-1β,36,37 a cytokine involved in a plethora of 

inflammatory responses.38 In vascular cells, IL-1β is involved in the signaling pathway that 

mediates leukocyte interactions.38. Histological analyses in human tissues (brain39 and 
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heart15) in addition to in vivo experiments in transgenic animals and cell model systems 

showed that the interaction between aggregated amylin and cellular membranes destabilizes 

cellular membranes and generates reactive aldehydes.15,39 The functional effects of these 

cellular processes include the increased synthesis of IL-1β15,39 in extra-pancreatic tissues, 

consistent with amylin-mediated injury in pancreatic β-cells and elevated IL-1β in type-2 

diabetes.36,37 Thus, exacerbated synthesis of IL-1β may be a critical stress-activated 

signaling pathway in response to the interaction of aggregated amylin with cellular 

membranes. Reports from our team also show that generation of reactive aldehydes and 

increased synthesis of IL-1β are caused by amylin aggregation independent of 

hyperglycemia.15,39. As proof of concept for the proposed mechanism, we evaluated the 

effect of combined treatments with N-acetyl cysteine, an antioxidant, and a surfactant 

membrane stabilizer15,39 and found they synergistically inhibit the lipid peroxidation chain 

reaction and renormalize IL-1β synthesis15,39 (Figure 2). Thus, IL-1β might function as a 

sensor of cellular amylin uptake and potential mediator of pro-inflammatory responses to 

amylin-induced brain microhemorrhages.

Amylin-mediated vascular microlesions activate hypoxia signaling.

Using biochemical analyses of human blood and blood transfusions in transgenic rats, our 

team found that amylin accumulation in blood cells and microvasculature activate hypoxia-

inducible transcription factors (HIF-1 and HIF-2) in endothelial cells.26 Erythropoietin 

upregulation, a consequence of hypoxia signaling activation, correlate with lower hematocrit 

in HIP rats,26 common in pathologic erythropoiesis.40 These effects are present in diabetic 

HIP rats that express amyloid-forming human amylin in the pancreas, but not in age- and 

blood glucose-matched rats that express non-amyloid forming rat amylin demonstrating that 

amylin-induced hypoxia signaling is independent of glucotoxicity.26 Vascular amylin 

deposition in HIP rats induces arginase dysregulation,26 suggesting subsequent effects on 

nitric oxide production and endothelium-mediated regulation of vascular smooth muscle cell 

tone. Nitric oxide production is modulated via regulation of two opposing L-arginine 

metabolic pathways.41. HIF-1 induces expression of endothelial nitric oxide synthase 

whereas HIF-2 regulates arginase expression, with both enzymes dependent upon L-arginine 

as a substrate.41 Increased arginase expression/activity can therefore result in nitric oxide 

deficiency and deleterious effects on endothelium-mediated regulation of vascular smooth 

muscle tone, which can exacerbate blood flow impairment in cerebral ischemia. 

Pharmacological downregulation of adhesion proteins in the vascular endothelium 

ameliorates the effects of circulating aggregated amylin while also reducing HIF-1,2 and 

arginase protein expression levels26 (Figure 3). These results suggest that endothelial 

adhesion proteins are potential therapeutic targets to reduce vascular amylin deposition and 

pathology.

Amylin-coated RBCs and vascular amylin deposits promote microthrombi.

RBC amylin content can be a useful maker of abnormally increased secretion of amyloid-

forming amylin species from pancreatic islets.26. Because amylin deposition on RBCs 

directly affects rheological properties of the blood and increases the adhesion of RBCs to 
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endothelium,26 these processes likely contribute to the complex mechanisms underlying 

diabetic microvascular disease.42,43

RBCs passively incorporate into the growing fibrin network of thrombi via binding to 

leukocytes and platelets.44 Because the inter-cell interaction appears more important in RBC 

aggregation than adhesion of RBCs to vascular endothelium,45,46 we hypothesize that the 

amyloidogenic nature of amylin in amylin-coated RBCs promotes aggregation. Aggregated 

RBCs could further interact with clotting factors to form microthrombi. Indeed, increased 

RBC aggregation is common in chronic cerebral ischemia,47,48 acute stroke49,50 and 

microvascular angina.51 Slowed capillary RBC flow owing to amylin deposition on RBCs 

and endothelial cells likely leads to impaired neuronal oxygen delivery. Furthermore, 

because RBCs act as both oxygen carriers and mediators of oxygen sensing and signaling 

pathways within blood capillary walls,40 amylin-coated RBCs may directly contribute to 

cerebral hypoxic-ischemic injury.

Clinical perspectives.

Amylin-mediated microvascular injury, macrophage infiltration and reduced RBC flow due 

to amylin deposition on RBCs and endothelial cells likely exacerbate circulatory 

disturbances leading to ischemic tissue injury in the setting of type-2 diabetes mellitus. 

Noteworthy, amylin-positive occluded small blood vessels can be identified both in brain16 

and peripheral tissues,23,25 and were also induced in healthy rats by RBC transfusions from 

diabetic rats expressing amyloid-forming human amylin.26 Because human amylin is 

amyloidogenic, whereas rodent amylin is not,52 this provides the opportunity to advance 

mechanistic studies on the potential role of systemic amylin dyshomeostasis in ischemic 

stroke. Future clinical and experimental studies are needed to: 1, determine the prevalence of 

amylin-mediated formation of microthrombi in early stages of diabetes-associated ischemic 

stroke; 2, improve the understanding of whether and how amylin-mediated microthrombi 

lead to ischemic tissue injury and stroke in patients with type-2 diabetes mellitus; and 3, 

determine whether lowering amylin accumulation in blood cells and microvasculature could 

provide a novel strategy for reducing the risk of ischemic stroke and small-vessel tissue 

injury in patients with diabetes.
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Figure 1. The amylin dyshomeostasis hypothesis of small vessel-type ischemic stroke in the 
setting of type-2 diabetes mellitus.
Systemic amylin dyshomeostasis is characterized by accumulation of aggregated amylin in 

blood and microvasculature, brain microhemorrhages and reduced cerebral blood flow 

leading to white matter injury and neurological deficits. At the cellular level, amylin 

inclusions in vascular walls generate reactive aldehydes such as 4-hydroxinonenal (4-HNE) 

and vascular amylin adducts causing loss of endothelial cell coverage and downregulation of 

tight junction proteins (red code pathway). Increased 4-HNE levels activates pro-

inflammatory IL-1β signaling pathways leading to macrophage activation and macrophage 

infiltration in vascular areas positive for amylin deposition (magenta code pathway). In 

addition, amylin-coated RBCs directly activate hypoxia signaling (green code pathway), 

have increased adhesion to vascular endothelial cells and tendency to aggregate exacerbate 

the risk of small vessel-type ischemic stroke (navy code pathway).
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Figure 2. Proposed mechanism for amylin-mediated lipid peroxidation cell membrane injury and 
activation of IL-1β pro-inflammatory signaling pathway
(adapted from Ref. 15). Amylin inclusions in cellular membranes generate reactive 

aldehydes such as 4-hydroxnonenal (4-HNE) that perturb intracellular homeostasis, leading 

to increased synthesis of IL-1β. Blocking either cellular amylin uptake (by a surfactant cell 

membrane stabilizer; S), or the lipid peroxidation chain reaction (by N-acetyl cysteine; 

NAC), demonstrate that peroxidative membrane injury is upstream of IL-1β increased 

synthesis.
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Figure 3. RBC-vascular endothelium interaction is altered by amylin deposition on RBCs and 
microvasculature, and is reversed by endothelial cell-secreted epoxyeicosatrienoic acids (EETs)
(adapted from Ref. 26). Amylin deposition on RBCs activates HIF-mediated hypoxia 

signaling pathways in kidneys and downstream upregulation of erythropoietin (EPO). These 

cellular processes are associated with pathologic erythropoiesis and arginase dysregulation 

within vascular tissue. EETs reduce this effect by downregulation of adhesion proteins in the 

vascular endothelium.
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