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INTRODUCTION

The liver is the most common site of distant metastasis 
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Objective: To compare the performance of the deep learning-based lesion detection algorithm (DLLD) in detecting liver 
metastasis with that of radiologists.
Materials and Methods: This clinical retrospective study used 4386-slice computed tomography (CT) images and labels 
from a training cohort (502 patients with colorectal cancer [CRC] from November 2005 to December 2010) to train the DLLD 
for detecting liver metastasis, and used CT images of a validation cohort (40 patients with 99 liver metastatic lesions and 
45 patients without liver metastasis from January 2011 to December 2011) for comparing the performance of the DLLD with 
that of readers (three abdominal radiologists and three radiology residents). For per-lesion binary classification, the sensitivity 
and false positives per patient were measured.
Results: A total of 85 patients with CRC were included in the validation cohort. In the comparison based on per-lesion binary 
classification, the sensitivity of DLLD (81.82%, [81/99]) was comparable to that of abdominal radiologists (80.81%, p = 
0.80) and radiology residents (79.46%, p = 0.57). However, the false positives per patient with DLLD (1.330) was higher 
than that of abdominal radiologists (0.357, p < 0.001) and radiology residents (0.667, p < 0.001).
Conclusion: DLLD showed a sensitivity comparable to that of radiologists when detecting liver metastasis in patients 
initially diagnosed with CRC. However, the false positives of DLLD were higher than those of radiologists. Therefore, DLLD 
could serve as an assistant tool for detecting liver metastasis instead of a standalone diagnostic tool.
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of colorectal cancer (CRC) [1], which is the second most 
common cause of cancer-related deaths worldwide [2]. 
Several population-based studies have detected the rate of 
cumulative liver metastasis to be 25–30% among patients 
diagnosed with CRC [3-5].

Computed tomography (CT) is a non-invasive and reliable 
method for liver assessment and is considered to be 
one of the standard imaging modalities for preoperative 
detection of liver metastasis and postoperative surveillance 
in patients with CRC [6,7]. It has been observed that 
performing curative hepatic resection in the early stages of 
cancer metastasis increases the chances of survival among 
patients with CRC [3,5,8]. Therefore, early detection of CRC 
liver metastasis using imaging modalities is an essential 
part of the preoperative cancer workup. 

However, detection of metastatic lesions in the liver is an 
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arduous and time-consuming task owing to the small size of 
the early metastatic lesions and a variety of benign lesions 
that obstruct the radiologist’s line of sight. Several studies 
have been conducted to develop computer-aided detection 
of hepatic focal lesions on CT images using machine-
learning methods [9-11]. 

Deep convolutional neural networks (CNNs), a class of 
machine-learning methods, perform with high efficiency in 
the field of medical image analysis [12-14]. Additionally, 
several articles have been published on studies that used 
CNNs for the analysis of hepatic lesions [15-17]. Patients 
with CRC diagnosed by histologic examination through 
colonoscopy biopsy routinely undergo abdominopelvic CT for 
the preoperative staging of CRC [18], and the detection of 
liver metastasis in this CT staging necessitates a significant 
alteration of the treatment strategy. Therefore, attempts were 
made to examine the performance of a state-of-the-art CNN 
algorithm for lesion detection at this stage in the CRC workup 
and to evaluate the merits and demerits of the algorithm.

The purpose of this study was to evaluate the 
performance of the deep learning-based lesion detection 
algorithm (DLLD) in detecting liver metastasis in cancer 
workup settings and compare its performance with that of 

radiologists.

MATERIALS AND METHODS 

Ethical Approvals and Study Population Overlap
This retrospective study was approved by the Institutional 

Review Board. The requirement for informed consent was 
waived (IRB No. 4-2019-0187). There was a partial overlap 
in the study population between this study and a previous 
study [19]. These patients were exclusively included in the 
training cohort in our study.

Study Population
The study population comprised a training cohort 

and temporally independent validation cohort (Fig. 1). 
For the training cohort, electronic medical records were 
retrospectively searched, and 4871 recently diagnosed 
colorectal adenocarcinoma patients were identified between 
November 2005 and December 2010. Among these patients, 
624 consecutive patients who underwent pretreatment 
contrast-enhanced abdominopelvic CT followed by contrast-
enhanced liver magnetic resonance imaging (MRI) to 
characterize the undetermined hepatic focal lesion were 

Patients who newly diagnosed colorectal adenocarcinoma
with pathologic confirmation between

November 2005 and December 2010 (n = 4871)

Patients who newly diagnosed colorectal adenocarcinoma
with pathologic confirmation between

January 2011 and December 2011 (n = 1320)

Colorectal adenocarcinoma patients who underwent pretreatment
contrast-enhanced abdominopelvic CT and liver MRI (n = 624)

Colorectal adenocarcinoma patients who underwent pretreatment
contrast-enhanced abdominopelvic CT and liver MRI (n = 93)

Patients with at least one metastasis, cyst, or hemangioma in liver, 
  larger than 3 mm and smaller than 5 cm (n = 502)
     - 612 metastases (2206 images)
     - 990 cysts (1739 images)
     - 153 hemangiomas (441 images)

Patients with at least one indeterminate lesion in liver (n = 85)
     - 40 patients with 99 liver metastatic lesions
     - 45 patients without liver metastatic lesion

Exclusion criteria
  - �Patients who have only benign hepatic lesions other 

than cyst or hemangioma (n = 52)
  - �Patients who have only hepatic lesions smaller than 

3 mm or larger than 5 cm (n = 44)
  - Inadequate image quality for analysis (n = 21)
  - Patients who have other malignancies (n = 2)
  - �No available reference standard of hepatic lesion 

(n = 2)
  - �Inaccurate extent of hepatic lesion due to venous 

thrombosis (n = 1)

Exclusion criteria
  - �Patients who have other malignancies (n = 2)
  - Follow up loss (n = 2)
  - Inadequate image quality for analysis (n = 2)
  - �No available reference standard of hepatic lesion  

(n = 2)

Training cohort Validation cohort

Fig. 1. Flow chart of the study population. CT = computed tomography, MRI = magnetic resonance imaging
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identified. A total of 122 patients were excluded for the 
following reasons: 1) Fifty-two patients had only benign 
hepatic lesions other than cysts or hemangiomas; 2) Forty-
four patients had hepatic lesions smaller than 3 mm or 
larger than 5 cm; 3) The CT image quality of 21 patients 
was inadequate for analysis; 4) Two patients had other 
malignancies; 5) The hepatic lesion in two patients did 
not meet the available reference standard; 6) The extent 
of hepatic lesion was inaccurate in one patient owing to 
venous thrombosis. Subsequently, 502 patients (a total 
of 4386 slice CT images in the portal phase) with 612 
metastases (2206 images), 990 cysts (1739 images), and 
153 hemangiomas (441 images) were included.

All lesions were confirmed using the following procedure. 
When surgical resection or biopsy was performed, the 
diagnosis was confirmed using pathology results. If 
pathological confirmation was unobtainable, typical MRI 
findings and imaging follow-up for a minimum of 1 year 
were used to characterize the hepatic lesions (Supplementary 
Materials 1). 

Next, for the validation cohort, 1320 patients diagnosed 
with colorectal adenocarcinoma were identified for the first 
time between January 2011 and December 2011. Of these, 
93 patients who underwent pretreatment contrast-enhanced 
abdominopelvic CT, followed by contrast-enhanced liver MRI 
owing to hepatic focal lesions and resectability evaluation, 
were identified. Eight patients were excluded for the 
following reasons: 1) two patients had other malignancies, 
2) two patients were lost to follow-up studies, 3) the CT 
image quality of two patients was found to be inadequate 
for analysis; and 4) the hepatic lesions of two patients did 
not meet the available reference standard.

Finally, a group of 85 patients comprising 40 patients 
with 99 liver metastatic lesions and 45 patients without 
liver metastasis was selected for the validation cohort. 
Consequently, 229 cysts and 21 hemangiomas of these 85 
patients were included in the validation cohort.

Image Acquisition 
The minimum requirement of the CT protocol is a portal 

venous phase with a thickness of 3 mm or 5 mm. Liver MRI 
was performed on patients suspected of having resectable 
liver metastases on CT scans, patients with an indeterminate 
lesion on CT, or high-risk patients at the discretion of the 
clinicians. Detailed technical information and imaging 
protocols for CT and MRI are provided in Supplementary 
Materials 2.

Development of DLLD
CT images of the portal venous phase were used for 

the training and validation of DLLD. First, an abdominal 
radiologist with 1 year of experience detected all the 
metastases, cysts, and hemangiomas in the CT axial images 
of the patients included in the training cohort, drew a 
rectangular region-of-interest bounding each lesion, and 
recorded the type of each lesion. YOLOv3 [20], a state-
of-the-art CNN object detection model, was used for DLLD 
architecture (https://github.com/pjreddie/darknet), and 
DLLD was initialized using the transfer learning method 
with a pre-trained volume in ImageNet. Detailed technical 
information regarding the YOLOv3 model is provided in 
Supplementary Materials 3, Supplementary Figure 1. DLLD 
was trained using a fully supervised learning method by 
inputting the converted CT images and labels indicating the 
type and location of the lesions. A false positive filtering 
method was applied to the post-processing step of lesion 
detection (Supplementary Materials 4, Supplementary 
Fig. 2). Three class-lesion training (metastasis, cyst, and 
hemangioma) was performed to teach the differences 
between different types of common hepatic lesions 
(Supplementary Materials 5, Supplementary Table 1).

Performance Evaluation of DLLD
The trained DLLD received CT images of each patient in 

the validation cohort and derived a binary decision and 
a confidence score between 0 and 100 for each detected 
lesion (Fig. 2). Existing object detection models provide 
predictions per slice. Clinically, however, providing 
predictions per lesion is more practical. Thus, DLLD was 
designed to automatically derive predictions per lesion. 
First, lesions connected between adjacent slices were 
identified and recognized as one lesion. Next, the average 
of the metastasis scores of all the slices was defined as 
the metastasis confidence score of the corresponding 
lesion. For the binary decision, the class with the highest 
confidence score was considered to be the DLLD decision for 
the lesion (Fig. 3). As DLLD was designed for the detection 
and classification of liver lesions, the detection markings 
outside the liver were excluded from this evaluation. 

Observer Performance
Observer performance tests were conducted to compare 

the performance of DLLD with that of the readers. The 
readers comprised two groups: three abdominal radiologists 
with 2, 3, and 20 years of experience in liver imaging, and 
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three second-year radiology residents. The readers were 
informed about the presence of CRC but not about the 
presence of hepatic metastasis and other clinicopathologic 
histories. The readers performed the hepatic metastasis 

detection and grading task: detecting lesions with 
suspected hepatic metastases, marking the location of 
each suspected metastasis, and recording the confidence 
score of each marked lesion on a five-point scale (1 = 

Fig. 3. Schematic diagram of the DLLD architecture. The YOLOv3 model was trained in a fully supervised manner using the 3-class CT images 
of the training cohort and the corresponding labels indicating the class and location of lesions. In the prediction phase, the trained YOLOv3 
model finds hepatic focal lesions and predicts information about the detected lesions (location, class, and confidence score for each class) for 
each CT image in the validation set. Next, an abdominal radiologist manually identifies the lesions that are connected between the adjacent 
slices, recognizes them as one lesion, and calculates the confidence score for each class using the average of the confidence scores of all slices 
containing this lesion. If the confidence score of the metastasis is the highest among all classes, the binary classification result of the lesion is 
“metastasis.” Otherwise, the lesion is considered benign. CT = computed tomography, DLLD = deep learning-based lesion detection algorithm,  
2D = two-dimensional

Prediction

Reference 
  standard

Fig. 2. Example computed tomography images of a male patient aged 71 years diagnosed with rectal cancer. There are two 
pathologically confirmed liver metastases. One 16-mm lesion is present in the right anterosuperior liver segment, and another 7-mm lesion in the 
right posterosuperior liver segment. The DLLD detects the lesion in the right anterosuperior liver segment and classifies it into a metastasis class 
with a 100-confidence score, and all six readers detect and properly classify it with a four- or five-point scale confidence score. The DLLD detects 
the lesion in the right posterosuperior liver segment and classifies it into a metastasis class with a 77-confidence score. However, none of the 
readers mark this lesion. DLLD = deep learning-based lesion detection algorithm
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probably benign; 2 = indeterminate; 3 = possible metastasis 
with more than 50% confidence; 4 = probable metastasis 
with high confidence; 5 = definitely metastasis). They 
were then informed that lesions with a confidence score 
≥ 3 were considered positive when analyzed using binary 
classification [13,21].

Statistical Analysis
For evaluating the per-lesion diagnostic performance 

of DLLD and readers for the liver metastasis detection 
task based on the confidence score, the area under the 
alternative free-response receiver operating characteristic 
curve (AUAFROC) was computed by performing an 
alternative free-response receiver-operating characteristic 
analysis [22]. Diagnostic performances of DLLD and the 
readers were compared using the 95% confidence interval 
(CI) for the difference in AUAFROC values. The 95% CI was 
estimated using the bootstrap method with 1000 resamples.

For per-lesion binary classification, the sensitivity and 
false positives per patient (FPP) of DLLD and readers were 
measured and compared using generalized estimating 
equations. For the per-patient binary classification, patients 
with a minimum of one hepatic metastatic lesion were 
considered to exhibit a positive case of CRC metastasis, 
and the sensitivity and specificity of DLLD and readers 
were measured and compared using generalized estimating 
equations.

When performing the per-lesion binary classification, the 
Fleiss’ Kappa statistic was used to analyze the intra-group 
inter-observer agreements among readers in each reader 
group. The kappa values were interpreted based on the 
guidelines provided by Landis and Koch [23].

A p value of less than 0.05 was considered statistically 
significant. All statistical analyses were performed using R 
(version 3.5.2; R Foundation for Statistical Computing) and 
SAS (version 9.4, SAS Institute Inc.).

RESULTS

Patient and Liver Metastatic Lesion Characteristics
The baseline characteristics of the patients and liver 

metastases in the validation cohort are listed in Table 1. 
Among the 99 CRC liver metastatic lesions from 40 patients, 
63 were histologically confirmed after hepatic resection or 
percutaneous biopsy, and 36 lesions were diagnosed through 
MRI findings and upon follow-up imaging for a minimum of 
1 year. The mean size of the metastatic lesions was 2.2 ± 2.2 

cm. Of the 99 metastatic lesions (27.3%), 27 were < 1 cm 
in size. Nineteen patients (47.5%) had a solitary metastatic 
lesion, 11 patients (27.5%) had two or three metastatic 
lesions, and 10 patients (25%) had four or more metastatic 
lesions. The baseline characteristics of the patients in the 
training cohort are listed in Supplementary Table 2.

Lesion-Based Diagnostic Performance of DLLD and 
Readers

Upon comparing the performance between DLLD and 
readers using the confidence score, it was found that the 

Table 1. Baseline Demographics and Clinical Characteristics of 
the Validation Cohort

Variables* Value
Mean age (year) (± SD) 67.5 (± 12.1), range 35–95
Sex, n (%)

Male 54 (63.5)
Female 31 (36.5)

CRC location
Colon 63 (74.1)
Rectum 22 (25.9)

CEA (ng/dL), median (IQR)
CRLM group 31.8 (8.4–123.5)
Non-CRLM group 3.0 (1.9–8.3)

T stage (tumor invasion depth), n (%)
T1–2 (confined to the bowel wall) 12 (14.1)
T3–4 (beyond the bowel wall) 73 (85.9)

N stage (nodal involvement), n (%)
N- (node negative) 25 (29.4) 
N+ (node positive) 60 (70.6)

M stage, n (%) 
M0 44 (51.8)
M1 41 (48.2)

Liver only 25 (61.0)
Lung only 1 (2.4)
Liver plus extrahepatic 15 (36.6)

Size of CRLM (cm), mean 2.2 (± 2.2), range 0.4–12.4
Number of CRLM per patient, 
  mean (± SD)

2.5 (± 2.0), range 1–8

Number of CRLM ≤ 1 cm, n (%)* 27 (27.3)
Confirmatory method for CRML, n (%)*
Histopathology after hepatic 
  resection or percutaneous biopsy

63 (63.6)

Suspicious MRI finding and 
  follow-up imaging study

36 (36.4)

Values represent the number of subjects (%), median (IQR), or 
mean (± SD). *The total number of CRLMs was 99. CEA = serum 
carcinoembryonic antigen, CRC = colorectal cancer, CRLM = 
colorectal cancer liver metastasis, IQR = interquartile range, MRI = 
magnetic resonance imaging, SD = standard deviation
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AUAFROC value of DLLD (0.631, CI [0.520, 0.737]) was 
not significantly different from that of the abdominal 
radiologists (0.723, CI [0.574, 0.747], p = 0.085) or that of 
the radiology residents (0.660, CI [0.640, 0.805], p = 0.584) 
(Table 2).

In the comparison between DLLD and readers, based on 
the per-lesion binary classification, the sensitivity of DLLD 
was not significantly different from that of the abdominal 
radiologists and radiology residents (81.82%, CI [72.68, 
88.39]; 80.81%, CI [73.03, 86.75], p = 0.795; 79.46%, CI 
[70.76, 86.08], p = 0.569, respectively). The FPP of DLLD 
was higher than that of the abdominal radiologists and 
radiology residents (1.330 CI [1.052, 1.681]; 0.357, CI 
[0.275, 0.464], p < 0.001; 0.667, CI [0.531, 0.838], p < 
0.001, respectively) (Table 3).

Effect of threshold modification on diagnostic 
performance is provided in Supplementary Materials 6, 

Supplementary Table 3 and Supplementary Table 4 and 
lesion-based diagnostic performance of DLLD in the 
detection and classification of cyst, hemangioma are listed 
in Supplementary Materials 7 and Supplementary Table 5.

Sensitivities for Detecting Metastatic Lesions Less Than 
or More Than 1 cm

A subgroup analysis for detecting metastatic lesions of  
< 1 cm (n = 23) and > 1 cm (n = 76) demonstrated that the 
sensitivity towards the former was statistically higher than 
that towards the latter, in DLLD (89.47%, CI [79.56, 94.89], 
56.52%, CI [34.67, 76.10], p < 0.001), and in abdominal 
radiologists and radiology residents (90.79%, CI [83.57, 
95.03], 47.83%, CI [30.81, 65.36], p < 0.001; 91.23%, 
CI [84.64, 95.15], 40.58%, CI [25.75, 57.35], p < 0.001, 
respectively) (Table 4). 

Table 2. Lesion-Based Diagnostic Performance of DLLD and Readers in the Detection of Colorectal Liver Metastasis

Testee AUAFROC (95% CI)
DLLD vs. Reader

Difference (95% CI) P
DLLD 0.631 (0.520, 0.737)
Radiologist   -0.092 (-0.202, 0.014) 0.085

Reader-averaged 0.723 (0.574, 0.747)
Reader 1 0.738 (0.630, 0.841)
Reader 2 0.730 (0.632, 0.812)
Reader 3 0.702 (0.603, 0.798)

Resident -0.029 (-0.140, 0.08) 0.584
Reader-averaged 0.660 (0.640, 0.805)

Reader 4 0.670 (0.558, 0.768)
Reader 5 0.670 (0.568, 0.774)
Reader 6 0.641 (0.531, 0.748)

AUAFROC = area under the alternative free-response receiver operating characteristic curve, CI = confidence interval, DLLD = deep 
learning-based lesion detection algorithm

Table 3. Lesion-Based Diagnostic Performance of DLLD and Readers in the Binary Classification of Colorectal Liver Metastasis
Testee Sensitivity (%) (95% CI) DLLD vs. Reader (P) FPP (95% CI) DLLD vs. Reader (P)

DLLD 81.82 [81/99] (72.68, 88.39) 1.330 [113/85] (1.052, 1.681)
Radiologist 0.795 < 0.001*

Reader-averaged 80.81 (73.03, 86.75) 0.357 (0.275, 0.464)
Reader 1 77.78 [77/99] 0.118 [10/85]
Reader 2 82.83 [82/99] 0.518 [44/85]
Reader 3 81.82 [81/99] 0.435 [37/85]

Resident 0.569 < 0.001*
Reader-averaged 79.46 (70.76, 86.08) 0.667 (0.531, 0.838)

Reader 4 82.83 [82/99] 1.306 [111/85]
Reader 5 80.81 [80/99] 0.471 [40/85]
Reader 6 74.75 [74/99] 0.224 [19/85]

*Statistically significant. CI = confidence interval, DLLD = deep learning-based lesion detection algorithm, FPP = false positives per 
patient
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Patient-Based Diagnostic Performance of DLLD and 
Readers

In the per-patient binary classification, the sensitivity 
of DLLD (87.50%, CI [73.30, 94.70]) was not significantly 
different from that of the abdominal radiologists (85.80%, 
CI [78.40, 91.00], p = 0.79) and radiology residents 
(85.00%, CI [77.40, 90.30] and p = 0.70). However, the 
specificity of DLLD was 22.22% (CI [12.40, 36.60]), which 
was lower than that of the abdominal radiologists (66.67%, 
CI [58.31, 74.10], p < 0.001) and radiology residents 
(55.56%, CI [47.09, 63.70], p < 0.001) (Table 5).

Intra-Group Inter-Observer Agreements among Readers 
in Two Groups

In the per-lesion binary classification task, diagnoses 
by three readers in the abdominal radiologist group were 
consistent in 82.8% of the metastases (82/99), and 

the kappa value was 0.6458, indicating a substantial 
agreement. Similarly, diagnoses by three readers in the 
radiology residents’ group were observed to be consistent in 
80.8% of the metastases (80/99), and the kappa value was 
0.6080, indicating a substantial agreement.

DISCUSSION

For evaluating the diagnostic performance of DLLD, we 
developed a DLLD for detecting liver metastasis of CRC, 
based on the CNN model, and validated it using a temporally 
independent cohort of patients initially diagnosed with 
CRC. The results demonstrated that DLLD showed AUAFROC 
and sensitivity values comparable to those of abdominal 
radiologists. The sensitivity of DLLD was similar to that of 
radiologists in the detection of CRC liver metastasis in a CT 
scan, which is similar to the sensitivity of a recent meta-

Table 4. Subgroup Analysis of Diagnostic Performance in the Binary Classification of Colorectal Liver Metastasis

Testee
< 10 mm (n = 23) ≥ 10 mm (n = 76)

Sensitivity (%) 
(95% CI)

DLLD vs. Reader
(P)

Sensitivity (%)
(95% CI)

DLLD vs. Reader
(P)

Sensitivity between 
Size Subgroup (P)

DLLD
56.52 [13/23] 
(34.67, 76.10)

89.47 [68/76]
(79.56, 94.89)

< 0.001*

Radiologist 0.371 0.722 < 0.001*
Reader-averaged 47.83 (30.81, 65.36) 90.79 (83.57, 95.03)

Reader 1 43.48 [10/23] 88.16 [67/76]
Reader 2 47.83 [11/23] 93.42 [71/76]
Reader 3 52.17 [12/23] 90.79 [69/76]

Resident 0.132 0.593 < 0.001*
Reader-averaged 40.58 (25.75, 57.35) 91.23 (84.64, 95.15)

Reader 4 56.52 [13/23] 90.79 [69/76]
Reader 5 43.48 [10/23] 92.11 [70/76]
Reader 6 21.74 [5/23] 90.79 [69/76]

*Statistically significant. CI = confidence interval, DLLD = deep learning-based lesion detection algorithm

Table 5. Per-Patient Diagnostic Performance of DLLD and Readers in the Binary Classification of Colorectal Liver Metastasis
Testee Sensitivity (%) (95% CI) DLLD vs. Reader (P) Specificity (%) (95% CI) DLLD vs. Reader (P)

DLLD 87.50 [35/40] (73.30, 94.70) 22.22 [10/45] (12.40, 36.60)
Radiologist 0.790 < 0.001*

Reader-averaged 85.80 (78.40, 91.00) 66.67 (58.31, 74.10)
Reader 1 82.50 [33/40] 91.11 [41/45]
Reader 2 90.00 [36/40] 53.33 [24/45]
Reader 3 85.00 [34/40] 55.56 [25/45]

Resident 0.700 < 0.001*
Reader-averaged 85.00 (77.40, 90.30) 55.56 (47.09, 63.70)

Reader 4 90.00 [36/40] 24.44 [11/45]
Reader 5 87.50 [35/40] 57.78 [26/45]
Reader 6 77.50 [31/40] 84.44 [38/45]

*Statistically significant. CI = confidence interval, DLLD = deep learning-based lesion detection algorithm
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analysis (82.1%) [24]. However, DLLD showed a statistically 
inferior FPP compared to that of the abdominal radiologists 
and radiology residents. In other words, although it can 
effectively detect hepatic focal lesions, DLLD may have 
limitations in its characterization. 

This study was conducted on a retrospective cohort of 85 
patients initially diagnosed with CRC, who displayed signs 
of suspected hepatic lesions on the initial staging of CT 
images and had to undergo further workup. The detection 
of liver metastasis at this stage has a significant impact 
on the development of the treatment strategy [3,25]. 
Thus, the results of the application of DLLD in the cohort 
helped in evaluating the merits and demerits of using the 
deep learning-based method. The results demonstrated 
that DLLD was as sensitive as a radiologist. However, for 
the characterization of hepatic lesions, verification by the 
radiologist is necessary owing to the excessive FPP of DLLD.

In the per-patient analysis, the sensitivities of DLLD 
and readers were similar; however, the specificity of the 
readers was much higher than that of DLLD. This result 
was presumed to be related to the deep background 
knowledge of the radiologists [26,27]. Owing to this 
difference in knowledge, the proposed DLLD seemed to 
have a relatively slow learning curve in terms of the 
characterization of the identified hepatic focal lesions. 
However, a level of sensitivity comparable to that of the 
radiologist was identified in this scale of the dataset, this 
is likely because the sensitivity is dominantly affected by 
image pattern recognition and therefore does not require 
prior medical knowledge. Additionally, in several cases, 
DLLD reported one or two false positives in patients 
without metastasis. These cases did not have a significant 

impact on the per-lesion statistics; however, significantly 
impacted the per-patient decision. The standalone usage 
of DLLD without the supervision of a radiologist may lead 
to an increase in superfluous examinations and surgeries 
[28]. To prevent this, the DLLD should be used only as an 
assistant tool until its specificity is sufficiently verified. 
Notably, the performance comparison between the reader 
and a combination of reader and DLLD, which has often 
been used in several deep learning-based studies, may 
mask the disadvantage of the high FPP of deep learning-
based detection methods. The reader can easily ignore 
the obvious false-positive lesions, such as partial volume 
artifact, definite cyst, and a cross-section of the bile duct, 
reported by DLLD (Fig. 4). Thus, the high FPP of DLLD could 
be obscured when the reader’s evaluation is combined. 
Therefore, it is important to directly compare the FPP of 
DLLD with that of readers during evaluation.

In the subgroup analysis of lesions dichotomized by 
a maximum diameter of 1 cm, both DLLD and readers 
showed statistically significant lower sensitivity in finding 
metastatic lesions of less than 1 cm. Additionally, there 
was no significant difference in sensitivity between DLLD 
and readers in both size subgroups. This is consistent 
with the results of a previous study on the deep learning-
based pulmonary nodule detection algorithm used in chest 
radiography [13]. The algorithm also cannot effectively 
detect small metastatic lesions (≤ 1 cm). Therefore, DLLD 
should be used keeping this fact in mind. 

The final diagnoses of the 113 false-positive findings 
of DLLD in the CRC liver metastasis detection task are 
summarized in Supplementary Table 6. The first and second 
causes of the false-positive findings were partial volume 

Fig. 4. Example CT images of a female patient aged 78 years diagnosed with ascending colon cancer. The deep learning-based lesion 
detection algorithm detects a nodule in the right anterosuperior liver segment and classifies it into a metastasis class. CT image review reveals 
that it is a false-positive finding caused by the partial volume effect arising from the diaphragm. CT = computed tomography
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artifacts arising from perihepatic normal structures (37, 
32.7%) and the heterogeneity of liver parenchyma (22, 
20.4%). These causes account for 53.1% of all false-
positive findings of DLLD, and it was easy for radiologists 
to differentiate these findings from real metastasis. DLLD 
performed well in detecting all types of focal lesions; 
however, it could not determine well the class to which 
the lesion belonged. This may be owing to the difficulty in 
providing a training set that includes all morphologic forms 
of all focal lesions.

This study had several limitations. First, the number of 
patients for DLLD training was relatively small. However, in 
a recent study on the differential diagnosis of liver masses 
on CT, it was reported that a CNN trained for the study 
using only CT images of 460 patients could successfully 
classify the lesions into five categories [15]. In the present 
study, a larger number of images were used for training than 
the reported study. However, further multicenter studies 
are needed using a learning curve extrapolation method to 
estimate the required training data size. Second, there was 
no external validation of the DLLD performance. External 
validation through further studies is needed to confirm its 
general applicability. Third, the validation cohort group 
poses a risk of selection bias since this cohort comprised 
patients with both staging CT images and consecutive MR 
images. Most of these patients were those who showed 
an indeterminate lesion on CT and had taken an MRI 
scan. Although the validation cohort comprised patients 
with lesions that were more difficult to diagnose, the 
readers evaluated the same condition for fair performance 
comparison between DLLD and readers. Fourth, only the 
detection markings inside the liver were included in the 
performance evaluation. Since the detection markings 
outside the liver were excluded from the false-positive 
findings, the results may be exaggerated compared to other 
studies wherein the same procedure was not followed. 
However, DLLD was developed only for the liver and should 
only be used in this context. Therefore, extrahepatic 
detection can be ignored. In future studies, we plan to 
construct a DLLD that can automatically segment the liver 
and detect lesions within the segmented area. Fifth, all 
CT images were obtained more than 8 years back using CT 
scanners from only two vendors and using only the filtered 
back-projection algorithm. Further study is needed using CT 
images from up-to-date models and utilizing various image 
reconstruction methods from various vendors to overcome 
unintended time-dependent and vendor biases.

In conclusion, the sensitivity of DLLD was comparable 
to that of experienced radiologists when detecting 
liver metastasis in patients initially diagnosed with 
CRC. However, the FPP of DLLD was higher than that of 
radiologists. Therefore, DLLD could serve as an assistant 
tool for detecting liver metastasis instead of being utilized 
as a standalone diagnostic tool.

Supplementary Materials

The Data Supplement is available with this article at 
https://doi.org/10.3348/kjr.2020.0447.
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